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4 Commuting family of q-difference operators

4.3 Determinant representation of Dx(u)

The generating function Dx(u) of the Macdonald-Ruijsenaars q-difference operators is expressed in
terms of the determinant of a matrix of q-difference operators:

Dx(u) =
1

∆(x)
det

(
xn−j
i

(
1− utn−jTq,xi

))n

i,j=1

=
1

∆(x)

∑
σ∈Sn

sgn(σ)

n∏
j=1

xn−j
σ(j)

(
1− utn−jTq,xσ(j)

)
.

(4.1)

The q-difference operators Lij = xn−j
i (1− utn−jTq,xi) satisfy the commutativity Li,jLk,l = Lk,lLi,j

(i ̸= k). This implies that the product
∏n

i=1 above does not depend on the ordering:

For a q-dfference operator Lx =
∑

µ∈Zn aµ(x)T
µ
q,x ∈ C(x)[T±1

q,x ], we define its symbol by

symb(Lx) =
∑
µ∈Zn

aµ(x)ξ
µ ∈ C(x)[ξ±1], ξ = (ξ1, . . . , ξn). (4.2)

Note that two q-difference operators Lx, Mx coincide if symb(Lx) = symb(Mx). We compute the
symbol of Dx(u) as follows:

symb(Dx(u)) =
∑

I⊆{1,...,n}

(−u)|I|
T ϵI
t,x∆(x)

∆(x)
ξϵI =

1

∆(x)

( ∑
I⊆{1,...,n}

(−u)|I|ξϵIT ϵI
t,x

)
∆(x)

=
1

∆(x)

n∏
i=1

(1− u ξi Tt,xi)∆(x) =
1

∆(x)
det

(
xn−j
i (1− u tn−jξi))

n
i,j=1

=
1

∆(x)

∑
σ∈Sn

sgn(σ)

n∏
j=1

xn−j
σ(j)(1− u tn−jξσ(j)),

(4.3)

which coincides with the symbol of the right-hand side of (4.1).

• Limit to the differential (Jack) case: Noting that

q = eε =⇒ Tq,xix
µ = qµixµ =

∞∑
k=0

(µiε)
k

k!
xµ =

∞∑
k=0

(εxi∂xi)
k

k!
xµ = eεxi∂xixµ = qxi∂xixµ, (4.4)
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we rewrite the q-shift operators as Tq,xi = qxi∂xi by the Euler operators xi∂xi (i = 1, . . . , n). Then
we take the scaling limit of Dx(u)/(1− q)n as q → 1 with t = qβ, u = qv:

Lx(v) = lim
q→1

1

(1− q)n
(
Dx(q

v)
∣∣
t=qβ

)
=

1

∆(x)
lim
q→1

det
(
xn−j
i

1− qv+(n−j)β+xi∂xi

1− q

)n

i,j=1
.

=
1

∆(x)
det

(
xn−j
i (v + xi∂xi + (n− j)β)

)n

i,j=1
.

(4.5)

The resulting opertor Lx(v) is the generating function of a commuting family of differential opera-
tors, called the Sekiguchi operators, such that

Lx(v)P
(β)
λ (x) = P

(β)
λ (x)

n∏
i=1

(v + λi + (n− i)β) (λ ∈ Pn), (4.6)

where P
(β)
λ (x) = limq→1 Pλ(x; q, q

β) stand for the Jack polynomials.

Remark: In the section on “Affine Hecke algebras and Dunkl operators”, we will explain a con-

struction of the q-difference operators D
(r)
x as well as their commutativity, following the idea of

Cherednik based on a representation of the affine Hecke algebra.

5 Self-duality and Pieri formula

5.1 Evaluation, self-duality, Pieri formula

• Evaluation at x = tδ (principal specilization): The hook-length formula for sλ(t
δ) (Lecture

2, (1.17)) is generalized as follows to the case of Macdonald polynomials.

Pλ(t
δ) = tn(λ)

∏
s∈λ

1− tn−l′λ(s)qaλ(s)

1− tlλ(s)+1qaλ(s)
=

tn(λ)
∏n

i=1(t
n−i; q)λi∏

1≤i≤j≤n(t
j−i+1qλi−λj ; q)λj−λj+1

(5.1)

where n(λ) =
∑n

i=1(i− 1)λi and, for each s = (i, j) ∈ λ, l′λ(s) = i− 1 denotes the co-leg length.

