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0 Introduction

Overview of Macdonald polynomials Pλ(x; q, t) in n variables x = (x1, . . . , xn) (of type An−1).

0.1 Three monographs by I.G. Macdonald

[1] Symmetric Functions and Hall Polynomials, Second Edition. Oxford University Press, 1995,
x+475pp.
– Chapter VI: Symmetric functions with two paramters Pλ(x; q, t).

[2] Symmetric Functions and Orthogonal Polynomials. University Lecture Series 12, American
Mathematical Society, 1998, xvi+53 pp.

[3] Affine Hecke Algebras and Orthogonal Polynomials. Cambridge Tracts in Mathematics 157,
Cambridge University Press, 2003, x+175 pp.
– Macdonald-Cherednik theory based on (double) affine Hecke algebras)

0.2 Macdonald polynomials

Macdonald polynomials (∼ 1987)
– in the narrow sense:

symmetric polynomials Pλ(x; q, t) in x = (x1, . . . , xn) of [1] (of type An−1 in the GLn version)
– in the broader sense:

W -invariant orthogonal polynomials with parameters q and (tα)α associated with a root system
(a pair of a root system and a lattice on which the Weyl group W acts)
The Macdonald polynomials of type BC (or C∨C) are also called the Koornwinder polynomials.

The main objects of this course: Macdonald polynomials in n variables (of type A, GLn version)

Pλ(x; q, t) ∈ C[x]Sn , x = (x1, x2, . . . , xn). (0.1)

– a family of C-bases of the ring of symmetric polynomials with two parameters (q, t).

The ring C[x]Sn of symmetric polynomials x = (x1, . . . , xn) have two fundamental bases

C[x]Sn =
⊕
λ∈Pn

Cmλ(x) =
⊕
λ∈Pn

Csλ(x). (0.2)

These bases are indexed by the set Pn of partitions λ with ℓ(λ) ≤ n:

λ = (λ1, λ2, . . . , λn) ∈ Nn, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. (0.3)
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The symmetric polynomials

mλ(x) =
∑

µ∈Sn.λ

xµ = xλ + · · · , sλ(x) =
det

(
x
λj+n−j
i

)n
i,j=1

det
(
xn−j
i

)n
i,j=1

= xλ + · · · (0.4)

are called the monomial symmetric functions (orbit sums) and the Schur functions, respectively.
Both mλ(x) and sλ(x) have leading term xλ = xλ1

1 · · ·xλn
n with respect to a partial order of parti-

tions, called the dominance order.
The Macdonald polynomials Pλ(x) = Pλ(x; q, t), which will be specified below, provide a family

of bases of C[x]Sn with parameters (q, t); they specialize to mλ(x) when t = 1, and to sλ(x) when

t = q. Also, in the limit as q → 1 with scaling t = qβ, they recover the Jack polynomials P
(β)
λ (x).

Other two important special cases are the Hall-Littlewood polynomials Pλ(x; t) = Pλ(x; 0, t) and
the q-Whittaker functions Pλ(x; q, 0).

Consider the Macdonald-Ruijsenaars q-difference operator

Dx =

n∑
i=1

∏
1≤j≤n
j ̸=i

txi − xj
xi − xj

Tq,xi =

n∏
j=2

tx1 − xj
x1 − xj

Tq,x1 + · · · (0.5)

where Tq,xi stands for the q-shift operator with respect to the variable xi:

Tq,xif(x1, . . . , xi, . . . , xn) = f(x1, . . . , qxi, . . . , n). (0.6)

Theorem (Macdonald) For each partition λ ∈ Pn with ℓ(λ) ≤ n, there exists a unique sym-
metric polynomial Pλ(x) = Pλ(x; q, t) ∈ Q(q, t)[x]Sn such that

(1) DxPλ(x) = dλPλ(x), dλ =
∑n

i=1 t
n−iqλ,

(2) Pλ(x) = mλ(x) + (lower order terms with respect the dominance order).
(0.7)

We remark that the Jack polynomials P
(β)
λ (x) are orthogonal polynomials associated with the

Heckman-Opdam system/Calogero-Sutherland system of type An−1. They are the polynomial joint
eigenfunctions of a commuting family of differential operators, called the Sekiguchi operators. The
Macdonald polynomials are also the orthogonal polynomials (polynomial joint eigenfunctions) as-
sociated with the commuting family of Macdonald-Ruijsenaars q-difference operators, which define
a difference version (relativistic version) of the differential (non-relativistic) Calogero-Sutherland
system.

0.3 Fundamental properties of Macdonald polynomials

(a) Specializations: Schur, Jack, Hall-Littlewood, q-Whittacker.

(b) q-Difference equations: There exists a commuting family of higher order q-difference op-

erators D
(1)
x ,. . . , D

(n)
x starting from D

(1)
x = Dx, for which the Macdonald polynomials are joint

eigenfunctions:

D(r)
x =

∑
I⊆{1,...,n}

|I|=r

t(
r
2)

∏
i∈I; j /∈I

txi − xj
xi − xj

∏
i∈I

Tq,xi (r = 1, . . . , n),

D(r)
x Pλ(x) = er(t

δqλ)Pλ(x) (λ ∈ Pn, r = 1, . . . , n),

(0.8)
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where the eigenvalues er(t
δqλ) are rth symmetric functions in tδqλ = (tn−1qλ1 , tn−2qλ2 , . . . , qλn).

