
Introduction to Macdonald polynomials: Lecture 5

by M. Noumi [March 5, 2021]

2 Macdonald polynomials: Definition and examples

2.3 Eigenfunctions in the case where n = 2 (continued)

2.4 Macdonald polynomials attached to single rows

(See the summary of Lecture 4.)

3 Orthogonality relations

3.1 Scalar product and orthogonality

We define a meromorphic function w(x) on (C∗)n by

w(x) =
∏

1≤i<j≤n

(xi/xj ; q)∞
(txi/xj ; q)∞

(xj/xi; q)∞
(txj/xi; q)∞

, (z; q)∞ =
∞∏
i=0

(1− qiz) (z ∈ C, |q| < 1). (3.1)

We assume |t| < 1 so that w(x) is holomorphic in a neighborhood of the n-dimensional torus

Tn = {x = (x1, . . . , xn) ∈ (C∗)n | |xi| = 1 (i = 1, . . . , n)} . (3.2)

For a pair of holomprhic functions f(x), g(x) in a neighborhood of Tn, we define the scalar product
(symmetric bilinear form)

⟨
f, g

⟩
by⟨

f, g
⟩
=

1

n!

1

(2π
√
−1)n

∫
Tn

f(x−1)g(x)w(x)
dx1 · · · dxn
x1 · · ·xn

=
1

n!
CT

[
f(x−1)g(x)w(x)

]
, (3.3)

where CT denotes the constant term of the Laurent expansion of a holomorphic function around
Tn. Then the Macdonald polynomials are orthogonal with respect to this scalar product:⟨

Pλ(x), Pµ(x)
⟩
= δλ,µNλ (λ, µ ∈ Pn). (3.4)

• The constant term and the scalar products are determined explicitly as follow:

Nϕ =

(
(t; q)∞
(q; q)∞

)n n∏
i=1

(ti−1q; q)∞
(ti; q)∞

=
∏

1≤i<j≤n

(tj−i; q)∞(qtj−i; q)∞
(tj−i+1; q)∞(qtj−i−1; q)∞

,

Nλ =
∏

1≤i<j≤n

(qλi−λj tj−i; q)∞(qλi−λj+1tj−i; q)∞
(qλi−λj tj−i+1; q)∞(qλi−λj+1tj−i−1; q)∞

.

(3.5)

Research project: How can one derive these explicit formulas? Variations and generalizations?

• If q, t ∈ R and |q| < 1, |t| < 1, the Macdonald polynomials have real coefficients, and
⟨
,
⟩
defines

a positive definite scalar product on R[x]Sn .
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3.2 Comments on the orthogonality relation

The orthogonality of the Macdonald polynomials is a consequence of the facts that

(1) The q-difference operator Dx is (formally) self-adjoint w.r.t. the weight function w(x),

(2) The Macdonald polynomials are separated by the eigenvalues of Dx (for generic t).

• Cauchy’s theorem as a basis of q-difference de Rham theory: Let φ(z) be a holomorphic
function in an neighborhood of a closed curve C in C∗. Then we have∫

C
Tq,z

(
φ(z)

)dz
z

=

∫
C
φ(z)

dz

z
, i.e.

∫
C
(Tq,z − 1)(φ(z))

dz

z
= 0 (3.6)

if q is sufficiently close to 1 (so that C can be deformed continuously to qC in a domain where φ(z)
is holomorphic). In particular we have∫

C
Tq,z

(
φ(z)

)
ψ(z)

dz

z
=

∫
C
φ(z)T−1

q,z

(
ψ(z)

)dz
z
. (3.7)

This formula play the role of the integration by parts.

