Introduction to Macdonald polynomials: Lecture 7

by M. Noumi [March 19, 2021]

- Corretion of formula (5.1) in Lecture 6:

$$
\begin{equation*}
P_{\lambda}\left(t^{\delta}\right)=t^{n(\lambda)} \prod_{s \in \lambda} \frac{1-t^{n-l_{\lambda}^{\prime}(s)} q^{a_{\lambda}^{\prime}(s)}}{1-t^{l_{\lambda}(s)+1} q^{a_{\lambda}(s)}}=\frac{t^{n(\lambda)} \prod_{i=1}^{n}\left(t^{n-i+1} ; q\right)_{\lambda_{i}}}{\prod_{1 \leq i \leq j \leq n}\left(t^{j-i+1} q^{\lambda_{i}-\lambda_{j}} ; q\right)_{\lambda_{j}-\lambda_{j+1}}} \tag{5.1}
\end{equation*}
$$

where $n(\lambda)=\sum_{i=1}^{n}(i-1) \lambda_{i}$ and, for each $s=(i, j) \in \lambda, l_{\lambda}^{\prime}(s)=i-1$ and $a_{\lambda}^{\prime}(s)=j-1$ denote the co-leg length and the co-arm length, respectively.

7 Pieri coefficients and branching coefficients

7.1 LR coefficients and branching coefficients

For a pair of partitions $\mu, \nu \in \mathcal{P}_{n}$, we consider the expand the product $P_{\mu}(x) P_{\nu}(x)$ of Macdonalds polynomials in the form

$$
\begin{equation*}
P_{\mu}(x) P_{\nu}(x)=\sum_{\lambda \in \mathcal{P}_{n} ;|\lambda|=|\mu|+|\nu|} c_{\mu, \nu}^{\lambda} P_{\lambda}(x) . \tag{7.1}
\end{equation*}
$$

The expansion coefficients $c_{\mu, \nu}^{\lambda}$ are called the Littlewood-Richardson coefficients (or Clebsch-Gordan coefficients). If $\nu=\left(1^{r}\right)$ is a single column $(r=0,1, \ldots, n)$, the LR coefficients $c_{\mu,\left(1^{r}\right)}^{\lambda}$ are nothing but the Pieri coefficients $\psi_{\lambda / \mu}^{\prime}=\psi_{\lambda^{\prime} / \mu^{\prime}}(t, q)$ we discussed above since $P_{\left(1^{r}\right)}(x)=e_{r}(x)$:

$$
\begin{equation*}
P_{\mu}(x) e_{r}(x)=\sum_{\lambda \in \mathcal{P}_{n} ;|\lambda|=|\mu|+r} \psi_{\lambda / \mu}^{\prime} P_{\lambda}(x) \quad(r=0,1, \ldots, n), \tag{7.2}
\end{equation*}
$$

where the sum is over the vertical strips λ / μ with $|\lambda / \mu|=r$.
These Littlewood-Richardson coefficients $c_{\mu, \nu}^{\lambda}$ are closely related to the branching coefficients $b_{\mu, \nu}^{\lambda}$ to be defined below. We consider to expand the Macdonald polynomials $P_{\lambda}(x, y)\left(\lambda \in \mathcal{P}_{m+n}\right)$ in $m+n$ variables $(x, y)=\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ in terms of the Macdonald polynomials $P_{\mu}(x)$ of m variables x and $P_{\nu}(y)$ of n variables:

$$
\begin{equation*}
P_{\lambda}(x, y)=\sum_{\mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}} b_{\mu, \nu}^{\lambda} P_{\mu}(x) P_{\nu}(y) . \tag{7.3}
\end{equation*}
$$

The expansion coefficients $b_{\mu, \nu}^{\lambda}$ are called the branching coefficients. Note that $b_{\mu, \nu}^{\lambda}=0$ unless $|\lambda|=|\mu|+|\nu|$. It is known that, when $n=1$, the branching coefficients are expressed by the Pieri coefficients $\psi_{\lambda / \mu}=\psi_{\lambda / \mu}(q, t)$:

$$
\begin{equation*}
P_{\lambda}(x, y)=\sum_{\mu \in \mathcal{P}_{n}, l \in \mathbb{N}} \psi_{\lambda / \mu} P_{\mu}(x) y^{l}, \tag{7.4}
\end{equation*}
$$

where the sum is over the horizontal strips λ / μ with $\ell(\mu) \leq m$.

