Introduction to Macdonald polynomials: Lecture 6

by M. Noumi [March 12, 2021]

4 Commuting family of \boldsymbol{q}-difference operators

4.3 Determinant representation of $D_{x}(u)$

The generating function $D_{x}(u)$ of the Macdonald-Ruijsenaars q-difference operators is expressed in terms of the determinant of a matrix of q-difference operators:

$$
\begin{align*}
D_{x}(u) & =\frac{1}{\Delta(x)} \operatorname{det}\left(x_{i}^{n-j}\left(1-u t^{n-j} T_{q, x_{i}}\right)\right)_{i, j=1}^{n} \\
& =\frac{1}{\Delta(x)} \sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) \prod_{j=1}^{n} x_{\sigma(j)}^{n-j}\left(1-u t^{n-j} T_{q, x_{\sigma(j)}}\right) . \tag{4.1}
\end{align*}
$$

The q-difference operators $L_{i j}=x_{i}^{n-j}\left(1-u t^{n-j} T_{q, x_{i}}\right)$ satisfy the commutativity $L_{i, j} L_{k, l}=L_{k, l} L_{i, j}$ $(i \neq k)$. This implies that the product $\prod_{i=1}^{n}$ above does not depend on the ordering:

For a q-dfference operator $L_{x}=\sum_{\mu \in \mathbb{Z}^{n}} a_{\mu}(x) T_{q, x}^{\mu} \in \mathbb{C}(x)\left[T_{q, x}^{ \pm 1}\right]$, we define its symbol by

$$
\begin{equation*}
\operatorname{symb}\left(L_{x}\right)=\sum_{\mu \in \mathbb{Z}^{n}} a_{\mu}(x) \xi^{\mu} \in \mathbb{C}(x)\left[\xi^{ \pm 1}\right], \quad \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \tag{4.2}
\end{equation*}
$$

Note that two q-difference operators L_{x}, M_{x} coincide if $\operatorname{symb}\left(L_{x}\right)=\operatorname{symb}\left(M_{x}\right)$. We compute the symbol of $D_{x}(u)$ as follows:

$$
\begin{align*}
\operatorname{symb}\left(D_{x}(u)\right) & =\sum_{I \subseteq\{1, \ldots, n\}}(-u)^{|I|} \frac{T_{t, x}^{\epsilon_{I}} \Delta(x)}{\Delta(x)} \xi^{\epsilon_{I}}=\frac{1}{\Delta(x)}\left(\sum_{I \subseteq\{1, \ldots, n\}}(-u)^{|I|} \xi^{\epsilon_{I}} T_{t, x}^{\epsilon_{I}}\right) \Delta(x) \\
& =\frac{1}{\Delta(x)} \prod_{i=1}^{n}\left(1-u \xi_{i} T_{t, x_{i}}\right) \Delta(x)=\frac{1}{\Delta(x)} \operatorname{det}\left(x_{i}^{n-j}\left(1-u t^{n-j} \xi_{i}\right)\right)_{i, j=1}^{n} \tag{4.3}\\
& =\frac{1}{\Delta(x)} \sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) \prod_{j=1}^{n} x_{\sigma(j)}^{n-j}\left(1-u t^{n-j} \xi_{\sigma(j)}\right),
\end{align*}
$$

which coincides with the symbol of the right-hand side of (4.1).

- Limit to the differential (Jack) case: Noting that

$$
\begin{equation*}
q=e^{\varepsilon} \Longrightarrow T_{q, x_{i}} x^{\mu}=q^{\mu_{i}} x^{\mu}=\sum_{k=0}^{\infty} \frac{\left(\mu_{i} \varepsilon\right)^{k}}{k!} x^{\mu}=\sum_{k=0}^{\infty} \frac{\left(\varepsilon x_{i} \partial_{x_{i}}\right)^{k}}{k!} x^{\mu}=e^{\varepsilon x_{i} \partial_{x_{i}}} x^{\mu}=q^{x_{i} \partial_{x_{i}}} x^{\mu}, \tag{4.4}
\end{equation*}
$$