• Formal adjoint of a q-difference operator: Let L ∈ C(x)[T±1
q,x ] be a q-difference operator in

x = (x1, . . . , xn) with rational coefficients of the form Lx =
∑

µ∈Zn aµ(x)T
µ
q,x (finite sum), where

Tµ
q,x = Tµ1

q,x1 · · ·T
µn
q,xn . We define the formal adjoint L∗ of L by L∗

x =
∑

µ∈Zµ T
−µ
q,x aµ(x), so that

(LxMx)
∗ =M∗

xL
∗
x. Then, we have∫

Tn

(Lxf)(x
−1)g(x)w(x)

dx

x
=

∫
Tn

Lx−1(f(x−1))g(x)w(x)
dx

x

=

∫
Tn

f(x−1)L∗
x−1

(
g(x)w(x)

)dx
x

=

∫
Tn

f(x−1)w(x)−1L∗
x−1

(
w(x)g(x))w(x)

dx

x

(3.8)

and ⟨
Lf, g

⟩
=

⟨
f, L†g

⟩
, L† = w(x)−1L ∗

x−1w(x), (3.9)

provided that q is sufficiently close to 1 and that Cauchy’s theorem can be applied to Lx. We say
that Lx is formally self-adjoint with respect to w(x) if L†

x = Lx, namely w(x)Lxw(x)
−1 = L∗

x−1 .

• Dx is formally self-adjoint with respect to w(x): Note that

Tq,xiw(x)

w(x)
=

∏
j ̸=i

1− txi/xj
1− xi/xj

∏
j ̸=i

1− xj/qxi
1− txj/qxi

=
Ai(x)

Tq,xiAi(x−1)
(i = 1, . . . , n). (3.10)

This implies that

w(x)Dxw(x)
−1 =

n∑
i=1

Ai(x)
w(x)

Tq,xiw(x)
Tq,xi =

n∑
i=1

Tq,xi(Ai(x
−1))Tq,xi

=
n∑

i=1

Tq,xiAi(x
−1) = D ∗

x−1 .

(3.11)
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It can be verified directly that
⟨
Dxf, g

⟩
=

⟨
f,Dxg

⟩
if |t| < |q| < 1. (Note that the poles of Ai(x)

along ∆(x) = 0 are canceled by the zeros of w(x).)

• Orthogonality: For λ, µ ∈ Pn, the equality
⟨
DxPλ(x), Pµ(x)

⟩
=

⟨
Pλ(x), DxPµ(x)

⟩
implies

dλ
⟨
Pλ, Pµ

⟩
= dµ

⟨
Pλ, Pµ

⟩
. If t is generic, we have dλ ̸= dµ (λ ̸= µ), and hence

⟨
Pλ, Pµ

⟩
= 0 (λ ̸= µ).

4 Commuting family of q-difference operators

4.1 Macdonald-Ruijsenaars operators of higher order

For each r = 0, 1, . . . , n, we define the Macdonald-Ruijsenaars operator of rth order by

D(r)
x =

∑
I⊆{1,...,n}; |I|=r

AI(x)T
I
q,x =

∑
I⊆{1,...,n}; |I|=r

t(
r
2)

∏
i∈I, j /∈I

txi − xj
xi − xj

∏
i∈I

Tq,xi , (4.1)

where T I
q,x =

∏
i∈I Tq,xi , so that D

(0)
x = 1, D

(1)
x = Dx and D

(n)
n = t(

n
2)Tq,x1 · · ·Tq,xn . Note also that

AI(x) = t(
|I|
2 )

∏
i∈I, j /∈I

txi − xj
xi − xj

=
T I
t,x∆(x)

∆(x)
. (4.2)

It is known by Ruijsenaars (1987) that the q-difference operators D
(r)
x (r = 1, . . . , n) commute with

each other. By the same method we applied to Dx, one can directly verify:

(1) D
(r)
x (r = 1, . . . , n) are invariant under the action of Sn.

(2) D
(r)
x : C(x) → C(x) stabilize C[x]Sn , i.e. D

(r)
x (C[x]Sn) ⊆ C[x]Sn .

(3) D
(r)
x : C[x]Sn → C[x]Sn are triangular with respect to the dominance order of mλ(x):

D(r)
x mλ(x) =

∑
µ≤λ

d
(r)
λ,µmµ(x) = d

(r)
λ mλ(x) +

∑
µ<λ

d
(r)
λ,µmµ(x) (λ ∈ Pn). (4.3)

where d
(r)
λ = er(t

δqλ) are elementary symmetric functions of tδqλ = (tn−1qλ1 , tn−2qλ2 , . . . , qλn).