NB: For each $\lambda \in \mathcal{P}_{n}$, there exists an irreducible polynomial representation of $\mathrm{GL}_{n}=\mathrm{GL}_{n}(\mathbb{C})$ with highest weight λ, denoted by $V(\lambda)$, whose character is the Schur function $s_{\lambda}(x)$.

$$
\begin{equation*}
\operatorname{ch}_{V(\lambda)}(x)=\operatorname{tr}\left(g_{x} \cdot: V(\lambda) \rightarrow V(\lambda)\right)=s_{\lambda}(x), \tag{7.5}
\end{equation*}
$$

where $g_{x}=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$ denotes a general element of the diagonal subgroup $\mathrm{T}_{n} \subset \mathrm{GL}_{n}$. In this context where $t=q$, the Littlewood-Richard coefficient $c_{\mu, \nu}^{\lambda}\left(\lambda, \mu, \nu \in \mathcal{P}_{n}\right)$ are nonnegative integers, and they represent the multiplicities of $V(\lambda)$ in the irreducible decomposition of the tensor product $V(\mu) \otimes V(\nu)$:

$$
\begin{equation*}
V(\mu) \otimes V(\nu) \simeq \bigoplus_{\lambda \in \mathcal{P}_{n}} V(\lambda)^{\oplus c_{\mu, \nu}^{\lambda}} \quad\left(\text { as } \mathrm{GL}_{n} \text {-modules }\right) \tag{7.6}
\end{equation*}
$$

On the other hand, for $\lambda \in \mathcal{P}_{m+n}, \mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}$, the branching coefficients $b_{\mu, \nu}^{\lambda}$ are non-negative integers, and they represent the multiplicity of $V(\mu) \otimes V(\nu)$ in the restriction of $V(\lambda)$ from GL_{m+n} to the subgroup $\mathrm{GL}_{m} \times \mathrm{GL}_{n}$:

$$
\begin{equation*}
\operatorname{Res} \downarrow_{\mathrm{GL}_{m} \times \mathrm{GL}_{n}}^{\mathrm{GL}_{m+n}}(V(\lambda)) \simeq \bigoplus_{\mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}}(V(\mu) \otimes V(\nu))^{\oplus b_{\mu, \nu}^{\lambda}} \quad\left(\text { as } \mathrm{GL}_{m} \times \mathrm{GL}_{n} \text {-modules }\right) . \tag{7.7}
\end{equation*}
$$

7.2 Relation between $c_{\mu, \nu}^{\lambda}$ and $b_{\mu, \nu}^{\lambda}$.

Recall that the Macdonald polynomials have the kernel functions of Cauchy type, and of dual Cauchy type: For two sets of variables $z=\left(z_{1}, \ldots, z_{M}\right)$ and $w=\left(w_{1}, \ldots, w_{N}\right)$,

$$
\begin{align*}
& \Pi_{M, N}(z ; w)=\prod_{k=1}^{M} \prod_{l=1}^{N} \frac{\left(t z_{k} w_{l} ; q\right)_{\infty}}{\left(z_{k} w_{l} ; q\right)_{\infty}}=\sum_{\lambda \in \min \{M, N\}} b_{\lambda} P_{\lambda}(z) P_{\lambda}(w), \\
& \Pi_{M, N}^{\vee}(z ; w)=\prod_{k=1}^{M} \prod_{l=1}^{N}\left(1+z_{k} w_{l}\right)=\sum_{\lambda \subseteq\left(N^{M}\right)} P_{\lambda}(z \mid q, t) P_{\lambda^{\prime}}(w \mid t, q) . \tag{7.8}
\end{align*}
$$

