Introduction to Macdonald polynomials: Lecture 4

by M. Noumi [February 26, 2021]

2 Macdonald polynomials: Definition and examples

2.1 Macdonald-Ruijsenaars g-difference operator

We fix ¢,t € C* = C\ {0} with |¢| < 1. We regard the variables x = (x1,...,2,) as the canonical
coordinates of the n-dimensional algebraic torus (C*)".

The Macdonald-Ruijsenaars q-difference operator of first order with parameter ¢ is defined by

n P .
ZA To=>.  |] t;Z_ZTw, (2.1)

i=1 1<j<n;ji

where T, ., stands for the g-shift operator in the variable z;:

Toz flxr, .. xiy. . xn) = f(21,..0,qx, ..., 2n) (1=1,...,n). (2.2)

We remark that the coefficients of D, are expressed as

Ai(z) = H t:zl__;ij = thégx), A(z) = H (i — x5) (2.3)

j#i 1<i<j<n
in terms of the difference product A(z) of z.
e Fundamental properties of D,
(1) D; is invariant under the action of &,, such that o(z;) = ;) 0(Tge,) = Tya,q (0 € &y).
(2) D, : C(z) — C(x) stabilizes C[z]®, i.e. D,(C[z]®") C C[z]®. Warning: D, (C[z]) € C[z].
(3) Dy : Clz]® — C[z]®" is triangular with respect to the dominance order of m(x):
D,my(x Z ) nmy(x) = dymy(z) + Z ) oy (x (A e Py). (2.4)
n<\ n<A

where dy = d} = Y1 | t"igh.

Theorem (Macdonald) Suppose that the parameters ¢,t € C* are generic. Then, for each
partition A\ € P, there exists a unique symmetric polynomial Py(x) = Py(z|q,t) € C[z]®" such that

(1) DyPy(z) = dyPy(z)  (2) Py(z) (z) + Y upmyu(z) (up €C). (2.5)
p<A

The eigenfunction Py(x) € C[z]$ is called the Macdonald polynomial attached to the partition

X\ € P,,. We remark that the genericity condition is fulfilled if 1, ¢, ..., "~ ! are linearly independent



over Q(q), for example. If we regard ¢,t as indeterminates, Py(z|q,t) is determined as a unique
symmetric polynomial in Q(q,t)[z]®".

e Comments on the proof: The coefficients ufl of P\(x) are determined through recurrence
formulas

(dr—duy = > updl  (p<N) (2.6)
pu<v<A

by the descending induction with respect to <, provided that d,, # dy (1 < A). The eigenfunction
Py (z) can also be expressed as

_ dl,
H —— (ma(@)). (2.7)
A~
p<A
e Single columns: If A is a single column (1") = (1,...,1,0,...,0) (r = 0,1,...,n), we have

Pyry(7) = er(z) (Why?). The equation Dye,(x) = d(irye,(z) already implies a nontrivial identity

tr; —x;
ZH Z—x (15005 qT - ) = dryer (),
i=1 LY (2.8)
1—t" 1=t

1-t¢ + 1-1¢

d(lT):tn—lq_|_“‘_{_tn—rq_‘_tn—r—l_‘_”‘_|_1:qtn—r

In particular, D,(1) = dop1 implies

t j 11—t

§ [12—5 = . (2.9)
Ti— X —1

=1 j#i

o Adding columns of length n: Similarly to the case of Schur functions, we have

Pyigny(®) = (21 22)"Pa(z)  (NE€Pp; k=0,1,2,...). (2.10)

2.2 Some examples

et =1: Py(z)=my(z) (monomial symmetric function). Dy = > 7" | Ty,
ot =¢q: Py(r)=sx(z) (Schur function). When t = ¢, we have
~ Ty, (A(2)) 1 (%
Dy =% 5T = Ty, ) A(). 2.11
iZ:; A(a:) q,T5 A(x) (ZZ:; q, 2) (‘T) ( )

en =1 Pylr1)= zh (1=0,1,2,...).
en = 2: For each A = (A, A2) € Pa, Py(z) is determined explicitly as follows:

Pin ) (@1, @2) = (2122) Py o) (21, 72);

(g a0 ) G D G Dpe o (@GO
iq

. (2.12)
P(l.O)( 1, 2) (t;Q)l (q;(Z);M(QQQ)

p1+p2=l

where (t;¢)r = (1 —t)(1 —qt)--- (1 —¢*1t) (£ =0,1,2,...)



2.3 Eigenfunctions in the case where n = 2

For p = (p1, p12), A = (A1, A2) € Z", we have

p<A = (<A p e =AM+ Ag)

(2.13)
<~ (Nla ,ug) = ()\1 —k, Ao+ ]{?) (k‘ S Zzo).
In view of this, we consider a formal power series of the form
o(z1,22) = chxi‘l -k >‘2+k = xi‘lxg‘z ch(xg/xl)k (2.14)
k>0 k>0
with ¢g = 1, and solve the eigenfunction equation
tr1 — x9 xr1 — txo
17@(61371,962) + 1780(9317 qr2) = £ p(z1,22). (2.15)
xr1 — X2 xr1 — T2

Setting z = xa/x1, We rewrite this equation by means of f(z) = Y_,-,ck2”. Since p(z1,22) =

a1 x)? f(x2/21), we obtain

) T f(e) = £ (2) (216)
namely,
(t—2)g" fg 2) + (1 = t2)q f(qz) = (1 — 2) f(2), (2.17)

