Introduction to Macdonald polynomials: Lecture 7

by M. Noumi [March 19, 2021]

e Corretion of formula (5.1) in Lecture 6:

P)\(t(?) ) H 1— tn_l&(s)q"&(s) _ () H (tn i+1. : q) (5.1)
SEA 1—th®H g T e, (g AJ?‘J)M*AJ‘H

where n(A) = > (i —1)); and, for each s = (i,7) € A, I\ (s) =i —1 and a)(s) = j — 1 denote the
co-leg length and the co-arm length, respectively.

7 Pieri coefficients and branching coefficients

7.1 LR coefficients and branching coefficients

For a pair of partitions u,v € Py, we consider the expand the product P,(x)P,(x) of Macdonalds
polynomials in the form
P,(z)P,(z) = > ), Pa(@). (7.1)

AEPn; |Al=|pl+v|

The expansion coefficients ¢ , are called the Littlewood-Richardson coefficients (or Clebsch-Gordan

(187

coefficients). If v = (1") is a single column (r = 0,1,...,n), the LR coefficients cl); (1r) are nothing
but the Pieri coefficients 1/13\/“ =y (t, q) we discussed above since Piry(7) = e,(2):
P,(z)er(x) = > U Pa(@) (r=0,1,...,n), (7.2)

AEPn; [A|=|ul+r

where the sum is over the vertical strips A/ with |[\/p| = 7.

These Littlewood-Richardson coefficients c/);ﬂ, are closely related to the branching coefficients
bﬁﬂj to be defined below. We consider to expand the Macdonald polynomials Py(x,y) (A € Prmin)
in m + n variables (z,y) = (21,...,Zm, Y1,...,Yn) in terms of the Macdonald polynomials P, (z)

of m variables x and P,(y) of n variables:
Pa(z.y) = Y buy Pa(@)Po(y): (73)
WEPm, vEP,

The expansion coefficients b)‘y are called the branching coefficients. Note that b/\ = 0 unless
|A| = || + |v|. It is known that, when n = 1, the branching coefficients are expressed by the Pieri

coefficients 1/, = ¥y /,(q, t):
Py\(z,y) = Z w)\/u Pu(ﬂj‘)yl, (7.4)

HEPn,leN

where the sum is over the horizontal strips A/ with £(u) < m.



NB: For each A € P, there exists an irreducible polynomial representation of GL,, = GL,(C)
with highest weight A\, denoted by V' (\), whose character is the Schur function s (x).
chy oy () = tr(gz-: V(A) = V(A)) = sa(z), (7.5)

where g, = diag(z1,...,z,) denotes a general element of the diagonal subgroup T,, C GL,.
In this context where t = g, the Littlewood-Richard coefficient c“ , (A, v € Pp) are non-
negative integers, and they represent the multiplicities of V() in the irreducible decomposi-
tion of the tensor product V(u) @ V (v):

V(p) @ V(v) ~ @ V()\)GBC?W (as GL,,-modules). (7.6)
AEP,

On the other hand, for A € Ppyn, 4t € Ppn, v € Py, the branching coefficients bf;,,/ are
non-negative integers, and they represent the multiplicity of V(i) ® V(v) in the restriction
of V() from GL;,4y, to the subgroup GL,, x GLj:

GLmtn o)
Res| o e (V) = €D (Viw @ V()™ (as GLy, x GLy-modules). (7.7)
WEPm, VEP,

7.2 Relation between Ci\w and bf;’u.

Recall that the Macdonald polynomials have the kernel functions of Cauchy type, and of dual

Cauchy type: For two sets of variables z = (z1,...,zy) and w = (wy,...,wN),
(tzrpwy;
HMN Z w HH kwl = Z b)\P)\(Z)P)\(’w),
he1i—1 RWLY A€min{M,N} .
vN (7.8)
Iy, v (25 w) H H 1+ zpwy) Z Py(z|q, t) Py (wlt, q).
k=11=1 AC(NM)
Theorem A Let u € Py, v € P, and A € P,,1,,. Then we have b,\bﬁ,y = bubycﬁw
Theorem B Let u € Py, v € P, and A € Py4r. Then we have b;\“,(q,t) = cﬁiﬂj, (t,q).
e Proof of Theorem A: Setting M = N =m +n in (7.8), we have
W gn, v (2, y5w) = > baPa(z,y) Pa(w)
)\EPN (7 9)
=Y > b, Pu@)P(y) Pa(w)
AEPN p€Pm,vePn
On the other hand,
I, v (@5 w) Iy, v (y; w) = Z by Pyu(z) Pu(w) Z by P, (y) Py (w)
uEPm vEPy
== Z bubVP/L(‘T)PV(y)PH(w)PV(w)
WEPm, , VEPY, (7 10)
=Y BB Y A
WEPm, vEP, AEPN