Theorem A Let $\mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}$ and $\lambda \in \mathcal{P}_{m+n}$. Then we have $b_{\lambda} b_{\mu, \nu}^{\lambda}=b_{\mu} b_{\nu} c_{\mu, \nu}^{\lambda}$.
Theorem B Let $\mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}$ and $\lambda \in \mathcal{P}_{m+n}$. Then we have $b_{\mu, \nu}^{\lambda}(q, t)=c_{\mu^{\prime}, \nu^{\prime}}^{\lambda^{\prime}}(t, q)$.

- Proof of Theorem A: Setting $M=N=m+n$ in (7.8), we have

$$
\begin{align*}
\Pi_{m+n, N}(x, y ; w) & =\sum_{\lambda \in \mathcal{P}_{N}} b_{\lambda} P_{\lambda}(x, y) P_{\lambda}(w) \tag{7.9}\\
& =\sum_{\lambda \in \mathcal{P}_{N}} \sum_{\mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}} b_{\lambda} b_{\mu, \nu}^{\lambda} P_{\mu}(x) P_{\nu}(y) P_{\lambda}(w)
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\Pi_{m, N}(x ; w) \Pi_{n, N}(y ; w) & =\sum_{\mu \in \mathcal{P}_{m}} b_{\mu} P_{\mu}(x) P_{\mu}(w) \sum_{\nu \in \mathcal{P}_{n}} b_{\nu} P_{\nu}(y) P_{\nu}(w) \\
& =\sum_{\mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}} b_{\mu} b_{\nu} P_{\mu}(x) P_{\nu}(y) P_{\mu}(w) P_{\nu}(w) \\
& =\sum_{\mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}} b_{\mu} b_{\nu} P_{\mu}(x) P_{\nu}(y) \sum_{\lambda \in \mathcal{P}_{N}} c_{\mu, \nu}^{\lambda} P_{\lambda}(w) \tag{7.10}\\
& =\sum_{\mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}} \sum_{\lambda \in \mathcal{P}_{N}} b_{\mu} b_{\nu} c_{\mu, \nu}^{\lambda} P_{\mu}(x) P_{\nu}(y) P_{\lambda}(w) .
\end{align*}
$$

Since $\Pi_{m+n, N}(x, y ; w)=\Pi_{m, N}(x ; w) \Pi_{n, N}(y ; w)$, we obtain $b_{\lambda} b_{\mu, \nu}^{\lambda}=b_{\mu} b_{\nu} c_{\mu, \nu}^{\lambda}$.

- Proof of Theorem B: Setting $M=m+n$ in (7.8), we have

$$
\begin{align*}
\Pi_{m+n, N}^{\vee}(x, y ; w) & =\sum_{\lambda \subseteq\left(N^{m+n}\right)} P_{\lambda}(x, y) P_{\lambda^{\prime}}^{\circ}(w) \tag{7.11}\\
& =\sum_{\lambda^{\prime} \in \mathcal{P}_{N}} \sum_{\mu \in \mathcal{P}_{m}, \nu \in \mathcal{P}_{n}} b_{\mu, \nu}^{\lambda} P_{\mu}(x) P_{\nu}(y) P_{\lambda^{\prime}}^{\circ}(w)
\end{align*}
$$

where ${ }^{\circ}$ denotes the operation of exchanging the parameters q and t. On the other hand

