Introduction to Macdonald polynomials: Lecture 3

by M. Noumi [February 19, 2021]

1 Schur functions (2)

1.3 Two definitions of the Schur functions
e The Schur functions sy (x) attached to a partition A\ € P,, can be defined in two ways.
First definition: (combinatorial definition)

$5Omb () = Z 2T (1.1)

TESSTaby, ()

as a sum of certain weights over all semi-standard tableauz (column strict tableaux) T' of shape A.

Second definition: (determinantal definition)

Aj+n—j\n Aj+n—j\n
dot det (aci] )i,j=1 det (:cZ J )m.zl
S\ (l’) = n—j\n = A(:E) (1'2)
det (z; )i,j:l

as a ratio of two determinants of Vandermonde type.

Theorem s$°"P(z) = s{(z) (A € Py).
This theorem implies that s)(z) € N[z]®", N = Zx,.

We will explain below how one can prove the equivalence of two definitions of the Schur func-
tions, on the basis of Cauchy’s lemma and the generating function of Cauchy type. Before doing
so, we explain some consequences of this theorem.

e Evaluation formula: The value of sy(z) at the point t° = (t"~1,t"2,... 1) is evaluated as

follows: y
1— t>\i_>\j+]_l

st =" ] — g n(A) = (i— 1)\ (1.3)

1<i<j<n i>1

For each box s = (i,7) € A of a Young diagram A, the content c)(s) and the hook-length hy(s) are
defined by

C)\(S):j—i, h)\(S) :a)\(S)—Fl/\(S)—Fl:/\i—j+/\9—i+1. (1.4)
Then, this evaluation formula can be rewritten as the hook-length formula
1 — ¢ntea(s)
&\ — n(N)
sa(td) =t H71 e (1.5)
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Taking the limit as t — 1, we obtain

Ni—Ni+j—1i n 4+ cy(s
sa(l,...,1) = #8STab,(N) =[] — =11 » (25 ) (1.6)
1<i<j<n J SEA A
e Self-duality:
s/\(t”+5) Su(tM—&)
_ A ). 1.7
S)\(t‘s) Su(t‘;) (A, 1 € Pp) (1.7)
1.4 Cauchy’s lemma
In what follows, we set sy(z) = s{°*(x).
e Cauchy’s lemma: For two sets of varialbes z = (x1,...,25), vy = (Y1, -+, Yn),
det (1 ) _ _A@Al) (1.8)
L=2y; ) ;i [Lij—1 (1 — ziy;)

Exercise: Prove this formula.
e Generating function: (Cauchy formula, Kernel function of Cauchy type)

n

[[— =3 sx@n) (1.9)

1— 2z
ij=1 iYj \EP,

We rewite the determinat side of (1.8) as

1 n (e} n . .
] PR B S S
1=0 i j=1

ij=1 11>->1,>0 (1.10)
=Y A @A ().
[1>->1,2>0
where .
Ay, (@) = det (xij)?,jzl’ As(r) = Ap—1n-2,..0(7) = Ax). (1.11)

Then, by Cauchy’s lemma, we obtain

n

H 1_1%% _ Z Ah&(,cl;)(x) Alz..(,;n)(y) _ Z 5x(2)52 (1), (1.12)

,j=1 l1>>1p>0 AEP,,

through the correspondence l; = \; +n—i (i=1,...,n).

1.5 Equivalence of the two definitions

For a semi-standard tableau T' of shape A, consider the subdiagram g consisting of the boxes s € A
such that T'(s) < m—1. Then p is a partition, and the skew diagram (difference) \/u is a horizontal
strip, i.e. u C X satisfies the condition \; > p; > Aiy1 (i > 1). The combinatorial definition of
sf\omb(x) can be understood as the recursion formula with respect to n:

comb

s (x1, L, T) = Z sflomb(azl,...,xn_l)xlf‘H“'. (1.13)
pCA: hs



In order to establish the equivlance s§°™P(z) = s{°*(x), we prove that s{°*(x) satisfies the same

recursion formula by using Cauchy’s lemma. Note here that

S0 (@) = (a1 )P @), S (@) = ()P (@) (1.14)
for k=0,1,2,.... Hence we have only to show the recurrece formula
SS\iet(Q;la"'axn) = Z Sget(l‘lv"wxnfl)x'lrf\‘_'u' (115)
uCA: h.s

for partitions A € P, such that A\, = 0.

