Introduction to Macdonald polynomials: Lecture 5

by M. Noumi [March 5, 2021]

2 Macdonald polynomials: Definition and examples

2.3 Eigenfunctions in the case where n = 2 (continued)
2.4 Macdonald polynomials attached to single rows

(See the summary of Lecture 4.)

3 Orthogonality relations

3.1 Scalar product and orthogonality

We define a meromorphic function w(x) on (C*)" by
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We assume |t| < 1 so that w(z) is holomorphic in a neighborhood of the n-dimensional torus
T ={z=(z1,...,2,) € (C)" | |z5| =1 (i=1,...,n)}. (3.2)
For a pair of holomprhic functions f(z), g(z) in a neighborhood of T", we define the scalar product
(symmetric bilinear form) < 7/, g> by
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where CT denotes the constant term of the Laurent expansion of a holomorphic function around
T". Then the Macdonald polynomials are orthogonal with respect to this scalar product:
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e The constant term and the scalar products are determined explicitly as follow:
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Research project: How can one derive these explicit formulas? Variations and generalizations?

e Ifg,t € Rand |q| < 1, |t| < 1, the Macdonald polynomials have real coefficients, and < , > defines
a positive definite scalar product on R[z]®".



3.2 Comments on the orthogonality relation

The orthogonality of the Macdonald polynomials is a consequence of the facts that
(1) The g-difference operator D, is (formally) self-adjoint w.r.t. the weight function w(x),
(2) The Macdonald polynomials are separated by the eigenvalues of D, (for generic t).

e Cauchy’s theorem as a basis of ¢-difference de Rham theory: Let ¢(2) be a holomorphic
function in an neighborhood of a closed curve C' in C*. Then we have
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if ¢ is sufficiently close to 1 (so that C' can be deformed continuously to ¢C in a domain where ¢(z)
is holomorphic). In particular we have
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This formula play the role of the integration by parts.

e Formal adjoint of a ¢-difference operator: Let L € C(z)[T, qixl] be a g-difference operator in
z = (21,...,%,) with rational coefficients of the form Ly = >~ 7. a,(x)Th, (finite sum), where
Tgw = Ty, - Tgs,- We define the formal adjoint L* of L by L} = 3 7. Tgz au(z), so that
(LyMy)* = M¥L:. Then, we have
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(Lf,g)=(f,Llg), L' =w(x) "L iw(), (3.9)

provided that ¢ is sufficiently close to 1 and that Cauchy’s theorem can be applied to L,. We say
that L, is formally self-adjoint with respect to w(z) if Ll = L., namely w(z)Lyw(x)™t = L¥_,

e D, is formally self-adjoint with respect to w(x): Note that
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This implies that
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It can be verified directly that (D, f,g) = (f, Dzg) if |t| < |¢| < 1. (Note that the poles of A;(x)
along A(x) = 0 are canceled by the zeros of w(z).)

e Orthogonality: For A\, pu € Py, the equality (DyPx(z), Pu(z)) = (P\(z ) »Pu(z)) implies
d>\<P,\, > d <PX, > If t is generic, we have dy # d, (A # p), and hence < > =0 (\#p).

4 Commuting family of g-difference operators

4.1 Macdonald-Ruijsenaars operators of higher order

For each r =0,1,...,n, we define the Macdonald-Ruijsenaars operator of rth order by
D) — S AT, = Yyl H HTq - (4.1)
IC{1,...n}; | I|=r IC{1,...n}; | I|=r iel, j¢l T iel

where T/, = [Tic; Ty.ers so that D) = 1, DY = D, and D{" = tG)T, ,, -+ T, ... Note also that
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It is known by Ruijsenaars (1987) that the ¢-difference operators Dg([;r) (r=1,...,n) commute with
each other. By the same method we applied to D,, one can directly verify:
(1) DY) (r=1,...,n) are invariant under the action of &,,.
2) D\ . C(x) — C( ) stabilize C[z]®, i.e. D)(C[z]®") C Clz]®n
(3) DY . Clx]®" — C[x]®" are triangular with respect to the dominance order of m(x):
= Z dg:L my(z) = dg\r) m(z) + Z dg\TL my(x) (A € Pp). (4.3)
759, n<A

where dg\r) = ¢,(t°¢") are elementary symmetric functions of t2¢* = ("~ 1¢*, t"2¢*2 ... ¢™).
Theorem A: The ¢-difference operators Dg(f) (r=1,...,n) commute with each other:

DD = DWDI (rs=1,...,n), (4.4)

Theorem B: Suppose that the parameter ¢ satisfies t* ¢ ¢?<¢ (k=1,...,n —1). Then, for each
partition A € P, there exists a unique symmetric polynomial Py(x) € C[z]®" such that

(1) DOIP(z) =dPy(z) (r=1,...,n) (2) Py(x) (@) + > uymyu(z) (u) € C). (4.5)
pn<A

It is convenient to introduce the generation function:
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Then the eigenfunction equations for Py(x) is expressed as
n .
Dy (u)Px(z) = da(u)Pa(x), da(u) =) _(—u)er(t°¢*) = [T(1 —ut""g™). (4.7)
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(r) _ 3 ). : —
o d,’ = e (t°¢q™): Foreach I C {1,...,n} with |I| = r, we have