$$
\begin{align*}
\Pi_{m, N}^{\vee}(x ; w) \Pi_{n, N}^{\vee}(y ; w) & =\sum_{\mu \subseteq\left(N^{m}\right)} P_{\mu}(x) P_{\mu^{\prime}}^{\circ}(w) \sum_{\nu \subseteq\left(N^{n}\right)} P_{\nu}(y) P_{\nu^{\prime}}^{\circ}(w) \\
& =\sum_{\mu \subseteq\left(N^{m}\right), \nu \subseteq\left(N^{n}\right)} P_{\mu}(x) P_{\nu}(y) P_{\mu^{\prime}}^{\circ}(w) P_{\nu^{\prime}}^{\circ}(w) \tag{7.12}\\
& =\sum_{\mu \subseteq\left(N^{m}\right), \nu \subseteq\left(N^{n}\right)} \sum_{\lambda^{\prime} \in\left(N^{m+n}\right)}\left(c_{\mu^{\prime}, \nu^{\prime}}^{\lambda^{\prime}}\right)^{\circ} P_{\mu}(x) P_{\nu}(y) P_{\lambda^{\prime}}^{\circ}(w)
\end{align*}
$$

Since $\Pi_{m+n, N}^{\vee}(x, y ; w)=\Pi_{m, N}^{\vee}(x ; w) \Pi_{n, N}^{\vee}(y ; w)$, we obtain $b_{\mu, \nu}^{\lambda}=\left(c_{\mu^{\prime}, \nu^{\prime}}^{\lambda^{\prime}}\right)^{\circ}$.

- Branching rule (7.4): For $l=0,1, \ldots$, we have

$$
\begin{equation*}
b_{\mu,(l)}^{\lambda}=\left(c_{\mu^{\prime},\left(1^{l}\right)}^{\lambda^{\prime}}\right)^{\circ}=\left(\psi_{\lambda^{\prime}, \mu^{\prime}}^{\prime}\right)^{\circ}=\psi_{\lambda / \mu} \quad(|\lambda|=|\mu|+l), \tag{7.13}
\end{equation*}
$$

which proves the branching rule (7.4).

- Comment of the evaluation of $\boldsymbol{b}_{\boldsymbol{\lambda}}$: In view of the compatibility (6.9) of $P_{\lambda}(x)$ with respect to the number of variables, Macdonald [1] introduces Macdonald functions $P_{\lambda}(x)=P_{\lambda}(x \mid q, t)$ in infinite varialbes $x=\left(x_{i}\right)_{i \geq 1}=\left(x_{1}, x_{2}, \ldots\right)$. Letting $M \rightarrow \infty$ and $N \rightarrow \infty$ in (7.8), we have

$$
\begin{align*}
\Pi(z ; w) & =\prod_{i \geq 1} \frac{\left(t x_{i} y_{j} ; q\right)_{\infty}}{\left(x_{i} y_{j} ; q\right)_{\infty}}=\sum_{\lambda \in \mathcal{P}} b_{\lambda} P_{\lambda}(x) P_{\lambda}(x), \tag{7.14}\\
\Pi^{\vee}(x ; y) & =\prod_{i \geq 1} \prod_{j \geq 1}\left(1+x_{i} y_{j}\right)=\sum_{\lambda \in \mathcal{P}} P_{\lambda}(x) P_{\lambda^{\prime}}^{\circ}(y),
\end{align*}
$$

where \mathcal{P} denotes the set of all partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)\left(\lambda_{1} \geq \lambda_{2} \geq \cdots ; \lambda_{i}=0\right.$ for $\left.i \gg 1\right)$, and $P_{\mu}^{\circ}(x)=P_{\mu}(x \mid t, q)$. In terms of the power sums $p_{k}(x)=x_{1}^{k}+x_{2}^{k}+\cdots$, the kernel functions $\Pi(x ; y)$ and $\Pi^{\vee}(x ; y)$ are expressed as

$$
\begin{equation*}
\Pi(x ; y)=\exp \left(\sum_{k=1}^{\infty} \frac{1}{k} \frac{1-t^{k}}{1-q^{k}} p_{k}(x) p_{k}(y)\right), \quad \Pi^{\vee}(x ; y)=\exp \left(\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} p_{k}(x) p_{k}(y)\right) . \tag{7.15}
\end{equation*}
$$