(c) Orthogonality: The Macdonald polynomials are orthogonal polynomials on the torus Tn =
{|x1| = · · · = |xn| = 1} with respect to the scalar product define by the weight function

w(x; q, t) =
∏

1≤i<j≤n

(xi/xj ; q)∞
(txi/xj ; q)∞

(xj/xi; q)∞
(txj/xi; q)∞

, (z; q)∞ =

∞∏
i=0

(1− qiz) (|q| < 1), (0.9)

which is a q-version of w(β)(x) =
∏

1≤i<j≤n |xi − xj |2β in the case of Jack polynomials. – constant
term conjecture and the scalar product conjecture.

(d) Evaluation formula and self-duality: The value Pλ(t
δ) at the base point x = tδ =

(tn−1, tn−2, . . . , 1) can be evaluated explicitly. Normalize Pλ(x) as P̃λ(x) = Pλ(x)/Pλ(t
δ), so that

P̃λ(t
δ) = 1. Then we have the symmetry P̃λ(t

δqµ) = P̃µ(t
δqλ) (λ, µ ∈ Pn) with respect to the

position variables x = tδqµ and the spectral variables ξ = tδqλ.

(e) Branching rules and Pieri formula

(f) Generating functions: of Cauchy type and of dual Cauchy type.

(g) Integrality of coefficients: Integral form Jλ(x) ∈ Z[q, t][x]Sn , Jλ(x) = cλPλ(x).

(h) Double affine Heck algebras: Dunkl operators and nonsymmetric Macdonald polynomials.

1 Schur functions

1.1 Symmetric polynomials er(x), hl(x) and pk(x)

er(x): elementary symmetric functions, hl(x): complete homogeneous symmetric functions

er(x) =
∑

1≤i1<···<ir≤n

xi1 · · ·xir (r = 0, 1, 2, . . .), er(x) = 0 (r > n),

hl(x) =
∑

µ1+···+µn=l

xµ1
1 · · ·xµn

n =
∑

1≤j1≤···≤jl≤n

xj1xj2 · · ·xjl (l = 0, 1, 2, . . .).
(1.1)

pk(x): power sums
pk(x) = xk1 + xk2 + · · ·+ xkn (k = 1, 2, . . .). (1.2)

• Generation functions, Newton formula, Wronski formula

• The ring of symmetric polynomials in x = (x1, . . . , xn):

C[x]Sn = {f ∈ C[x] | σ(f) = f (σ ∈ Sn)} = C[e1(x), . . . , en(x)]. (1.3)

The elementary symmetric functions e1(x), . . . , en(x) are algebraically independent over C. In this
n variable case, we also have

C[x]Sn = C[h1(x), . . . , hn(x)] = C[p1(x), . . . , pn(x)]. (1.4)

• Alternating polynomials:

C[x]Sn,sgn = {f ∈ C[x] | σ(f) = sgn(σ)f (σ ∈ Sn)} = ∆(x)C[x]Sn , (1.5)

where ∆(x) stands for the difference product (Vandermonde determinant):

∆(x) =
∏

1≤i<j≤n

(xi − xj) = det
(
xn−j
i

)n
i,j=1

(1.6)
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1.2 Monomial symmetric functions

C[x]Sn =
⊕
λ∈Pn

Cmλ(x) =
⊕
λ∈Pn

Csλ(x) (1.7)

• Each symmetric polynomial f(x) ∈ C[x]Sn is uniquely expressed as a finite linear combination
of monomial symmetric functions mλ(x).

f(x) =
∑
λ∈Pn

aλmλ(x) (finite sum) (1.8)

1.3 Schur functions

• The Schur function sλ(x) attached to a partition λ ∈ Pn can be defined in two ways.

First definition: (combinatorial definition)

scomb
λ (x) =

∑
T∈SSTabn(λ)

xwt(T ), (1.9)

as a sum of certain weights over all semi-standard tableaux (column strict tableaux) T of shape λ.

Second definition:

sλ(x) =
det

(
x
λj+n−j
i

)n
i,j=1

det
(
xn−j
i

)n
i,j=1

=
det

(
x
λj+n−j
i

)n
i,j=1

∆(x)
(1.10)

as a ratio of two determinants of Vandermonde type.

I will explain in the lecture how one can prove the equivalence of two definitions of the Schur
functions, on the basis of Cauchy’s lemma and the generating function of Cauchy type.

1.4 Cauchy’s lemma

• Cauchy’s lemma: For two sets of varialbes x = (x1, . . . , xn), y = (y1, . . . , yn),

det

(
1

1− xiyj

)n

i,j=1

=
∆(x)∆(y)∏n

i,j=1(1− xiyj)
. (1.11)

• Generating function: (Kernel function of Cauchy type)

n∏
i,j=1

1

1− xiyj
=

∑
λ∈Pn

sλ(x)sλ(y). (1.12)

I also give comments on some consequences of the equivalence of the two definitions.

1.5 Equivalence of the two definitions

1.6 Some remarks on the Schur functions

• Finite dimensional representations of GLn.

• Schur functions in the context of KP hierarchy.
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