we rewrite the q-shift operators as $T_{q, x_{i}}=q^{x_{i} \partial_{x_{i}}}$ by the Euler operators $x_{i} \partial_{x_{i}}(i=1, \ldots, n)$. Then we take the scaling limit of $D_{x}(u) /(1-q)^{n}$ as $q \rightarrow 1$ with $t=q^{\beta}, u=q^{v}$:

$$
\begin{align*}
L_{x}(v) & =\lim _{q \rightarrow 1} \frac{1}{(1-q)^{n}}\left(\left.D_{x}\left(q^{v}\right)\right|_{t=q^{\beta}}\right)=\frac{1}{\Delta(x)} \lim _{q \rightarrow 1} \operatorname{det}\left(x_{i}^{n-j} \frac{1-q^{v+(n-j) \beta+x_{i} \partial_{x_{i}}}}{1-q}\right)_{i, j=1}^{n} . \tag{4.5}\\
& =\frac{1}{\Delta(x)} \operatorname{det}\left(x_{i}^{n-j}\left(v+x_{i} \partial_{x_{i}}+(n-j) \beta\right)\right)_{i, j=1}^{n} .
\end{align*}
$$

The resulting opertor $L_{x}(v)$ is the generating function of a commuting family of differential operators, called the Sekiguchi operators, such that

$$
\begin{equation*}
L_{x}(v) P_{\lambda}^{(\beta)}(x)=P_{\lambda}^{(\beta)}(x) \prod_{i=1}^{n}\left(v+\lambda_{i}+(n-i) \beta\right) \quad\left(\lambda \in \mathcal{P}_{n}\right), \tag{4.6}
\end{equation*}
$$

where $P_{\lambda}^{(\beta)}(x)=\lim _{q \rightarrow 1} P_{\lambda}\left(x ; q, q^{\beta}\right)$ stand for the Jack polynomials.
Remark: In the section on "Affine Hecke algebras and Dunkl operators", we will explain a construction of the q-difference operators $D_{x}^{(r)}$ as well as their commutativity, following the idea of Cherednik based on a representation of the affine Hecke algebra.

5 Self-duality and Pieri formula

5.1 Evaluation, self-duality, Pieri formula

- Evaluation at $\boldsymbol{x}=\boldsymbol{t}^{\boldsymbol{\delta}}$ (principal specilization): The hook-length formula for $s_{\lambda}\left(t^{\delta}\right)$ (Lecture $2,(1.17)$) is generalized as follows to the case of Macdonald polynomials.

$$
\begin{equation*}
P_{\lambda}\left(t^{\delta}\right)=t^{n(\lambda)} \prod_{s \in \lambda} \frac{1-t^{n-l_{\lambda}^{\prime}(s)} q^{a_{\lambda}(s)}}{1-t^{l_{\lambda}(s)+1} q^{a_{\lambda}(s)}}=\frac{t^{n(\lambda)} \prod_{i=1}^{n}\left(t^{n-i} ; q\right)_{\lambda_{i}}}{\prod_{1 \leq i \leq j \leq n}\left(t^{j-i+1} q^{\lambda_{i}-\lambda_{j}} ; q\right)_{\lambda_{j}-\lambda_{j+1}}} \tag{5.1}
\end{equation*}
$$

where $n(\lambda)=\sum_{i=1}^{n}(i-1) \lambda_{i}$ and, for each $s=(i, j) \in \lambda, l_{\lambda}^{\prime}(s)=i-1$ denotes the co-leg length.

- Self-duality (evaluation symmetry): We normalize the Macdonald polynomials as

$$
\begin{equation*}
\widetilde{P}_{\lambda}(x)=\frac{P_{\lambda}(x)}{P_{\lambda}\left(t^{\delta}\right)} \quad\left(\lambda \in \mathcal{P}_{n}\right) \tag{5.2}
\end{equation*}
$$

so that $\widetilde{P}_{\lambda}\left(t^{\delta}\right)=1$. Then we have the evaluation symmetry (self-duality)

$$
\begin{equation*}
\widetilde{P}_{\lambda}\left(t^{\delta} q^{\mu}\right)=\widetilde{P}_{\mu}\left(t^{\delta} q^{\lambda}\right) \quad\left(\lambda, \mu \in \mathcal{P}_{n}\right) . \tag{5.3}
\end{equation*}
$$

