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4 Commuting family of g-difference operators

4.3 Determinant representation of D, (u)

The generating function D, (u) of the Macdonald-Ruijsenaars g-difference operators is expressed in
terms of the determinant of a matrix of g-difference operators:

_ 1 N=J (1 _ ,4n—] "
Dy(u) = A det( (1—ut Tqﬂgl))i’j:1
1 n e (4.1)
= m g sgn(o 1;[ 1 —ut qua(j)).
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The g¢-difference operators L;; = x?_j(l — ut"‘quwi) satisfy the commutativity L; jLy; = Ly L;
(i # k). This implies that the product [];" ; above does not depend on the ordering:
For a g-dfference operator L, = 3_ 70 au(2) T € C(a)[T5], we define its symbol by
symb(Ly) = Y au(2)¢" € C(@)[¢™'), &= (&1,..,&n). (4.2)
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Note that two ¢-difference operators L,, M, coincide if symb(L,) = symb(M,). We compute the
symbol of D, (u) as follows:

sub(Dy) = Y (ca)n e L (5 Cpingara) A

IC{l,...,n} ( ) Ax) IC{1,..,n}
- 1 i o
A(.’E 1;[ 1 - U&Tt%) ( ) = mdet (ZCZ ](1 —ut ]gi))i,jzl (43)
1 n o
T A@) 13 S (L= ut" ),

which coincides with the symbol of the right-hand side of (4.1).
e Limit to the differential (Jack) case: Noting that

= . (ex0y,)F
g=¢e = Tyt =q¢"at= = Z %x“ = i gh — ¢TiOni gl (4.4)
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we rewrite the g-shift operators as 15, = ¢*%:i by the Euler operators xiOz, (1 =1,...,n). Then
we take the scaling limit of D, (u)/(1 — ¢)" as ¢ — 1 with t = ¢, u = ¢:

1 . 1 i1— gVt (n=0)B+widz; \ n
La(v) = él—% (1— q)n( )‘t:qﬁ) N ;1—% det( 1—g¢q )i,j:l' (4.5)
1 n—j n '
= A0 det( x; 7 (v+ ;05 + (n j)ﬂ))zd:l.

The resulting opertor L, (v) is the generating function of a commuting family of differential opera-
tors, called the Sekiguchi operators, such that

Lo ()P (z) ﬁ vHN+m—DB)  (NEP,), (4.6)
=1

where P)(\’B ) (z) = limy—1 P\(;q,¢") stand for the Jack polynomials.

Remark: In the section on “Affine Hecke algebras and Dunkl operators”, we will explain a con-
struction of the g¢-difference operators Dg(f) as well as their commutativity, following the idea of
Cherednik based on a representation of the affine Hecke algebra.

5 Self-duality and Pieri formula
5.1 Evaluation, self-duality, Pieri formula

e Evaluation at & = t° (principal specilization): The hook-length formula for s(¢%) (Lecture
2, (1.17)) is generalized as follows to the case of Macdonald polynomials.

SEA L= th(+1gnl) HISiSan(t] g )\J’Q)/\j—AHl

where n(A\) = > (i — 1)); and, for each s = (4,7) € A, I (s) = — 1 denotes the co-leg length.

_ =1l (s) ,ax(s) n(\) n— z
P)\(tzi) — ) H L -t t H 1 (t 9 (5.1)

e Self-duality (evaluation symmetry): We normalize the Macdonald polynomials as

P)\(a;)
Py(t9)

Py\(z) = (A€ Py) (5.2)

so that ]5)\(#5) = 1. Then we have the evaluation symmetry (self-duality)

PA(t°q") = Pu(t°¢") (A € Pn). (5.3)
e Pieri formula: For each r = 1,...,n, we have
er(x)Pu(z) = > Wy Pa@)  (nePa), (5.4)

v, |Mpl=r

where the sum is over all partitions A € P, with u C A, |A\| = |u| + r, such that the skew diagram
A/ is a wvertical strip (i.e. the complement A\p contains at most one box in each row). The
expansion coefficients are determined as 9} = Yy (t,q), where

11 (B g5 q)n (g )y,

(g ha L q)n (B giae1; ), (5.5)

¢)\/u = w)\/u(q,t) =

1<i<j <) Aipi



5.2 Self-duality implies the Pieri formula

Note that the fact that Py(t°) # 0 follows from the evaluation (principal specialization) of the spacial
case t = ¢ where Py(z|q,q) = sa(z). Assuming that the self-duality (5.3) has been established, we
explain here how one can obtain the Pieri formula (5.4) and the evaluation formula (5.1) from the
g-difference equations for Py(x), by way of the self-duality.