Ar(x) = 1) H t 1_3;% H 1_;;//;: = t2ie1(™=) 4 (lower order terms), (4.8)
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where, for I = {i; < --- <i,}, the exponent of ¢ is computed as
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Hence, we have
D gt = Z Ap(z)gXier High = ( Z t2ier(n=0) g2ier “i>x” + lower order terms
|I|=r [I|=r (4.10)
= e, (t°¢")z" + (lower order terms).
This implies
DMy () = e,(t°¢*)ma(z) + (lower order terms) (A€ Pn). (4.11)

e Condition of genericity: One can show that if t* ¢ ¢?<0 (k = 1,...,n — 1), then for any
distinct A, u € P, dx(u) # d,(u) as polymomials in u, and also for generic u € C.

4.2 Commutativity of the operators D:(B’") (r=1,...,n)

e Orthogonality implies commutativity: (in the context of Macdonald’s book)

One can show that, for each r =1,...,n, Dg) is self-adjoint with respect to the scalar product
defined by w(x), by a similar method we used in the case of D, = DY Since D : Clz]®" —
C[x]®" is lower triangular with respect to the dominance order, we have

D" Py (x Z a A7 Wb (4.12)
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for some ag:L € C, with leading coefficient ag\rz\ = df\r). Since
(DSVPy, B = a) Py, Py), (P\,DYB) =0 (u<\), (4.13)
and (P, P,) # 0, we have aE\fL =0 for u < A. This means that DQ(CT)PA(QU) = d)\Py(z). In this way,
the linear operators DY : Clz]® — C[z]®" (r = 1,...,n) are simultaneously diagonalized by the
Macdonald basis, and hence commute each other. From this, it follows that Dy) (r=1,...,n)

commute each other as g-difference operators, by the following lemma.

Lemma: Let L, be a g-difference oprator with rational coefficients, and suppose that L, f(z) =0
for all f(x) € C[z]®". Then L, = 0 as a g-difference operator.
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Conversely, suppose we know that Dg(g
for each Py(z), we have

D,D{) P\(z) = D) D, Pa(x) = DY (dyPy(x)) = dyD{) Py (). (4.14)

(1)

commutes with D, = Dy, by some other method. Then

This means that D;T)P)\(JL‘) is also an eigenfunction of D, with eigenvalue dy. If ¢ is generic, the
eigenspace of D, with eigenvalue d) is one dimensional. Hence, D(T)P)\(x) is a constant multiple
of P\(x), i.e. DE\T)P)\(ZL') = const.Py(z); the eigenvalue const. must coincides with dy) = e, (%)
since Dg(,;r)mx(a:) = dg\r) (x)mx(z) + (lower order temrs).
e A direct proof of co)mlzn)utativity: (by Ruijsenaars, 1987)

S

The composition Dgf Dy’ is computed as
DIDY = N Ap(z)As (g a)TELte (4.15)
[I|=r,|J|=s
where €7 = Eie] €i, € = (5i,j)1§j§n e 7™ Setting K =INJ, L = (IUJ)\K, P = I\K, Q= J\K,
we rewrite (4.15) as
P = Y (Y Ar@Ace@ T ). (416)

KNL=¢ PUQ=L
|K|<min{r,s} |K|+|P|=r|K|+|Q|=s

Then the commutativity Dg(f)Dg(;S) = D;S)Dg(f) is equivalent to the following statement: For each
K,L C{1,...,n} with KN L = ¢, and for any p,q € Z>( such that p+ ¢ = |L|,

Z Agup(2)Arug(¢* T Px) = Z Akug(z)Axup(¢= ). (4.17)
PUQ—=L PUQ—=L
[Pl=p,|Ql=q |Pl=p,|Ql=q

Analyzing this equality carefully, we see that the statement (4.17) is equivalent to the following.
Lemma: For any r,s € Z>o with r 4+ s = n,

> H — twi/a;) (1 — qui/tzy) S I (L —taj/2i)(1 = goj/ti) (4.18)

IuJ={1,..,n} i€l (1 —@i/z;)(1 = quif;) 1UT={1,...,n} i€l (1 —=j/z:)(1 — qzj/2)
\I]=r,|J|=s I€J I|=r, | J|=s J€J

This lemma can be proved by combining the residue calculus of rational functions with the induction
on n. (In fact, Ruijsenaars proved the commutativity of the elliptic version of DQ(UT) (r=1,...,n)
on the basis of the corresponding identity for the Weierstrass sigma function.)

4.3 Determinant representation of D, (u)

The generating function D, (u) of the Macdonald-Ruijsenaars g¢-difference operators is expressed
by the determinant of a matrix of ¢g-difference operators as

_ 1 n—j "
D) = 355 det (2777 (1 - ut"” Tw))m:1 "
n 4.19
L Z sgn(o) H xn(_J)(l — ut”*quwa(.))
Alr) /G5, = ’

Note that the product H?Zl does not depend on the ordering in this case.