- Pieri formula: For each $r=1, \ldots, n$, we have

$$
\begin{equation*}
e_{r}(x) P_{\mu}(x)=\sum_{\lambda / \mu: \mathrm{v} . \mathrm{s},|\lambda / \mu|=r} \psi_{\lambda / \mu}^{\prime} P_{\lambda}(x) \quad\left(\mu \in \mathcal{P}_{n}\right), \tag{5.4}
\end{equation*}
$$

where the sum is over all partitions $\lambda \in \mathcal{P}_{n}$ with $\mu \subseteq \lambda,|\lambda|=|\mu|+r$, such that the skew diagram λ / μ is a vertical strip (i.e. the complement $\lambda \backslash \mu$ contains at most one box in each row). The expansion coefficients are determined as $\psi_{\lambda / \mu}^{\prime}=\psi_{\lambda^{\prime} / \mu^{\prime}}(t, q)$, where

$$
\begin{equation*}
\psi_{\lambda / \mu}=\psi_{\lambda / \mu}(q, t)=\prod_{1 \leq i \leq j \leq \ell(\mu)} \frac{\left(t^{j-i+1} q^{\mu_{i}-\mu_{j}} ; q\right)_{\lambda_{i}-\mu_{i}}}{\left(t^{j-i} q^{\mu_{i}-\mu_{j}+1} ; q\right)_{\lambda_{i}-\mu_{i}}} \frac{\left(t^{j-i} q^{\mu_{i}-\lambda_{j+1}+1} ; q\right)_{\lambda_{i}-\mu_{i}}}{\left(t^{j-i+1} q^{\mu_{i}-\lambda_{j+1}} ; q\right)_{\lambda_{i}-\mu_{i}}} . \tag{5.5}
\end{equation*}
$$

5.2 Self-duality implies the Pieri formula

Note that the fact that $P_{\lambda}\left(t^{\delta}\right) \neq 0$ follows from the evaluation (principal specialization) of the spacial case $t=q$ where $P_{\lambda}(x \mid q, q)=s_{\lambda}(x)$. Assuming that the self-duality (5.3) has been established, we explain here how one can obtain the Pieri formula (5.4) and the evaluation formula (5.1) from the q-difference equations for $P_{\lambda}(x)$, by way of the self-duality.

For each $r=1, \ldots, n$, the eigenfunction equation

$$
\begin{equation*}
D_{x}^{(r)} \widetilde{P}_{\lambda}(x)=e_{r}\left(t^{\delta} q^{\lambda}\right) \widetilde{P}_{\lambda}(x) \tag{5.6}
\end{equation*}
$$

implies

$$
\begin{equation*}
\sum_{|I|=r} A_{I}(x) \widetilde{P}_{\lambda}\left(q^{\epsilon_{I}} x\right)=e_{r}\left(t^{\delta} q^{\lambda}\right) \widetilde{P}_{\lambda}(x), \tag{5.7}
\end{equation*}
$$

where $\epsilon_{I}=\sum_{i \in I} \epsilon_{i}$. Evaluating this formula at $x=t^{\delta} q^{\mu}\left(\mu \in \mathcal{P}_{n}\right)$, we obtain

$$
\begin{equation*}
\sum_{|I|=r} A_{I}\left(t^{\delta} q^{\mu}\right) \widetilde{P}_{\lambda}\left(t^{\delta} q^{\mu+\epsilon_{I}}\right)=e_{r}\left(t^{\delta} q^{\lambda}\right) \widetilde{P}_{\lambda}\left(t^{\delta} q^{\mu}\right) . \tag{5.8}
\end{equation*}
$$