For each r = 1,...,n, the eigenfunction equation
DI Py(z) = e,(t°¢") Py(2) (5.6)
implies
> Ar(x)Pr(¢7x) = en () Pa(), (5.7)
[ I|=r

where e; = >, €. Evaluating this formula at 2 = t°¢* (u € P,), we obtain
> AP PVPAE G = e, (") Pa(tq”). (5.8)
|I|=r

Suppose that v = p + € is not a partition, i.e. p;—1 = p; for some i € {2,...,n} with i € I and
i—1¢ I. In such a case, we have

Ar(0g) = () (5.9)

tn—ighi — tn—Jghi
i€l j¢J 1 i

since t"~ it lgni — gn=itlati-t = () (i € I,j =i — 1 ¢ I). This means that the sum in the left-hand
side of (5.7) is over all I C {1,...,n} with |I| = r such that v = u + €7 is a partition. A skew
partition v/p is called a vertical strip if v = p+ €7 for sum I C {1,...,n}. Namely,

S AP ) = e (') PA(t0g"). (5.10)
v/pv.s. [v/u|=r
We now apply the symmetry (5.3) to obtain
Y AW PE) = e (PN Bt (5.11)
v/pv.s. [v/u|=r
This means that equality
er(x)lgu(x) = Z Bu/uﬁu(w)a Bl//p = Au—u(t%“) (512)
v/pv.s. [v/u|=r

holds for z = t%¢* (A € P,,); it also implies that (5.12) is an identiy in the ring C[2]®" of symmetric
polynomials. Namely, if the self-duality (5.3) has benn established, the g-difference equations (5.6)
for A € P, implies the Pieri formulas (5.12) for the normalized Macdonald polynomials P, (z).



5.3 Evaluation at x = ¢°
The normalized Macdonald polynomials ]5)\(37) can be written as

~ 1 1
P\(z) = aPA(Q;) = am(gc) + (lower oreder terms), ay = Py(t). (5.13)

Comparing the coefficients of m,, | (1) (z) of the both sides of (5.12), we obtain

1 (r) 1 : Qpt+(1r) (r) s
B e. - B — A ") 14
a, Wk, gy’ e ay, (n+(17)) /1 (1.} (£7¢") (5.14)

Applying this recurrence formula repeatedly, we obtain the explicit formula (5.1) for ay = Py(t?)
for arbitrary \ € P,.
As to the Pieri coefficients v o from (5.12) we have

a
Vi = ﬁBx/w By = Ar—p(t°0"). (5.15)

Writing down this formula in terms of A\,u € P,, we obtain the explicit formula for w;\ Iy =
Yy (t,q) as in (5.5).
5.4 Comments on the proof of self-dualiy

e Koornwinder’s proof: One can prove the following two statements for p € P, simultaneously
by the induction on |x| combined with the dominance order (see Macdonald [1]):

(@) B(t'q") = Pu(t’s") (A€ Pn)

(0  e@Pul@) =Y B Blx) (r=1,...,nk € Pur+(1") < p) (5.16)

e Double affine Hecke algebras: The self-duality can be proved by means of the Cherednik
involution of the double affine Hecke algebra (to be explained later).

6 Kernel functions (generating functions)

6.1 Kernel functions of Cauchy type and of dual Cauchy type:

e Kernel function of Cauchy type: For two sets of variables z = (x1,...,2,,) and y =
(Y1,...,Yn), we have
717 (t2iysi @)
H(x;y) = H H W = Z braPr(2) Pa(y), (6.1)
i=1j=1 Vil Q)eo £(\)<min{m,n}
where A runs over all partitions with (\) < min {m,n}, and the coefficients by are determined as
1— tl)\(s)+]. a>\(s) tj_i"!‘l /\i_>\j; Y
b)\ = H 1— tlA(s) a>\q(s)+1 = H Et]z )\7;q—>\j+1. q;/\J At . (62)
SEX q 1<i<j<t()) q P D)Aj=2j
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e Kernel function of dual Cauchy type: For two sets of variables x = (z1,...,z,,) and
y=(y1,...,Yn), we have

m n
[[IIC+zw) = > PuelatPyltq), (6:3)
i=1j=1 (NS

where the sum is over all partitions A contained in the m x n rectangle () = (n,...,n).

6.2 Kernel function identities and source identities

We consider the case where m = n. We first remark that there exists an expansion formula as (6.1)
with some constants by, if and only if II(x;y) satisfies the kernel function identity

Dy (u)Il(z;y) = Dy(u)l(z;y). (6.4)
Expand II(x; y) in terms of Macdonald polynomials Py(z) (A € P,) as

y)= > P(2)Qa), (6.5)

AEP,

Do (u)I(z;y) = Y Pa(a)Qa(y) [J(1 - uwt"g"), (6.6)

AEPn i=1
identity (6.4) implies D, (u)Qx(y) = Qx(y) [Ti=,(1 — ut" g ) and hence, Qx(y) is a constant
multiple of Py(y).
We now prove (6.4). Since

Since

n n
1-— ;Y] 11—z i Yk
Ty (s y) = H ?x:yz H(z;y), Ty (s y) = H w H(z;y), (6.7)
=1 j=1

(6.4) is equivalent to the source identity

1 tx; — lr; — xj 1—xz;
> () ] G

IC{1,..,n} iel;j¢l R )

DL || HH

KC{L,..n} ek gk I T Y pek j21

(6.8)

An important observations is that this identity does not involve ¢q. This means that, in order to
prove (6.8), it is sufficient to prove (6.4) for ¢ = ¢t. However, we already know that (6.4) holds when
q =t by the Cauchy formula for Schur functions.

The existence of an expansion formula of the form (6.1) for difference number of variables m,
n follows from the fact that
Py(z1,..., 25— (N <
Py(an... . am 1,0) = (1 Tp-1) (£(N) <n)
0 (L(N\) =n).
It should be noted that we need some other arguments to obtain the explicit formula (6.2) for by.
We also remark that (6.1) for the case where m > n corresponds to the kernel function identity

D (u)I(5y) = (13 8)mn Dy (ut™ ") (2; y). (6.10)

(6.9)