This equation gives rise to the recurrence formulas for the coefficients
M F + 2R — o) = (TR f TR o)l (ke ), (2.18)

with ¢, = 0 for k& < 0. This formula for k£ = 0 determines the eigenvalue as € = t¢g* + ¢*2. Then
the resulting recurrence formulas

Q=)= M e = (/)L —td" (A =M Ny (k=1,2,..)  (2.19)

are solved by
_ (Gaw(@ )
(a5 Qr(g*2 M/t q)y,

This computation implies that the power series

(g/t)F (k=0,1,2,...) (2.20)

Mo o= BQR(@2TM )k
Z(

k
o(r1,z2) = 27t — (qra/tz1)
b2 ¢ Or(@2M+ [t ),

(2.21)
A t q)\z A1
_9511952 2¢1{ Ao— >\1+1/t7 q, qra/tay
solves the eigenfunction equation D,p(z) = € p(r) with & = tg™ + ¢*2.
e g-Hypergeometric series
@, = (a 1 (o)
0, &1, -+ 054 k 1:9)k - \Ar;q)k
1 = z z| < 1). 2.22
oG e 2 b gy - <D 2



e g-Binomial theorem

a — (3;9)k _ _ (a29)s0 N ;
ol @0 s =3 Wk D<) g = [[0 -4 al <D (229
Pl GO (25 @)oo Pl
e Generating function
(t21y : Qoo(tT2y 1 Poo !
= Qi (x1,x22)y".
(2193 @)oo (2293 @)oc lzg ol w2y o0
t; t; t; ’
Quy (w1, 22) = (( ,Q))l Pyy(z,m0) = ) {60) i Dy ,q;mE ,Q))M vy ay?
q;4)1 - 3 4) i \q959) o
2.4 Macdonald polynomials attached to single rows
For1=0,1,2,..., we set
Quy(x) = Z (@ = (5 D otk = GLl 2} + (lower order terms).  (2.25)

(G D (G D ()

p1te A pn=l ’

These polynomials are the Macdonald polynomials attached to single rows up to constant multiples.
If fact we have
(¢ a)

Qu(x) = Pop(x 1=0,1,...). 2.26
() (@0 w(T) ( ) (2.26)
In order to prove this, we have only to show that
n—1 1 n—2 n—1 1 1— ¢!
DiQuy(@) = dpQuy(x), day =t""¢ +" "4+ 1=1""q + ——— (2.27)
By the g-binomial theorem, we have
Bz y) = (txwf Doo - (txny; @)oo
(@195 @)oo+ (Tn¥; Qoo (2.38)
t' t' o0 .
= > LV LY ity =N T Q ()y
@D (G D, P
Since -
O(ziy) = > Quy(@)y, (2.29)
1=0
the eigenfunction equations for Q) (x) are equivalent to the identify
1 1— tn—l
D, ®(w;y) = (tn* Tyy + ﬁ)é(ﬂc;y)- (2.30)
Noting that
1—zy N ;Y
Ty, Plx;y) = P(x;y), To,P(ry)=1| ———P(x;y), 2.31
0 ®(3y) = T B(@iy) 4w ®(2;y) Hl—mjy (z39) (2.31)



we see that identity (2.30) is equivalent to the identity

tx; — Xy 1 ;Y 1—¢n1
=" 2.32
;gxl—le—txy Hl—txjy 1—-1¢ ( )
of rational functions. As rational functions of y, both sides are of the form
o) p(y),q(y) € Clyl, deg,p(y) <n, deg,q(y)=n. (2.33)

Then, one can verify identity (2.32) by partial fraction expansions, comparing the residues at
y=1/tiz; (i=1,...,n) and the value at y = 0 which reduces to (2.9).

¢ Relation to ¢-hypergeoemtric series

Qo) =) ( .q;”l E .q))“ zyt (2.34)
pitetpn=t DD % 9) pn
Using p1 =1 — pg — -+ - — pin, we rewrite the factor containing pu;:
(D _ G Dipg—mpn _ G (@2 @)y i,
(@D (GDi-po—mpn (GO (@277 Q) et (2.35)
: —1. :
— (t’ q)l (q ) q)H2+"'+Mn (q/t)u2+---+un
(@i (@ /8 Dpgtovtan

Hence we have

oo B (@3 Dpattin EDpo G D (s e in
Qo) = (g™ Z>O (@ Dpotootpin (G D (@ Do (a2t 2 - -{genft1)"

K255 in 2
(2.36)
We now introduce a g-hypergeometric series in m variables
; e ; bi; co (b
(Z)D a7 bl, 7bm’ q’ 217 el Zm:| — Z (a; q)k1+ +k‘m ( 1 Q)kl ( m Q>k§m lef?l o anm7 (237)
c kl km>0 (C’ q)k1++km (q’ Q)k1 T (Q7 q)km

which is a g-analogue of Lauricella’s Fp (Appell’s F} when m = 2). Then the Macdonald polyno-
mials attached to single rows are expressed as

—l
Dt L
P(l)(xla <o T ) - x1¢D|: 7l+1/t 5 45 qu/txlv . 7qxn/t$1 (l = 07 1727 . ) (238)

in terms of ¢p in n — 1 variables.