Suppose that $\nu=\mu+\epsilon_{I}$ is not a partition, i.e. $\mu_{i-1}=\mu_{i}$ for some $i \in\{2, \ldots, n\}$ with $i \in I$ and $i-1 \notin I$. In such a case, we have

$$
\begin{equation*}
A_{I}\left(t^{\delta} q^{\mu}\right)=t^{\binom{|I|}{2}} \prod_{i \in I, j \notin J} \frac{t^{n-i+1} q^{\mu_{i}}-t^{n-j} q^{\mu_{j}}}{t^{n-i} q^{\mu_{i}}-t^{n-j} q^{\mu_{j}}}=0 \tag{5.9}
\end{equation*}
$$

since $t^{n-i+1} q^{\mu_{i}}-t^{n-i+1} q^{\mu_{i-1}}=0(i \in I, j=i-1 \notin I)$. This means that the sum in the left-hand side of (5.7) is over all $I \subseteq\{1, \ldots, n\}$ with $|I|=r$ such that $\nu=\mu+\epsilon_{I}$ is a partition. A skew partition ν / μ is called a vertical strip if $\nu=\mu+\epsilon_{I}$ for sum $I \subseteq\{1, \ldots, n\}$. Namely,

$$
\begin{equation*}
\sum_{\nu / \mu: \mathrm{v} . \mathrm{s} .|\nu / \mu|=r} A_{\nu-\mu}\left(t^{\delta} q^{\mu}\right) \widetilde{P}_{\lambda}\left(t^{\delta} q^{\nu}\right)=e_{r}\left(t^{\delta} q^{\lambda}\right) \widetilde{P}_{\lambda}\left(t^{\delta} q^{\mu}\right) . \tag{5.10}
\end{equation*}
$$

We now apply the symmetry (5.3) to obtain

$$
\begin{equation*}
\sum_{\nu / \mu: \mathrm{v} . \mathrm{s} .|\nu / \mu|=r} A_{\nu-\mu}\left(t^{\delta} q^{\mu}\right) \widetilde{P}_{\nu}\left(t^{\delta} q^{\lambda}\right)=e_{r}\left(t^{\delta} q^{\lambda}\right) \widetilde{P}_{\mu}\left(t^{\delta} q^{\lambda}\right) . \tag{5.11}
\end{equation*}
$$

This means that equality

$$
\begin{equation*}
e_{r}(x) \widetilde{P}_{\mu}(x)=\sum_{\nu / \mu: \mathrm{v} . \mathrm{s} .}|\nu / \mu|=r=1 B_{\nu / \mu} \widetilde{P}_{\nu}(x), \quad B_{\nu / \mu}=A_{\nu-\mu}\left(t^{\delta} q^{\mu}\right) \tag{5.12}
\end{equation*}
$$

holds for $x=t^{\delta} q^{\lambda}\left(\lambda \in \mathcal{P}_{n}\right)$; it also implies that (5.12) is an identiy in the ring $\mathbb{C}[x]^{\mathfrak{G}_{n}}$ of symmetric polynomials. Namely, if the self-duality (5.3) has benn established, the q-difference equations (5.6) for $\lambda \in \mathcal{P}_{n}$ implies the Pieri formulas (5.12) for the normalized Macdonald polynomials $\widetilde{P}_{\mu}(x)$.

5.3 Evaluation at $x=t^{\delta}$

The normalized Macdonald polynomials $\widetilde{P}_{\lambda}(x)$ can be written as

$$
\begin{equation*}
\widetilde{P}_{\lambda}(x)=\frac{1}{a_{\lambda}} P_{\lambda}(x)=\frac{1}{a_{\lambda}} m_{\lambda}(x)+(\text { lower oreder terms }), \quad a_{\lambda}=P_{\lambda}\left(t^{\delta}\right) . \tag{5.13}
\end{equation*}
$$

Comparing the coefficients of $m_{\mu+\left(1^{r}\right)}(x)$ of the both sides of (5.12), we obtain

$$
\begin{equation*}
\frac{1}{a_{\mu}}=B_{\left(\mu+\left(1^{r}\right)\right) / \mu}^{(r)} \frac{1}{a_{\mu+\left(1^{r}\right)}}, \quad \text { i.e. } \quad \frac{a_{\mu+\left(1^{r}\right)}}{a_{\mu}}=B_{\left(\mu+\left(1^{r}\right)\right) / \mu}^{(r)}=A_{\{1, \ldots, r\}}\left(t^{\delta} q^{\mu}\right) \tag{5.14}
\end{equation*}
$$

Applying this recurrence formula repeatedly, we obtain the explicit formula (5.1) for $a_{\lambda}=P_{\lambda}\left(t^{\delta}\right)$ for arbitrary $\lambda \in \mathcal{P}_{n}$.