= Z Z b bl/cp,u ) ( )P)\( )

HEPm,vE€Pn AEPN
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Since Wi, N (2, y; w) = Iy, v (z;w)II, n(y; w), we obtain b,\bﬁvy = bub,,cﬁ’l,
e Proof of Theorem B: Setting M = m + n in (7.8), we have

Mo n(@y;w) = Y Pala,y)Py(w)
)\Q(Nm-kn)

. (7.11)
= Z Z bu,VPu(x)Pu(y)P)?/ (’UJ)
NEPN WEPm, vEP,
where ° denotes the operation of exchanging the parameters ¢ and ¢. On the other hand
Ly, v (@ 0) Iy (yiw) = D Pu(@)Po(w) Y Puly)Po(w)
HE(N™) vE(N™)
= Z PM(SU)Pu(y)Pﬁ/(W)Pﬁf (w) (7.12)
pC(N™), vC(N™)
= Z (cﬁjyy,)oPM(x)Py(y)PO/(w)
pCE(N™), vS(N™) N e(N™+m)
Since Iy, y(z,y;w) =117\ (2;w)ILY y(y; w), we obtain bf;u = (Cﬁijy/)o.
e Branching rule (7.4): For[l=0,1,..., we have
b/./\t,(l) ( A 11)) (1/1)\/ /) = w)\//,b (’)\’ = |M| -+ l), (713)

which proves the branching rule (7.4).

e Comment of the evaluation of by: In view of the compatibility (6.9) of Py(z) with respect
to the number of variables, Macdonald [1] introduces Macdonald functions Py(z) = Px(z|q,t) in
infinite varialbes x = (z;);>1 = (1,22, ...). Letting M — oo and N — oo in (7.8), we have

HH tl‘zij Z b)\P)\ )

i>15>1 (ziys3q \eP (7.14)
y) =[TT[0+zw) = Z Py (2) Py (y),
i>15>1 \eP

where P denotes the set of all partitions A = (A1, Ag,...) (A1 > A2 > ---; Ay =0 for i > 1), and
P;(x) = Pyu(x|t,q). In terms of the power sums py(r) = o + 2k + ... the kernel functions IT(x;y)
and 11V (z;y) are expressed as

11—t - 1 k-l
(w:y) = exp ( N D). Wiy =ep (3 @) (715)
k=1
Denoting A = C|p1,p2, . ..] the ring of symmetric functions in infinite variables, Macdonald intro-
duces the involution wys : A — A (algebra automorphism) by
o1l —¢F
wq,t(pk) = ( 1) 1_ ¢tk Pk (k =1,2,.. ) (716)



in terms of the power sums, so that

wy (23 y)) = ITY (23 y), (7.17)

where wg,t denotes the involution w,; acting on y variables. This implies
Z bAPA(z)wl Z Py\(z)Py(y), namely bywgi(Pr)=Py. (AeP) (7.18)
AEP AEP

In Macdonald [1], the explicit formula

1—tl>‘(8)+1 ax(s) t] i+1 N >\

_ #la(s)gax(s)+1 J—i A /\+1
s 1 e 1<isizey BT Q)A A

for by is proved by a somewhat tricky argument based on the compatibility of by wq(Py) = Py
with the evaluation formula of Py(1,t,...,#" 1) in n-variables.

7.3 Tableau representation of P\(x)

We already know that the Macdonald polynomials Py(x) (A € P,) of n variables x = (x1,...,2y)
is expressed as

Py(z1,...,xp—1,2y) = Z Ua/u Pu(xl,...,mn,l)ﬂ{\/“l (7.20)

ME’PH71
nCA, A/phis.

whete the sum is taken over all partitions u € P,—1 such that g C X\ and A/u is a horizontal strip.
Note that 15/, = 0 unless A/ is a horizontal strip. Repeating this procedure, one can express

Py (x) as a sum
Ak )/A(k 1>|

Py(z) = Z H V) JAk-1) xL (7.21)
p=AO0CAD C...CA(M) =)\ k=1
over all nondecreasing sequences A(K) (k = 0,1,...,n) of partitions connecting ¢ and A by n

steps such that the skew partitions A\(*) / A*=1) are horizontal strips. This representation can be
interpreted as the sum