• Self-duality (evaluation symmetry): We normalize the Macdonald polynomials as

P̃λ(x) =
Pλ(x)

Pλ(tδ)
(λ ∈ Pn) (5.2)

so that P̃λ(t
δ) = 1. Then we have the evaluation symmetry (self-duality)

P̃λ(t
δqµ) = P̃µ(t

δqλ) (λ, µ ∈ Pn). (5.3)

• Pieri formula: For each r = 1, . . . , n, we have

er(x)Pµ(x) =
∑

λ/µ: v.s, |λ/µ|=r

ψ′
λ/µ Pλ(x) (µ ∈ Pn), (5.4)

where the sum is over all partitions λ ∈ Pn with µ ⊆ λ, |λ| = |µ|+ r, such that the skew diagram
λ/µ is a vertical strip (i.e. the complement λ\µ contains at most one box in each row). The
expansion coefficients are determined as ψ′

λ/µ = ψλ′/µ′(t, q), where

ψλ/µ = ψλ/µ(q, t) =
∏

1≤i≤j≤ℓ(µ)

(tj−i+1qµi−µj ; q)λi−µi

(tj−iqµi−µj+1; q)λi−µi

(tj−iqµi−λj+1+1; q)λi−µi

(tj−i+1qµi−λj+1 ; q)λi−µi

. (5.5)
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5.2 Self-duality implies the Pieri formula

Note that the fact that Pλ(t
δ) ≠ 0 follows from the evaluation (principal specialization) of the spacial

case t = q where Pλ(x|q, q) = sλ(x). Assuming that the self-duality (5.3) has been established, we
explain here how one can obtain the Pieri formula (5.4) and the evaluation formula (5.1) from the
q-difference equations for Pλ(x), by way of the self-duality.

For each r = 1, . . . , n, the eigenfunction equation

D(r)
x P̃λ(x) = er(t

δqλ)P̃λ(x) (5.6)

implies ∑
|I|=r

AI(x)P̃λ(q
ϵIx) = er(t

δqλ)P̃λ(x), (5.7)

where ϵI =
∑

i∈I ϵi. Evaluating this formula at x = tδqµ (µ ∈ Pn), we obtain∑
|I|=r

AI(t
δqµ)P̃λ(t

δqµ+ϵI ) = er(t
δqλ)P̃λ(t

δqµ). (5.8)

Suppose that ν = µ + ϵI is not a partition, i.e. µi−1 = µi for some i ∈ {2, . . . , n} with i ∈ I and
i− 1 /∈ I. In such a case, we have

AI(t
δqµ) = t(

|I|
2 )

∏
i∈I, j /∈J

tn−i+1qµi − tn−jqµj

tn−iqµi − tn−jqµj
= 0 (5.9)

since tn−i+1qµi − tn−i+1qµi−1 = 0 (i ∈ I, j = i− 1 /∈ I). This means that the sum in the left-hand
side of (5.7) is over all I ⊆ {1, . . . , n} with |I| = r such that ν = µ + ϵI is a partition. A skew
partition ν/µ is called a vertical strip if ν = µ+ ϵI for sum I ⊆ {1, . . . , n}. Namely,∑

ν/µ:v.s. |ν/µ|=r

Aν−µ(t
δqµ)P̃λ(t

δqν) = er(t
δqλ)P̃λ(t

δqµ). (5.10)

We now apply the symmetry (5.3) to obtain∑
ν/µ:v.s. |ν/µ|=r

Aν−µ(t
δqµ)P̃ν(t

δqλ) = er(t
δqλ)P̃µ(t

δqλ). (5.11)

This means that equality

er(x)P̃µ(x) =
∑

ν/µ:v.s. |ν/µ|=r

Bν/µP̃ν(x), Bν/µ = Aν−µ(t
δqµ) (5.12)

holds for x = tδqλ (λ ∈ Pn); it also implies that (5.12) is an identiy in the ring C[x]Sn of symmetric
polynomials. Namely, if the self-duality (5.3) has benn established, the q-difference equations (5.6)
for λ ∈ Pn implies the Pieri formulas (5.12) for the normalized Macdonald polynomials P̃µ(x).
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5.3 Evaluation at x = tδ

The normalized Macdonald polynomials P̃λ(x) can be written as

P̃λ(x) =
1

aλ
Pλ(x) =

1

aλ
mλ(x) + (lower oreder terms), aλ = Pλ(t

δ). (5.13)

Comparing the coefficients of mµ+(1r)(x) of the both sides of (5.12), we obtain

1

aµ
= B

(r)
(µ+(1r))/µ

1

aµ+(1r)
, i.e.

aµ+(1r)

aµ
= B

(r)
(µ+(1r))/µ = A{1,...,r}(t

δqµ). (5.14)

Applying this recurrence formula repeatedly, we obtain the explicit formula (5.1) for aλ = Pλ(t
δ)

for arbitrary λ ∈ Pn.
As to the Pieri coefficients ψ′

λ/µ, from (5.12) we have

ψ′
λ/µ =

aµ
aλ
Bλ/µ, Bλ/µ = Aλ−µ(t

δqµ). (5.15)

Writing down this formula in terms of λ, µ ∈ Pn, we obtain the explicit formula for ψ′
λ/µ =

ψλ′/µ′(t, q) as in (5.5).