In the following we set
li\n
All, An (x) det (xzj)

fryan (@) = NG A(x)i’jﬂ (I1,..., 1, € N), (1.16)

so that fi, . (z) = s$(x) for I, = \;+n —i (i = 1,...,n). Then the Cauchy formula (1.12) is
equivalent to

Afy)
l n _
iretn @Y1yl = = - (1.17)
I1i= (1 — iy;)
el >0 ij=1 i
Setting v, = 0, we obtain
s AW Yn-1) Y1 Yned
Z fll?"'vln—lvo(l')ylll T yn—ll = n—1 - n 1 : ) ’ (118)
I yeenln—1>0 [17521 (1 = wigy) Ijma (T = 20y
The right-hand side is expanded as
k kn— T n_1+1
Z Trtrdon 2 (@15 s T )Y Y Z gt 1y?+1 ey (1.19)
k1yeooykn—1 T1y-sTn—1
Equating the coefficients of ylf e yfl":f of the both sides, we obtain
=3 ki—(n—1
fll,...,lnfl,O(xlu v 7xn) = Z fkl,.“,kn71($1u v 7$n—1) xnz2 > (n )7 (120)

(klvnnknfl)
E[O,l1)><---><[0,ln,1)

where [a,b) = {k € Z | a < k < b} denotes the interval of integers. We now consider the case where
li >+ >1,>0. In (1.20), the summand of the right-hand side is alternating in (ki,...,kn—1).
Hence the range of summation can be cut off as follows:

D = 2.

(k1,k2,/€3,...)6[0,l1)>§l2)><[O,lg)m (k1,k2,/€3,...)€[12,l1)><[0,12)X[0§“ (121)
(k1,k2,k3,...)E[l2,l1) X [l3,l2) x[0,l3) - (k1yeekn—1)€ll2,l1) x[l3,l2) X% [0,lp—1)
This means that
1= ki—(n—1
fll,...,lnfl,()(:nla cee 7$n) — Z fkl,...,k‘nfl(xh CIEES LL‘n,1) J:T;z ZZ (n )? (122)

(k1,-..skn—1)



where the summation is taken over all (ki, ..., k,—1) such that
>k >lo>ky>-->1l-1 >k, >0. (1.23)
We define A € P, and p € P,,_1 by setting
Li=Xi+n—i (i=1,....n), k=m+n—i—1 (i=1,...,n—1). (1.24)

Then formula (1.22) is rewritten as

sSzy, ..., ap) = Z sﬁet(xl, ) &N (1.25)
m

with the summation over all u € P,,_1 such that
M>p>Xo>pe > > A1 > fin—1 >0, (1.26)

or equivalently, A/u is a horizontal strip.
e Jacobi-Trudi formula: In formula (1.17), we have

n

1 ZH(th(x)yf): S b (@) @)y (1.27)
k=0

n
T
[lij=11 — ziwj =1 k1o o >0

By comparing the coefficients of yl11 ---ybin (1.17), we obtain the Jacobi- Trudi formula

sx(z) = det (hy,—i+j(z)) (A e Py). (1.28)

ij=1
1.6 Some remarks on the Schur functions

e For a fixed partition A € P,, the following combinatorial objects are all equivalent to each other.
(a) semi-standard tableaux T € SSTab,,(\).

(b) non-decreasing sequences of partitions ¢ = A0 c D c ... € AW = X such that /\(i)/)\(i_l)
are horizontal strips.

(¢) Gelfand-Tsetlin patterns

.. (1.29)
)\52) )\(22)

(d) n-tuples of non-intersecting paths on the lattice {1, ..., n}xN with starting points (1,0), ... (n,n—
1) and ending point (n,l,),...,(n,{1). (In this combinatorial context, the Jacobi-Trudi formula is
a consequence of the Lindstrom-Gessel-Viennot theorem.)

e Schur functions as the characters of polynomial representations of GL,,.
— (GL,, GL;,)-duality and the Robinson-Schensted-Knuth (RSK) correspondence