As to the Pieri coefficients $\psi_{\lambda / \mu}^{\prime}$, from (5.12) we have

$$
\begin{equation*}
\psi_{\lambda / \mu}^{\prime}=\frac{a_{\mu}}{a_{\lambda}} B_{\lambda / \mu}, \quad B_{\lambda / \mu}=A_{\lambda-\mu}\left(t^{\delta} q^{\mu}\right) \tag{5.15}
\end{equation*}
$$

Writing down this formula in terms of $\lambda, \mu \in \mathcal{P}_{n}$, we obtain the explicit formula for $\psi_{\lambda / \mu}^{\prime}=$ $\psi_{\lambda^{\prime} / \mu^{\prime}}(t, q)$ as in (5.5).

5.4 Comments on the proof of self-dualiy

- Koornwinder's proof: One can prove the following two statements for $\mu \in \mathcal{P}_{n}$ simultaneously by the induction on $|\mu|$ combined with the dominance order (see Macdonald [1]):

$$
\begin{array}{ll}
\text { (a) } & \widetilde{P}_{\lambda}\left(t^{\delta} q^{\mu}\right)=\widetilde{P}_{\mu}\left(t^{\delta} q^{\lambda}\right) \quad\left(\lambda \in \mathcal{P}_{n}\right) \\
\text { (b) } & e_{r}(x) \widetilde{P}_{\kappa}(x)=\sum_{\nu} B_{\nu / \kappa} \widetilde{P}_{\nu}(x) \quad\left(r=1, \ldots, n ; \kappa \in \mathcal{P}_{n}, \kappa+\left(1^{r}\right) \leq \mu\right) \tag{5.16}
\end{array}
$$

- Double affine Hecke algebras: The self-duality can be proved by means of the Cherednik involution of the double affine Hecke algebra (to be explained later).

6 Kernel functions (generating functions)

6.1 Kernel functions of Cauchy type and of dual Cauchy type:

- Kernel function of Cauchy type: For two sets of variables $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{n}\right)$, we have

$$
\begin{equation*}
\Pi(x ; y)=\prod_{i=1}^{m} \prod_{j=1}^{n} \frac{\left(t x_{i} y_{j} ; q\right)_{\infty}}{\left(x_{i} y_{j} ; q\right)_{\infty}}=\sum_{\ell(\lambda) \leq \min \{m, n\}} b_{\lambda} P_{\lambda}(x) P_{\lambda}(y) \tag{6.1}
\end{equation*}
$$

where λ runs over all partitions with $\ell(\lambda) \leq \min \{m, n\}$, and the coefficients b_{λ} are determined as

$$
\begin{equation*}
b_{\lambda}=\prod_{s \in \lambda} \frac{1-t^{l_{\lambda}(s)+1} q^{a_{\lambda}(s)}}{1-t^{l_{\lambda}(s)} q^{a_{\lambda}(s)+1}}=\prod_{1 \leq i \leq j \leq \ell(\lambda)} \frac{\left(t^{j-i+1} q^{\lambda_{i}-\lambda_{j}} ; q\right)_{\lambda_{j}-\lambda_{j+1}}}{\left.t^{j-i} q^{\lambda_{i}-\lambda_{j}+1} ; q\right)_{\lambda_{j}-\lambda_{j+1}}} \tag{6.2}
\end{equation*}
$$

- Kernel function of dual Cauchy type: For two sets of variables $x=\left(x_{1}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, we have

$$
\begin{equation*}
\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i} y_{j}\right)=\sum_{\ell(\lambda) \subseteq\left(n^{m}\right)} P_{\lambda}(x \mid q, t) P_{\lambda^{\prime}}(y \mid t, q) \tag{6.3}
\end{equation*}
$$

where the sum is over all partitions λ contained in the $m \times n$ rectangle $\left(n^{m}\right)=(n, \ldots, n)$.