Theorem A: The q-difference operators D
(r)
x (r = 1, . . . , n) commute with each other:

D(r)
x D(s)

x = D(s)
x D(r)

x (r, s = 1, . . . , n), (4.4)

Theorem B: Suppose that the parameter t satisfies tk /∈ qZ<0 (k = 1, . . . , n− 1). Then, for each
partition λ ∈ Pn there exists a unique symmetric polynomial Pλ(x) ∈ C[x]Sn such that

(1) D(r)
x Pλ(x) = d

(r)
λ Pλ(x) (r = 1, . . . , n) (2) Pλ(x) = mλ(x) +

∑
µ<λ

uλµmµ(x) (uλµ ∈ C). (4.5)

It is convenient to introduce the generation function:

Dx(u) =
n∑

r=0

(−u)rD(r)
x =

∑
I⊆{1,...,n}

(−u)|I|AI(x)T
I
q,x, AI(x) =

T I
t,x(∆(x))

∆(x)
. (4.6)
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Then the eigenfunction equations for Pλ(x) is expressed as

Dx(u)Pλ(x) = dλ(u)Pλ(x), dλ(u) =
n∑

r=0

(−u)rer(tδqλ) =
n∏

i=1

(1− utn−iqλi). (4.7)

• d
(r)
λ = er(t

δqλ): For each I ⊆ {1, . . . , n} with |I| = r, we have

AI(x) = t(
r
2)

∏
i<j

i∈I, j /∈I

t
1− xj/txi
1− xj/xi

∏
i<j

i/∈I, j∈I

1− txj/xi
1− xj/xi

= t
∑

i∈I(n−i) + (lower order terms), (4.8)

where, for I = {i1 < · · · < ir}, the exponent of t is computed as(
r
2

)
+ | {(i, j) | i < j, i ∈ I, j /∈ I} | =

(
r
2

)
+
∑r

k=1((n− ik) + (r − k)) =
∑

i∈I(n− i). (4.9)

Hence, we have

D(r)
x xµ =

∑
|I|=r

AI(x)q
∑

i∈I µixµ =
( ∑

|I|=r

t
∑

i∈I(n−i)q
∑

i∈I µi

)
xµ + lower order terms

= er(t
δqµ)xµ + (lower order terms).

(4.10)

This implies
D(r)

x mλ(x) = er(t
δqλ)mλ(x) + (lower order terms) (λ ∈ Pn). (4.11)

• Condition of genericity: One can show that if tk /∈ qZ<0 (k = 1, . . . , n − 1), then for any
distinct λ, µ ∈ Pn, dλ(u) ̸= dµ(u) as polymomials in u, and also for generic u ∈ C.

4.2 Commutativity of the operators D(r)
x (r = 1, . . . , n)

• Orthogonality implies commutativity: (in the context of Macdonald’s book)

One can show that, for each r = 1, . . . , n, D
(r)
x is self-adjoint with respect to the scalar product

defined by w(x), by a similar method we used in the case of Dx = D
(1)
x . Since D

(r)
x : C[x]Sn →

C[x]Sn is lower triangular with respect to the dominance order, we have

D(r)
x Pλ(x) =

∑
µ≤λ

a
(r)
λ,µPµ(x), (4.12)

for some a
(r)
λ,µ ∈ C, with leading coefficient a

(r)
λ,λ = d

(r)
λ . Since⟨

D(r)
x Pλ, Pµ

⟩
= a

(r)
λ,µ

⟨
Pµ, Pµ

⟩
,

⟨
Pλ, D

(r)
x Pµ

⟩
= 0 (µ < λ), (4.13)

and
⟨
Pµ, Pµ

⟩
̸= 0, we have a

(r)
λ,µ = 0 for µ < λ. This means that D

(r)
x Pλ(x) = dλPλ(x). In this way,

the linear operators D
(r)
x : C[x]Sn → C[x]Sn (r = 1, . . . , n) are simultaneously diagonalized by the

Macdonald basis, and hence commute each other. From this, it follows that D
(r)
x (r = 1, . . . , n)

commute each other as q-difference operators, by the following lemma.

