
Introduction to Macdonald polynomials: Lecture 7

by M. Noumi [March 19, 2021]

• Corretion of formula (5.1) in Lecture 6:

Pλ(t
δ) = tn(λ)

∏
s∈λ

1− tn−l′λ(s)qa
′
λ(s)

1− tlλ(s)+1qaλ(s)
=

tn(λ)
∏n

i=1(t
n−i+1; q)λi∏

1≤i≤j≤n(t
j−i+1qλi−λj ; q)λj−λj+1

(5.1)

where n(λ) =
∑n

i=1(i− 1)λi and, for each s = (i, j) ∈ λ, l′λ(s) = i− 1 and a′λ(s) = j − 1 denote the
co-leg length and the co-arm length, respectively.

7 Pieri coefficients and branching coefficients

7.1 LR coefficients and branching coefficients

For a pair of partitions µ, ν ∈ Pn, we consider the expand the product Pµ(x)Pν(x) of Macdonalds
polynomials in the form

Pµ(x)Pν(x) =
∑

λ∈Pn; |λ|=|µ|+|ν|

cλµ,ν Pλ(x). (7.1)

The expansion coefficients cλµ,ν are called the Littlewood-Richardson coefficients (or Clebsch-Gordan

coefficients). If ν = (1r) is a single column (r = 0, 1, . . . , n), the LR coefficients cλµ,(1r) are nothing

but the Pieri coefficients ψ′
λ/µ = ψλ′/µ′(t, q) we discussed above since P(1r)(x) = er(x):

Pµ(x)er(x) =
∑

λ∈Pn; |λ|=|µ|+r

ψ′
λ/µ Pλ(x) (r = 0, 1, . . . , n), (7.2)

where the sum is over the vertical strips λ/µ with |λ/µ| = r.
These Littlewood-Richardson coefficients cλµ,ν are closely related to the branching coefficients

bλµ,ν to be defined below. We consider to expand the Macdonald polynomials Pλ(x, y) (λ ∈ Pm+n)
in m + n variables (x, y) = (x1, . . . , xm, y1, . . . , yn) in terms of the Macdonald polynomials Pµ(x)
of m variables x and Pν(y) of n variables:

Pλ(x, y) =
∑

µ∈Pm, ν∈Pn

bλµ,ν Pµ(x)Pν(y). (7.3)

The expansion coefficients bλµ,ν are called the branching coefficients. Note that bλµ,ν = 0 unless
|λ| = |µ|+ |ν|. It is known that, when n = 1, the branching coefficients are expressed by the Pieri
coefficients ψλ/µ = ψλ/µ(q, t):

Pλ(x, y) =
∑

µ∈Pn, l∈N
ψλ/µ Pµ(x)y

l, (7.4)

where the sum is over the horizontal strips λ/µ with ℓ(µ) ≤ m.
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NB: For each λ ∈ Pn, there exists an irreducible polynomial representation of GLn = GLn(C)
with highest weight λ, denoted by V (λ), whose character is the Schur function sλ(x).

chV (λ)(x) = tr(gx· : V (λ) → V (λ)) = sλ(x), (7.5)

where gx = diag(x1, . . . , xn) denotes a general element of the diagonal subgroup Tn ⊂ GLn.
In this context where t = q, the Littlewood-Richard coefficient cλµ,ν (λ, µ, ν ∈ Pn) are non-
negative integers, and they represent the multiplicities of V (λ) in the irreducible decomposi-
tion of the tensor product V (µ)⊗ V (ν):

V (µ)⊗ V (ν) ≃
⊕
λ∈Pn

V (λ)⊕ cλµ,ν (as GLn-modules). (7.6)

On the other hand, for λ ∈ Pm+n, µ ∈ Pm, ν ∈ Pn, the branching coefficients bλµ,ν are
non-negative integers, and they represent the multiplicity of V (µ) ⊗ V (ν) in the restriction
of V (λ) from GLm+n to the subgroup GLm ×GLn:

Res
yGLm+n

GLm×GLn
(V (λ)) ≃

⊕
µ∈Pm, ν∈Pn

(
V (µ)⊗ V (ν)

)⊕ bλµ,ν (as GLm ×GLn-modules). (7.7)

7.2 Relation between cλµ,ν and bλµ,ν.

Recall that the Macdonald polynomials have the kernel functions of Cauchy type, and of dual
Cauchy type: For two sets of variables z = (z1, . . . , zM ) and w = (w1, . . . , wN ),

ΠM,N (z;w) =

M∏
k=1

N∏
l=1

(tzkwl; q)∞
(zkwl; q)∞

=
∑

λ∈min{M,N}

bλPλ(z)Pλ(w),

Π∨
M,N (z;w) =

M∏
k=1

N∏
l=1

(1 + zkwl) =
∑

λ⊆(NM )

Pλ(z|q, t)Pλ′(w|t, q).