Denoting $\Lambda=\mathbb{C}\left[p_{1}, p_{2}, \ldots\right]$ the ring of symmetric functions in infinite variables, Macdonald introduces the involution $\omega_{q, t}: \Lambda \rightarrow \Lambda$ (algebra automorphism) by

$$
\begin{equation*}
\omega_{q, t}\left(p_{k}\right)=(-1)^{k-1} \frac{1-q^{k}}{1-t^{k}} p_{k} \quad(k=1,2, \ldots) \tag{7.16}
\end{equation*}
$$

in terms of the power sums, so that

$$
\begin{equation*}
\omega_{q, t}^{y}(\Pi(x ; y))=\Pi^{\vee}(x ; y), \tag{7.17}
\end{equation*}
$$

where $\omega_{q, t}^{y}$ denotes the involution $\omega_{q, t}$ acting on y variables. This implies

$$
\begin{equation*}
\sum_{\lambda \in \mathcal{P}} b_{\lambda} P_{\lambda}(x) \omega_{q, t}^{y}\left(P_{\lambda}(y)\right)=\sum_{\lambda \in \mathcal{P}} P_{\lambda}(x) P_{\lambda^{\prime}}^{\circ}(y), \quad \text { namely } \quad b_{\lambda} \omega_{q, t}\left(P_{\lambda}\right)=P_{\lambda^{\prime}}^{\circ} \quad(\lambda \in \mathcal{P}) \tag{7.18}
\end{equation*}
$$

In Macdonald [1], the explicit formula

$$
\begin{equation*}
b_{\lambda}=\prod_{s \in \lambda} \frac{1-t^{l_{\lambda}(s)+1} q^{a_{\lambda}(s)}}{1-t^{l}(s) q^{a_{\lambda}(s)+1}}=\prod_{1 \leq i \leq j \leq \ell(\lambda)} \frac{\left(t^{j-i+1} q^{\lambda_{i}-\lambda_{j}} ; q\right)_{\lambda_{j}-\lambda_{j+1}}}{\left(t^{j-i} q^{\lambda_{i}-\lambda_{j}+1} ; q\right)_{\lambda_{j}-\lambda_{j+1}}} . \tag{7.19}
\end{equation*}
$$

for b_{λ} is proved by a somewhat tricky argument based on the compatibility of $b_{\lambda} \omega_{q, t}\left(P_{\lambda}\right)=P_{\lambda^{\prime}}^{\circ}$ with the evaluation formula of $P_{\lambda}\left(1, t, \ldots, t^{n-1}\right)$ in n-variables.

7.3 Tableau representation of $P_{\lambda}(x)$

We already know that the Macdonald polynomials $P_{\lambda}(x)\left(\lambda \in \mathcal{P}_{n}\right)$ of n variables $x=\left(x_{1}, \ldots, x_{n}\right)$ is expressed as

$$
\begin{equation*}
P_{\lambda}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\sum_{\substack{\mu \in \mathcal{P}_{n-1} \\ \mu \subseteq \lambda, \lambda / \mu \text { i.s.s. }}} \psi_{\lambda / \mu} P_{\mu}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{|\lambda / \mu|} \tag{7.20}
\end{equation*}
$$

whete the sum is taken over all partitions $\mu \in \mathcal{P}_{n-1}$ such that $\mu \subseteq \lambda$ and λ / μ is a horizontal strip. Note that $\psi_{\lambda / \mu}=0$ unless λ / μ is a horizontal strip. Repeating this procedure, one can express $P_{\lambda}(x)$ as a sum

$$
\begin{equation*}
P_{\lambda}(x)=\sum_{\phi=\lambda^{(0)} \subseteq \lambda^{(1)} \subseteq \cdots \subseteq \lambda^{(n)}=\lambda} \prod_{k=1}^{n} \psi_{\lambda^{(k)} / \lambda^{(k-1)}} x_{k}^{\left|\lambda^{(k)} / \lambda^{(k-1)}\right|} \tag{7.21}
\end{equation*}
$$