5.4 Comments on the proof of self-dualiy

• Koornwinder’s proof: One can prove the following two statements for µ ∈ Pn simultaneously
by the induction on |µ| combined with the dominance order (see Macdonald [1]):

(a) P̃λ(t
δqµ) = P̃µ(t

δqλ) (λ ∈ Pn)

(b) er(x)P̃κ(x) =
∑
ν

Bν/κ P̃ν(x) (r = 1, . . . , n;κ ∈ Pn, κ+ (1r) ≤ µ)
(5.16)

• Double affine Hecke algebras: The self-duality can be proved by means of the Cherednik
involution of the double affine Hecke algebra (to be explained later).

6 Kernel functions (generating functions)

6.1 Kernel functions of Cauchy type and of dual Cauchy type:

• Kernel function of Cauchy type: For two sets of variables x = (x1, . . . , xm) and y =
(y1, . . . , yn), we have

Π(x; y) =
m∏
i=1

n∏
j=1

(txiyj ; q)∞
(xiyj ; q)∞

=
∑

ℓ(λ)≤min{m,n}

bλPλ(x)Pλ(y), (6.1)

where λ runs over all partitions with ℓ(λ) ≤ min {m,n}, and the coefficients bλ are determined as

bλ =
∏
s∈λ

1− tlλ(s)+1qaλ(s)

1− tlλ(s)qaλ(s)+1
=

∏
1≤i≤j≤ℓ(λ)

(tj−i+1qλi−λj ; q)λj−λj+1

(tj−iqλi−λj+1; q)λj−λj+1

. (6.2)
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• Kernel function of dual Cauchy type: For two sets of variables x = (x1, . . . , xm) and
y = (y1, . . . , yn), we have

m∏
i=1

n∏
j=1

(1 + xiyj) =
∑

ℓ(λ)⊆(nm)

Pλ(x|q, t)Pλ′(y|t, q), (6.3)

where the sum is over all partitions λ contained in the m× n rectangle (nm) = (n, . . . , n).

6.2 Kernel function identities and source identities

We consider the case where m = n. We first remark that there exists an expansion formula as (6.1)
with some constants bλ, if and only if Π(x; y) satisfies the kernel function identity

Dx(u)Π(x; y) = Dy(u)Π(x; y). (6.4)

Expand Π(x; y) in terms of Macdonald polynomials Pλ(x) (λ ∈ Pn) as

Π(x; y) =
∑
λ∈Pn

Pλ(x)Qλ(y), (6.5)

Since

Dx(u)Π(x; y) =
∑
λ∈Pn

Pλ(x)Qλ(y)
n∏

i=1

(1− utn−jqλj ), (6.6)

identity (6.4) implies Dy(u)Qλ(y) = Qλ(y)
∏n

i=1(1 − utn−jqλj ) and hence, Qλ(y) is a constant
multiple of Pλ(y).

We now prove (6.4). Since

Tq,xiΠ(x; y) =
n∏

l=1

1− xiyl
1− txiyl

Π(x; y), Tq,ykΠ(x; y) =
n∏

j=1

1− xjyk
1− txjyk

Π(x; y), (6.7)

(6.4) is equivalent to the source identity∑
I⊆{1,...,n}

(−u)|I|t(
|I|
2 )

∏
i∈I; j /∈I

txi − xj
xi − xj

∏
i∈I

n∏
l=1

1− xiyl
1− txiyl

=
∑

K⊆{1,...,n}

(−u)|K|t(
|K|
2 )

∏
k∈K; l /∈K

tyk − yl
yk − yl

∏
k∈K

n∏
j=1

1− xjyk
1− txjyk

.

(6.8)

An important observations is that this identity does not involve q. This means that, in order to
prove (6.8), it is sufficient to prove (6.4) for q = t. However, we already know that (6.4) holds when
q = t by the Cauchy formula for Schur functions.

The existence of an expansion formula of the form (6.1) for difference number of variables m,
n follows from the fact that

Pλ(x1, . . . , xn−1, 0) =

{
Pλ(x1, . . . , xn−1) (ℓ(λ) < n)

0 (ℓ(λ) = n).
(6.9)

It should be noted that we need some other arguments to obtain the explicit formula (6.2) for bλ.
We also remark that (6.1) for the case where m ≥ n corresponds to the kernel function identity

Dx(u)Π(x; y) = (u; t)m−nDy(ut
m−n)Π(x; y). (6.10)
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