(7.8)

Theorem A Let µ ∈ Pm, ν ∈ Pn and λ ∈ Pm+n. Then we have bλb
λ
µ,ν = bµbνc

λ
µ,ν .

Theorem B Let µ ∈ Pm, ν ∈ Pn and λ ∈ Pm+n. Then we have bλµ,ν(q, t) = cλ
′

µ′,ν′(t, q).

• Proof of Theorem A: Setting M = N = m+ n in (7.8), we have

Πm+n,N (x, y;w) =
∑
λ∈PN

bλPλ(x, y)Pλ(w)

=
∑
λ∈PN

∑
µ∈Pm, ν∈Pn

bλb
λ
µ,νPµ(x)Pν(y)Pλ(w)

(7.9)

On the other hand,

Πm,N (x;w)Πn,N (y;w) =
∑
µ∈Pm

bµPµ(x)Pµ(w)
∑
ν∈Pn

bνPν(y)Pν(w)

=
∑

µ∈Pm, ν∈Pn

bµbνPµ(x)Pν(y)Pµ(w)Pν(w)

=
∑

µ∈Pm, ν∈Pn

bµbνPµ(x)Pν(y)
∑
λ∈PN

cλµ,νPλ(w)

=
∑

µ∈Pm, ν∈Pn

∑
λ∈PN

bµbνc
λ
µ,νPµ(x)Pν(y)Pλ(w).

(7.10)
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Since Πm+n,N (x, y;w) = Πm,N (x;w)Πn,N (y;w), we obtain bλb
λ
µ,ν = bµbνc

λ
µ,ν .

• Proof of Theorem B: Setting M = m+ n in (7.8), we have

Π∨
m+n,N (x, y;w) =

∑
λ⊆(Nm+n)

Pλ(x, y)P
◦
λ′(w)

=
∑

λ′∈PN

∑
µ∈Pm, ν∈Pn

bλµ,νPµ(x)Pν(y)P
◦
λ′(w)

(7.11)

where ◦ denotes the operation of exchanging the parameters q and t. On the other hand

Π∨
m,N (x;w)Π∨

n,N (y;w) =
∑

µ⊆(Nm)

Pµ(x)P
◦
µ′(w)

∑
ν⊆(Nn)

Pν(y)P
◦
ν′(w)

=
∑

µ⊆(Nm), ν⊆(Nn)

Pµ(x)Pν(y)P
◦
µ′(w)P ◦

ν′(w)

=
∑

µ⊆(Nm), ν⊆(Nn)

∑
λ′∈(Nm+n)

(
cλ

′
µ′,ν′

)◦
Pµ(x)Pν(y)P

◦
λ′(w)

(7.12)

Since Π∨
m+n,N (x, y;w) = Π∨

m,N (x;w)Π∨
n,N (y;w), we obtain bλµ,ν =

(
cλ

′
µ′,ν′

)◦
.

• Branching rule (7.4): For l = 0, 1, . . ., we have

bλµ,(l) =
(
cλ

′

µ′,(1l)

)◦
= (ψ′

λ′,µ′)◦ = ψλ/µ (|λ| = |µ|+ l), (7.13)

which proves the branching rule (7.4).

• Comment of the evaluation of bλ: In view of the compatibility (6.9) of Pλ(x) with respect
to the number of variables, Macdonald [1] introduces Macdonald functions Pλ(x) = Pλ(x|q, t) in
infinite varialbes x = (xi)i≥1 = (x1, x2, . . .). Letting M → ∞ and N → ∞ in (7.8), we have

Π(z;w) =
∏
i≥1

∏
j≥1

(txiyj ; q)∞
(xiyj ; q)∞

=
∑
λ∈P

bλPλ(x)Pλ(x),

Π∨(x; y) =
∏
i≥1

∏
j≥1

(1 + xiyj) =
∑
λ∈P

Pλ(x)P
◦
λ′(y),

(7.14)

where P denotes the set of all partitions λ = (λ1, λ2, . . .) (λ1 ≥ λ2 ≥ · · · ; λi = 0 for i ≫ 1), and
P ◦
µ(x) = Pµ(x|t, q). In terms of the power sums pk(x) = xk1 + xk2 + · · · , the kernel functions Π(x; y)

and Π∨(x; y) are expressed as

Π(x; y) = exp
( ∞∑

k=1

1

k

1− tk

1− qk
pk(x)pk(y)