over all nondecreasing sequences $\lambda^{(k)}(k=0,1, \ldots, n)$ of partitions connecting ϕ and λ by n steps such that the skew partitions $\lambda^{(k)} / \lambda^{(k-1)}$ are horizontal strips. This representation can be interpreted as the sum

$$
\begin{equation*}
P_{\lambda}(x)=\sum_{T \in \operatorname{SSTab}_{n}(\lambda)} \psi_{T} x^{\mathrm{wt}(T)}, \quad \psi_{T}=\prod_{k=1}^{n} \psi_{\lambda^{(k)} / \lambda^{(k-1)}}, \tag{7.22}
\end{equation*}
$$

over all semi-standard tableau of shape λ. Here the coefficients ψ_{T} are expressed as

$$
\begin{equation*}
\psi_{T}=\prod_{1 \leq i \leq j<k \leq n} \frac{\left(t^{j-i+1} q^{\lambda_{i}^{(k-1)}-\lambda_{j}^{(k-1)}} ; q\right)_{\lambda_{i}^{(k)}-\lambda_{i}^{(k-1)}}}{\left(t^{j-i} q^{\lambda_{i}^{(k-1)}-\lambda_{j}^{(k-1)}+1} ; q\right)_{\lambda_{i}^{(k)}-\lambda_{i}^{(k-1)}}} \frac{\left(t^{j-i} q^{\lambda_{i}^{(k-1)}-\lambda_{j+1}^{(k)}+1} ; q\right)_{\lambda_{i}^{(k)}-\lambda_{i}^{(k-1)}}}{\left(t^{j-i+1} q^{\left.\lambda_{i}^{(k-1)}-\lambda_{j+1}^{(k)} ; q\right)_{\lambda_{i}^{(k)}-\lambda_{i}^{(k-1)}}} . . .\right.} \tag{7.23}
\end{equation*}
$$

7.4 Macdonald-Ruijsenaars operators of row type

- \boldsymbol{q}-Difference operators $\boldsymbol{H}_{x}^{(l)}$ of row type: Let $\mathcal{R}=\mathbb{C}\left[D_{x}^{(1)}, \ldots, D_{x}^{(n)}\right]$ be the commutative ring generated by the Macdonald-Ruijsenaars q-difference operators. Then, for each symmetric polynomial $f(\xi) \in \mathbb{C}[\xi]^{\mathfrak{G}_{n}}, \xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$, there exists a unique q-difference operator $L_{x} \in \mathcal{R}$ such that

$$
\begin{equation*}
L_{x} P_{\lambda}(x)=f\left(t^{\delta} q^{\lambda}\right) P_{\lambda}(x) \quad\left(\lambda \in \mathcal{P}_{n}\right) . \tag{7.24}
\end{equation*}
$$

(Express f as $f=F\left(e_{1}, \ldots, e_{n}\right)$ by a polynomial of e_{1}, \ldots, e_{n}. Then the operator L_{x} is given by $\left.L_{x}=F\left(D_{x}^{(1)}, \ldots, D_{x}^{(n)}\right).\right)$ This correspondence $L_{x} \rightarrow f$ defines an isomorphism $\mathbb{C}\left[D_{x}^{(1)}, \ldots, D_{x}^{(n)}\right] \xrightarrow{\sim}$ $\mathbb{C}[\xi]^{\mathfrak{G}_{n}}$ of commutative \mathbb{C}-algebras (a variation of the Harish-Chandra isomorphism).