PA(iL‘) = Z U7 $Wt(T), Yr = H w)\(k)/)\(k—l), (7.22)
k=1

TE€SSTab,, (\)
over all semi-standard tableau of shape A. Here the coefficients 17 are expressed as

A=)y (k=1) AE=D _\ (k)

PERY : , "
s SR UNCINCEY (=g AR TINCISVCEY
Yr = )\ (k—1) (k—1)_ (k) (7.23)
. (k—1
AED 3Dy A=
1<i<j<k<n (g™ ) w o (BTN AR ONCINCEY



7.4 Macdonald-Ruijsenaars operators of row type

e g-Difference operators H H(Dl) of row type: Let R = (C[Dg(,;l), .. .,Dén)] be the commutative
ring generated by the Macdonald-Ruijsenaars g-difference operators. Then, for each symmetric
polynomial f(&) € C[£]®, € = (&,...,&,), there exists a unique g-difference operator L, € R such
that

L.Py\(z) = f(°)Pr(z) (N € Py). (7.24)
(Express f as f = F(e1,...,e,) by a polynomial of ej,...,e,. Then the operator L, is given by
L, = F(Dg(gl), e D" ).) This correspondence L, — f defines an isomorphism C[D D ), Cee Dg(gn)] 5

C[€]® of commutative C-algebras (a variation of the Harish-Chandra isomorphism).
For each [ =0,1,2,..., we define a g-difference operator H;El) by

HY) = (

HENT; |u|=l =

n

H {024/ 255 @i (7.25)

q$z/$]7 ),u q,x?

where T4y = Th'%, -+ - Ta'w... Then one can show that H;,gl) € (C[Dg(cl), e Dg(c")], and that
HOPy(z) = gi(t°¢") Pr(x) (1=0,1,2...) (7.26)

where ¢;(§) denotes the Macdonald polynomials attached to (1) of a single row.

— GLE G )un L Hn (t; ) _
gz(E)—#EN;M:l g = S Po©) (=012, (7.27)

In view of the generating function

n

11 ’fgjj =Y e (7.28)
i=1 > 1=0

of Macdonald polynomials of single rows, we introduce the generating function H,(u) = Y /2, ulH. §’).
Then we have

n
tTL Z-‘rlq)\u q)

H = Py( 7.29

x( ) )\ E n— Zq u q ( )

e Wronski relation: Note that the generating functions

n n

r (i @)oo
E(u) =Y (-1 ep(z)u” = [[(1 — zu Zgl 't =T] ((m;)) (7.30)
r=0 i=1 i=1 A0
satisfy E(u)G(u) = E(tu)G(qu). This means that e,(z) and g;(z) are related through the recurrence
relations
(-0 A-t"en(©a(§) =0 (k=1,2,...). (7.31)

r+l=k

of Wronski type. One can verify that the operators H. ( ) (1 =0,1,2,...) defined above satisfy the
Wronski relation
S (-1yra-t¢)pPHEP =0 (k=1,2,..). (7.32)
r4+l=k



From this, it follows that Hg(cl) € C[D;g;l), e ,Dg(cn)] and that Hg(gl) are diagonalized by the Macdonald

polynomials as in (7.26). (See Noumi-Sano: arXiv:2012.03135)

e Pieri formula of row type: In the same way as we obtained the Pieri formula of column type

from Dg), we can derive the Pieri formula of row type from

HO = Y T ) = S0 [T i,
=1

|~ i (]$z’/l'j§Q),ui

In fact we have

> H, (") PA(t°¢" ) = gi(F ) PA(tq") (A i € Po).

lv|=l

Since H,(t°¢*) = 0 unless (1 + v)/u is a horizontal strip, we obtain
> H(Eq") Py (') = (P Pu(tq®) (A p e Py),
lv|=l

and hence

Y H(°¢") Pusv(z) = gi(@)Puz) (A p € Py),
lv|=l

This implies that

a
gl(x)PM(x) = E P/ P)\(ﬂf), Pr/p = ’uH)\—,u(t(squ)'
a)
XA l=lul+

Since g;(z) = by Py)(z), this means that
P,

XA =+
The corresponding branching coefficients are also detemined as

b,b aub
D S Ul S 0 5
Uae =y = by Cu() = axby Hy—u(t°0")-

WPy = > g R@), g = —EH ("),

(7.33)

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)