)
, Π∨(x; y) = exp

( ∞∑
k=1

(−1)k−1

k
pk(x)pk(y)

)
. (7.15)

Denoting Λ = C[p1, p2, . . .] the ring of symmetric functions in infinite variables, Macdonald intro-
duces the involution ωq,t : Λ → Λ (algebra automorphism) by

ωq,t(pk) = (−1)k−1 1− qk

1− tk
pk (k = 1, 2, . . .) (7.16)
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in terms of the power sums, so that

ωy
q,t(Π(x; y)) = Π∨(x; y), (7.17)

where ωy
q,t denotes the involution ωq,t acting on y variables. This implies∑

λ∈P
bλPλ(x)ω

y
q,t(Pλ(y)) =

∑
λ∈P

Pλ(x)P
◦
λ′(y), namely bλ ωq,t(Pλ) = P ◦

λ′ . (λ ∈ P) (7.18)

In Macdonald [1], the explicit formula

bλ =
∏
s∈λ

1− tlλ(s)+1qaλ(s)

1− tlλ(s)qaλ(s)+1
=

∏
1≤i≤j≤ℓ(λ)

(tj−i+1qλi−λj ; q)λj−λj+1

(tj−iqλi−λj+1; q)λj−λj+1

. (7.19)

for bλ is proved by a somewhat tricky argument based on the compatibility of bλ ωq,t(Pλ) = P ◦
λ′

with the evaluation formula of Pλ(1, t, . . . , t
n−1) in n-variables.

7.3 Tableau representation of Pλ(x)

We already know that the Macdonald polynomials Pλ(x) (λ ∈ Pn) of n variables x = (x1, . . . , xn)
is expressed as

Pλ(x1, . . . , xn−1, xn) =
∑

µ∈Pn−1

µ⊆λ, λ/µ: h.s.

ψλ/µ Pµ(x1, . . . , xn−1)x
|λ/µ|
n (7.20)

whete the sum is taken over all partitions µ ∈ Pn−1 such that µ ⊆ λ and λ/µ is a horizontal strip.
Note that ψλ/µ = 0 unless λ/µ is a horizontal strip. Repeating this procedure, one can express
Pλ(x) as a sum

Pλ(x) =
∑

ϕ=λ(0)⊆λ(1)⊆···⊆λ(n)=λ

n∏
k=1

ψλ(k)/λ(k−1) x
|λ(k)/λ(k−1)|
k (7.21)

over all nondecreasing sequences λ(k) (k = 0, 1, . . . , n) of partitions connecting ϕ and λ by n
steps such that the skew partitions λ(k)/λ(k−1) are horizontal strips. This representation can be
interpreted as the sum

Pλ(x) =
∑

T∈SSTabn(λ)

ψT xwt(T ), ψT =

n∏
k=1

ψλ(k)/λ(k−1) , (7.22)

over all semi-standard tableau of shape λ. Here the coefficients ψT are expressed as

ψT =
∏

1≤i≤j<k≤n

(tj−i+1qλ
(k−1)
i −λ

(k−1)
j ; q)

λ
(k)
i −λ

(k−1)
i

(tj−iqλ
(k−1)
i −λ

(k−1)
j +1; q)

λ
(k)
i −λ

(k−1)
i

(tj−iqλ
(k−1)
i −λ

(k)
j+1+1; q)

λ
(k)
i −λ

(k−1)
i

(tj−i+1qλ
(k−1)
i −λ

(k)
j+1 ; q)

λ
(k)
i −λ

(k−1)
i

. (7.23)
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7.4 Macdonald-Ruijsenaars operators of row type

• q-Difference operators H(l)
x of row type: Let R = C[D(1)

x , . . . , D
(n)
x ] be the commutative

ring generated by the Macdonald-Ruijsenaars q-difference operators. Then, for each symmetric
polynomial f(ξ) ∈ C[ξ]Sn , ξ = (ξ1, . . . , ξn), there exists a unique q-difference operator Lx ∈ R such
that

LxPλ(x) = f(tδqλ)Pλ(x) (λ ∈ Pn). (7.24)

(Express f as f = F (e1, . . . , en) by a polynomial of e1, . . . , en. Then the operator Lx is given by

Lx = F (D
(1)
x , . . . , D

(n
x ).) This correspondence Lx → f defines an isomorphism C[D(1)

x , . . . , D
(n)
x ]

∼→
C[ξ]Sn of commutative C-algebras (a variation of the Harish-Chandra isomorphism).