For each $l=0,1,2, \ldots$, we define a q-difference operator $H_{x}^{(l)}$ by

$$
\begin{equation*}
H_{x}^{(l)}=\sum_{\mu \in \mathbb{N}^{n} ;|\mu|=l} \frac{\Delta\left(q^{\mu} x\right)}{\Delta(x)} \prod_{i, j=1}^{n} \frac{\left(t x_{i} / x_{j} ; q\right)_{\mu_{i}}}{\left(q x_{i} / x_{j} ; q\right)_{\mu_{i}}} T_{q, x}^{\mu}, \tag{7.25}
\end{equation*}
$$

where $T_{q, x}^{\mu}=T_{q, x_{1}}^{\mu_{1}} \cdots T_{q, x_{n}}^{\mu_{n}}$. Then one can show that $H_{x}^{(l)} \in \mathbb{C}\left[D_{x}^{(1)}, \ldots, D_{x}^{(n)}\right]$, and that

$$
\begin{equation*}
H_{x}^{(l)} P_{\lambda}(x)=g_{l}\left(t^{\delta} q^{\lambda}\right) P_{\lambda}(x) \quad(l=0,1,2 \ldots) \tag{7.26}
\end{equation*}
$$

where $g_{l}(\xi)$ denotes the Macdonald polynomials attached to (l) of a single row.

$$
\begin{equation*}
g_{l}(\xi)=\sum_{\mu \in \mathbb{N}^{n} ;|\mu|=l} \frac{(t ; q)_{\mu_{1}} \cdots(t ; q)_{\mu_{n}}}{(q ; q)_{\mu_{1}} \cdots(q ; q)_{\mu_{n}}} \xi_{1}^{\mu_{1}} \cdots \xi_{n}^{\mu_{n}}=\frac{(t ; q)_{l}}{(q ; q)_{l}} P_{(l)}(\xi) \quad(l=0,1,2, \ldots) . \tag{7.27}
\end{equation*}
$$

In view of the generating function

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{\left(t \xi_{i} u ; q\right)_{\infty}}{\left(\xi_{i} u ; q\right)_{\infty}}=\sum_{l=0}^{\infty} g_{l}(\xi) u^{l} \tag{7.28}
\end{equation*}
$$

of Macdonald polynomials of single rows, we introduce the generating function $H_{x}(u)=\sum_{l=0}^{\infty} u^{l} H_{x}^{(l)}$. Then we have

$$
\begin{equation*}
H_{x}(u) P_{\lambda}(x)=P_{\lambda}(x) \prod_{i=1}^{n} \frac{\left(t^{n-i+1} q^{\lambda} u ; q\right)_{\infty}}{\left(t^{n-i} q^{\lambda} u ; q\right)_{\infty}} \tag{7.29}
\end{equation*}
$$

- Wronski relation: Note that the generating functions

$$
\begin{equation*}
E(u)=\sum_{r=0}^{n}(-1)^{r} e_{r}(x) u^{r}=\prod_{i=1}^{n}\left(1-x_{i} u\right), \quad G(u)=\sum_{l=0}^{\infty} g_{l}(x) u^{l}=\prod_{i=1}^{n} \frac{\left(t x_{i} u ; q\right)_{\infty}}{\left(x_{i} u ; q\right)_{\infty}} \tag{7.30}
\end{equation*}
$$

satisfy $E(u) G(u)=E(t u) G(q u)$. This means that $e_{r}(x)$ and $g_{l}(x)$ are related through the recurrence relations

$$
\begin{equation*}
\sum_{r+l=k}(-1)^{r}\left(1-t^{r} q^{l}\right) e_{r}(\xi) g_{l}(\xi)=0 \quad(k=1,2, \ldots) . \tag{7.31}
\end{equation*}
$$

of Wronski type. One can verify that the operators $H_{x}^{(l)}(l=0,1,2, \ldots)$ defined above satisfy the Wronski relation

$$
\begin{equation*}
\sum_{r+l=k}(-1)^{r}\left(1-t^{r} q^{l}\right) D_{x}^{(r)} H_{x}^{(l)}=0 \quad(k=1,2, \ldots) \tag{7.32}
\end{equation*}
$$