Lemma: Let Lx be a q-difference oprator with rational coefficients, and suppose that Lxf(x) = 0
for all f(x) ∈ C[x]Sn . Then Lx = 0 as a q-difference operator.
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Conversely, suppose we know that D
(r)
x commutes with Dx = D

(1)
x , by some other method. Then

for each Pλ(x), we have

DxD
(r)
x Pλ(x) = D(r)

x DxPλ(x) = D(r)
x (dλPλ(x)) = dλD

(r)
x Pλ(x). (4.14)

This means that D
(r)
x Pλ(x) is also an eigenfunction of Dx with eigenvalue dλ. If t is generic, the

eigenspace of Dx with eigenvalue dλ is one dimensional. Hence, D(r)Pλ(x) is a constant multiple

of Pλ(x), i.e. D
(r)
λ Pλ(x) = const.Pλ(x); the eigenvalue const. must coincides with d

(r)
λ = er(t

δqλ)

since D
(r)
x mλ(x) = d

(r)
λ (x)mλ(x) + (lower order temrs).

• A direct proof of commutativity: (by Ruijsenaars, 1987)

The composition D
(r)
x D

(s)
x is computed as

D(r)
x D(s)

x =
∑

|I|=r,|J |=s

AI(x)AJ(q
ϵIx)T ϵI+ϵJ

q,x (4.15)

where ϵI =
∑

i∈I ϵi, ϵi = (δi,j)1≤j≤n ∈ Zn. Setting K = I ∩J , L = (I ∪J)\K, P = I\K, Q = J\K,
we rewrite (4.15) as

D(r)
x D(s)

x =
∑

K∩L=ϕ
|K|≤min{r,s}

( ∑
P∪Q=L

|K|+|P |=r,|K|+|Q|=s

AK∪P (x)AK∪Q(q
ϵK+ϵP x)T 2ϵK+ϵL

q,x

)
. (4.16)

Then the commutativity D
(r)
x D

(s)
x = D

(s)
x D

(r)
x is equivalent to the following statement: For each

K,L ⊆ {1, . . . , n} with K ∩ L = ϕ, and for any p, q ∈ Z≥0 such that p+ q = |L|,∑
P∪Q=L

|P |=p,|Q|=q

AK∪P (x)AK∪Q(q
ϵK+ϵP x) =

∑
P∪Q=L

|P |=p,|Q|=q

AK∪Q(x)AK∪P (q
ϵK+ϵQx). (4.17)

Analyzing this equality carefully, we see that the statement (4.17) is equivalent to the following.

Lemma: For any r, s ∈ Z≥0 with r + s = n,∑
I⊔J={1,...,n}
|I|=r, |J |=s

∏
i∈I
j∈J

(1− txi/xj)(1− qxi/txj)

(1− xi/xj)(1− qxi/xj)
=

∑
I⊔J={1,...,n}
|I|=r, |J |=s

∏
i∈I
j∈J

(1− txj/xi)(1− qxj/txi)

(1− xj/xi)(1− qxj/xi)
. (4.18)

This lemma can be proved by combining the residue calculus of rational functions with the induction

on n. (In fact, Ruijsenaars proved the commutativity of the elliptic version of D
(r)
x (r = 1, . . . , n)

on the basis of the corresponding identity for the Weierstrass sigma function.)

4.3 Determinant representation of Dx(u)

The generating function Dx(u) of the Macdonald-Ruijsenaars q-difference operators is expressed
by the determinant of a matrix of q-difference operators as

Dx(u) =
1

∆(x)
det

(
xn−j
i

(
1− utn−jTq,xi

))n

i,j=1

=
1

∆(x)

∑
σ∈Sn

sgn(σ)

n∏
j=1

xn−j
σ(j)

(
1− utn−jTq,xσ(j)

) (4.19)

Note that the product
∏n

j=1 does not depend on the ordering in this case.
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