For each l = 0, 1, 2, . . ., we define a q-difference operator H
(l)
x by

H(l)
x =

∑
µ∈Nn; |µ|=l

∆(qµx)

∆(x)

n∏
i,j=1

(txi/xj ; q)µi

(qxi/xj ; q)µi

Tµ
q,x, (7.25)

where Tµ
q,x = Tµ1

q,x1 · · ·T
µn
q,xn . Then one can show that H

(l)
x ∈ C[D(1)

x , . . . , D
(n)
x ], and that

H(l)
x Pλ(x) = gl(t

δqλ)Pλ(x) (l = 0, 1, 2 . . .) (7.26)

where gl(ξ) denotes the Macdonald polynomials attached to (l) of a single row.

gl(ξ) =
∑

µ∈Nn; |µ|=l

(t; q)µ1 · · · (t; q)µn

(q; q)µ1 · · · (q; q)µn

ξµ1
1 · · · ξµn

n =
(t; q)l
(q; q)l

P(l)(ξ) (l = 0, 1, 2, . . .). (7.27)

In view of the generating function

n∏
i=1

(tξiu; q)∞
(ξiu; q)∞

=
∞∑
l=0

gl(ξ)u
l (7.28)

of Macdonald polynomials of single rows, we introduce the generating functionHx(u) =
∑∞

l=0 u
lH

(l)
x .

Then we have

Hx(u)Pλ(x) = Pλ(x)

n∏
i=1

(tn−i+1qλu; q)∞
(tn−iqλu; q)∞

(7.29)

• Wronski relation: Note that the generating functions

E(u) =

n∑
r=0

(−1)rer(x)u
r =

n∏
i=1

(1− xiu), G(u) =

∞∑
l=0

gl(x)u
l =

n∏
i=1

(txiu; q)∞
(xiu; q)∞

(7.30)

satisfy E(u)G(u) = E(tu)G(qu). This means that er(x) and gl(x) are related through the recurrence
relations ∑

r+l=k

(−1)r(1− trql)er(ξ)gl(ξ) = 0 (k = 1, 2, . . .). (7.31)

of Wronski type. One can verify that the operators H
(l)
x (l = 0, 1, 2, . . .) defined above satisfy the

Wronski relation ∑
r+l=k

(−1)r(1− trql)D(r)
x H(l)

x = 0 (k = 1, 2, . . .). (7.32)
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From this, it follows that H
(l)
x ∈ C[D(1)

x , . . . , D
(n)
x ] and that H

(l)
x are diagonalized by the Macdonald

polynomials as in (7.26). (See Noumi-Sano: arXiv:2012.03135)

• Pieri formula of row type: In the same way as we obtained the Pieri formula of column type

from D
(r)
x , we can derive the Pieri formula of row type from

H(l)
x =

∑
|µ|=l

Hµ(x)T
µ
q,x, Hµ(x) =

∆(qµx)

∆(x)

n∏
i,j=1

(txi/xj ; q)µi

(qxi/xj ; q)µi

. (7.33)

In fact we have ∑
|ν|=l

Hν(t
δqµ)P̃λ(t

δqµ+ν) = gl(t
δqλ)P̃λ(t

δqµ) (λ, µ ∈ Pn). (7.34)

Since Hν(t
δqµ) = 0 unless (µ+ ν)/µ is a horizontal strip, we obtain∑

|ν|=l

Hν(t
δqµ)P̃µ+ν(t

δqλ) = gl(t
δqλ)P̃µ(t

δqλ) (λ, µ ∈ Pn), (7.35)

and hence ∑
|ν|=l

Hν(t
δqµ)P̃µ+ν(x) = gl(x)P̃µ(x) (λ, µ ∈ Pn), (7.36)

This implies that

gl(x)Pµ(x) =
∑

λ;|λ|=|µ|+l

φλ/µ Pλ(x), φλ/µ =
aµ
aλ
Hλ−µ(t

δqµ). (7.37)

Since gl(x) = b(l)P(l)(x), this means that

Pµ(x)P(l)(x) =
∑

λ;|λ|=|µ|+l

cλµ,(l) Pλ(x), cλµ,(l) =
1

b(l)

aµ
aλ
Hλ−µ(t

δqµ). (7.38)

The corresponding branching coefficients are also detemined as

ψλ/µ = bλµ,(l) =
bµb(l)

bλ
cλµ,(l) =

aµbµ
aλbλ

Hλ−µ(t
δqµ). (7.39)
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