From this, it follows that $H_{x}^{(l)} \in \mathbb{C}\left[D_{x}^{(1)}, \ldots, D_{x}^{(n)}\right]$ and that $H_{x}^{(l)}$ are diagonalized by the Macdonald polynomials as in (7.26). (See Noumi-Sano: arXiv:2012.03135)

- Pieri formula of row type: In the same way as we obtained the Pieri formula of column type from $D_{x}^{(r)}$, we can derive the Pieri formula of row type from

$$
\begin{equation*}
H_{x}^{(l)}=\sum_{|\mu|=l} H_{\mu}(x) T_{q, x}^{\mu}, \quad H_{\mu}(x)=\frac{\Delta\left(q^{\mu} x\right)}{\Delta(x)} \prod_{i, j=1}^{n} \frac{\left(t x_{i} / x_{j} ; q\right)_{\mu_{i}}}{\left(q x_{i} / x_{j} ; q\right)_{\mu_{i}}} . \tag{7.33}
\end{equation*}
$$

In fact we have

$$
\begin{equation*}
\sum_{|\nu|=l} H_{\nu}\left(t^{\delta} q^{\mu}\right) \widetilde{P}_{\lambda}\left(t^{\delta} q^{\mu+\nu}\right)=g_{l}\left(t^{\delta} q^{\lambda}\right) \widetilde{P}_{\lambda}\left(t^{\delta} q^{\mu}\right) \quad\left(\lambda, \mu \in \mathcal{P}_{n}\right) . \tag{7.34}
\end{equation*}
$$

Since $H_{\nu}\left(t^{\delta} q^{\mu}\right)=0$ unless $(\mu+\nu) / \mu$ is a horizontal strip, we obtain

$$
\begin{equation*}
\sum_{|\nu|=l} H_{\nu}\left(t^{\delta} q^{\mu}\right) \widetilde{P}_{\mu+\nu}\left(t^{\delta} q^{\lambda}\right)=g_{l}\left(t^{\delta} q^{\lambda}\right) \widetilde{P}_{\mu}\left(t^{\delta} q^{\lambda}\right) \quad\left(\lambda, \mu \in \mathcal{P}_{n}\right), \tag{7.35}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{|\nu|=l} H_{\nu}\left(t^{\delta} q^{\mu}\right) \widetilde{P}_{\mu+\nu}(x)=g_{l}(x) \widetilde{P}_{\mu}(x) \quad\left(\lambda, \mu \in \mathcal{P}_{n}\right), \tag{7.36}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
g_{l}(x) P_{\mu}(x)=\sum_{\lambda ;|\lambda|=|\mu|+l} \varphi_{\lambda / \mu} P_{\lambda}(x), \quad \varphi_{\lambda / \mu}=\frac{a_{\mu}}{a_{\lambda}} H_{\lambda-\mu}\left(t^{\delta} q^{\mu}\right) . \tag{7.37}
\end{equation*}
$$

Since $g_{l}(x)=b_{(l)} P_{(l)}(x)$, this means that

$$
\begin{equation*}
P_{\mu}(x) P_{(l)}(x)=\sum_{\lambda ;|\lambda|=|\mu|+l} c_{\mu,(l)}^{\lambda} P_{\lambda}(x), \quad c_{\mu,(l)}^{\lambda}=\frac{1}{b_{(l)}} \frac{a_{\mu}}{a_{\lambda}} H_{\lambda-\mu}\left(t^{\delta} q^{\mu}\right) . \tag{7.38}
\end{equation*}
$$

The corresponding branching coefficients are also detemined as

$$
\begin{equation*}
\psi_{\lambda / \mu}=b_{\mu,(l)}^{\lambda}=\frac{b_{\mu} b_{(l)}}{b_{\lambda}} c_{\mu,(l)}^{\lambda}=\frac{a_{\mu} b_{\mu}}{a_{\lambda} b_{\lambda}} H_{\lambda-\mu}\left(t^{\delta} q^{\mu}\right) . \tag{7.39}
\end{equation*}
$$