6.2 Kernel function identities and source identities

We consider the case where $m=n$. We first remark that there exists an expansion formula as (6.1) with some constants b_{λ}, if and only if $\Pi(x ; y)$ satisfies the kernel function identity

$$
\begin{equation*}
D_{x}(u) \Pi(x ; y)=D_{y}(u) \Pi(x ; y) . \tag{6.4}
\end{equation*}
$$

Expand $\Pi(x ; y)$ in terms of Macdonald polynomials $P_{\lambda}(x)\left(\lambda \in \mathcal{P}_{n}\right)$ as

$$
\begin{equation*}
\Pi(x ; y)=\sum_{\lambda \in \mathcal{P}_{n}} P_{\lambda}(x) Q_{\lambda}(y), \tag{6.5}
\end{equation*}
$$

Since

$$
\begin{equation*}
D_{x}(u) \Pi(x ; y)=\sum_{\lambda \in \mathcal{P}_{n}} P_{\lambda}(x) Q_{\lambda}(y) \prod_{i=1}^{n}\left(1-u t^{n-j} q^{\lambda_{j}}\right) \tag{6.6}
\end{equation*}
$$

identity (6.4) implies $D_{y}(u) Q_{\lambda}(y)=Q_{\lambda}(y) \prod_{i=1}^{n}\left(1-u t^{n-j} q^{\lambda_{j}}\right)$ and hence, $Q_{\lambda}(y)$ is a constant multiple of $P_{\lambda}(y)$.

We now prove (6.4). Since

$$
\begin{equation*}
T_{q, x_{i}} \Pi(x ; y)=\prod_{l=1}^{n} \frac{1-x_{i} y_{l}}{1-t x_{i} y_{l}} \Pi(x ; y), \quad T_{q, y_{k}} \Pi(x ; y)=\prod_{j=1}^{n} \frac{1-x_{j} y_{k}}{1-t x_{j} y_{k}} \Pi(x ; y) \tag{6.7}
\end{equation*}
$$

(6.4) is equivalent to the source identity

$$
\begin{align*}
&\left.\sum_{I \subseteq\{1, \ldots, n\}}(-u)^{|I|} t^{\mid(|I|} \begin{array}{c}
2 \\
2
\end{array}\right) \\
&= \prod_{i \in I ; j \notin I} \frac{t x_{i}-x_{j}}{x_{i}-x_{j}} \prod_{i \in I} \prod_{l=1}^{n} \frac{1-x_{i} y_{l}}{1-t x_{i} y_{l}} \tag{6.8}\\
&=\left.(-u)^{|K|, \ldots, n\}} t^{\mid(K \mid}{ }_{2}^{|K|}\right) \\
& \prod_{k \in K ; l \notin K} \frac{t y_{k}-y_{l}}{y_{k}-y_{l}} \prod_{k \in K} \prod_{j=1}^{n} \frac{1-x_{j} y_{k}}{1-t x_{j} y_{k}} .
\end{align*}
$$

An important observations is that this identity does not involve q. This means that, in order to prove (6.8), it is sufficient to prove (6.4) for $q=t$. However, we already know that (6.4) holds when $q=t$ by the Cauchy formula for Schur functions.

The existence of an expansion formula of the form (6.1) for difference number of variables m, n follows from the fact that

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n-1}, 0\right)= \begin{cases}P_{\lambda}\left(x_{1}, \ldots, x_{n-1}\right) & (\ell(\lambda)<n) \tag{6.9}\\ 0 & (\ell(\lambda)=n)\end{cases}
$$

It should be noted that we need some other arguments to obtain the explicit formula (6.2) for b_{λ}. We also remark that (6.1) for the case where $m \geq n$ corresponds to the kernel function identity

$$
\begin{equation*}
D_{x}(u) \Pi(x ; y)=(u ; t)_{m-n} D_{y}\left(u t^{m-n}\right) \Pi(x ; y) \tag{6.10}
\end{equation*}
$$

