Introduction to Macdonald polynomials: Lecture 8

by M. Noumi [March 26, 2021]

8 Affine Hecke algebra and q-Dunkl operators

We denote by $W=\mathfrak{S}_{n}$ the symmetric group of degree n (Weyl group of type A_{n-1}), following the convention of Macdonald-Cherednik theory for general root systems. In this section, we denote by $\tau_{i}=T_{q, x_{i}}(i=1, \ldots, n)$ the q-shift operators in variables x_{i}, in order to avoid the conflict with the generators T_{i} of Hecke algebras. Setting $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$, we denote by $\mathcal{D}_{q, x}=\mathbb{C}(x)\left[\tau^{ \pm 1}\right]$ the algebra of q-difference operators in x variables with rational coefficients, and by $\mathcal{D}_{q, x}[W]$ the algebra of all operators of the form,

$$
\begin{equation*}
A_{x}=\sum_{\mu \in P, w \in W} a_{\mu, w}(x) \tau^{\mu} w \quad(\text { finite sum }), \quad a_{\mu, w}(x) \in \mathbb{C}(x) \quad(\mu \in P, w \in W) \tag{8.1}
\end{equation*}
$$

called the q-difference-reflection operators, where $P=\mathbb{Z}^{n}$ (weight lattice of GL_{n}), and for $\mu=$ $\left(\mu_{1}, \ldots, \mu_{n}\right) \in P, \tau^{\mu}=\tau_{1}^{\mu_{1}} \cdots \tau_{n}^{\mu_{n}}$. Through their natural action on rational functions, we regard $\mathcal{D}_{q, x}[W]$ as a subalgebra of $\operatorname{End}_{\mathbb{C}}(\mathbb{C}(x))$.

8.1 Affine Weyl groups and affine Hecke algebras

We denote by $\tau^{P}=\left\{\tau^{\mu} \mid \mu \in P\right\}$ the group of q-shift operators (translations) by P, and define the extended affine Weyl group \widetilde{W} by

$$
\begin{equation*}
\widetilde{W}=\tau^{P} \rtimes W=\left\{\tau^{\mu} w \mid \mu \in P, w \in W\right\} ; \quad w \tau^{\mu}=\tau^{w \cdot \mu} w \quad(\mu \in P, w \in W) \tag{8.2}
\end{equation*}
$$

which is an extension of the standard affine Weyl group $W^{\text {aff }}=\tau^{Q} \rtimes W$ with the group of translations by $Q=\left\{\mu \in P| | \mu \mid=\mu_{1}+\cdots+\mu_{n}\right\}$ (root lattice). Denoting the canonical basis of P by $\varepsilon_{i}(i=$ $1, \ldots, n$), we use the notation $\alpha_{1}=\varepsilon_{1}-\varepsilon_{2}, \alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, \ldots, \alpha_{n-1}=\varepsilon_{n-1}-\varepsilon_{n}$ of the simple roots, so that $Q=\mathbb{Z} \alpha_{1} \oplus \cdots \oplus \mathbb{Z} \alpha_{n-1} \subset P$. The idea of (affine) Hecke algebras is to construct t-deformations of the groups

$$
\begin{equation*}
W=\mathfrak{S}_{n} \subset W^{\mathrm{aff}}=\tau^{Q} \rtimes W \subset \widetilde{W}=\tau^{P} \rtimes W \subset \mathcal{D}_{q, x}[W] \tag{8.3}
\end{equation*}
$$

within the algebra $\mathcal{D}_{q, x}[W]$ of q-difference-reflection operators. Note that the group-ring of \widetilde{W}

$$
\begin{equation*}
\mathbb{C}[\widetilde{W}]=\mathbb{C}\left[\tau^{P} \rtimes W\right]=\mathbb{C}\left[\tau^{ \pm 1}\right][W] \subset \mathcal{D}_{q, x}[W] \tag{8.4}
\end{equation*}
$$

is the ring of q-difference-reflection operators with constant coefficients.
We denote by

$$
\begin{equation*}
s_{1}=(12), s_{2}=(23), \ldots, s_{n-1}=(n-1, n) \tag{8.5}
\end{equation*}
$$

the adjacent transpositions in $W=\mathfrak{S}_{n}$ (simple reflections) so that $W=\left\langle s_{1}, \ldots, s_{n-1}\right\rangle$. Note that s_{i} acts on the x variables by exchanging x_{i} and x_{i+1}. Besides these generators, we use the affine reflection s_{0} and the diagram automorphism ω by setting

$$
\begin{equation*}
s_{0}=\tau_{1}^{-1} \tau_{n}(1, n) \in W^{\mathrm{aff}}, \quad \omega=\tau_{n}(n-1, \ldots, 1)=\tau_{n} s_{n-1} \cdots s_{1} \in \widetilde{W} \tag{8.6}
\end{equation*}
$$

where ($1, n$) stands for the transposition of 1 and n , and $(n, n-1, \ldots, 1)$ for the cyclic permutation $n \rightarrow n-1 \rightarrow \cdots \rightarrow 1 \rightarrow n$. These s_{0} and ω are characterized as field automorphisms of $\mathbb{C}(x)$ acting on the x-variables by

$$
\begin{align*}
& s_{0}\left(x_{1}\right)=q x_{n}, \quad s_{0}\left(x_{i}\right)=x_{i} \quad(i=2, \ldots, n-1), \quad s_{0}\left(x_{n}\right)=q^{-1} x_{1} \\
& \omega\left(x_{1}\right)=q x_{n}, \quad \omega\left(x_{2}\right)=x_{1}, \quad \ldots, \quad \omega\left(x_{n}\right)=x_{n-1} . \tag{8.7}
\end{align*}
$$

If fact, it is known that the three groups in (8.3) are generate by these operators as

$$
\begin{equation*}
W=\left\langle s_{1}, \ldots, s_{n-1}\right\rangle \subset W^{\mathrm{aff}}=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle \subset \widetilde{W}=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}, \omega\right\rangle \tag{8.8}
\end{equation*}
$$

with the fundamental relations:

$$
\begin{align*}
& \text { (0) } s_{i}^{2}=1 \quad(i=0,1, \ldots, n-1) \\
& \text { (1) } \tag{8.9}\\
& s_{i} s_{j}=s_{j} s_{i} \quad(j \not \equiv i, i \pm 1 \quad \bmod n) \\
& \text { (2) } s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} \quad(j=i \pm 1 \quad \bmod n) \\
& \text { (3) }
\end{align*} \omega s_{i}=s_{i-1} \omega \quad(i=1, \ldots, n-1), \quad \omega s_{0}=s_{n-1} \omega . ~ l
$$

In terms of these generators, the q-shift operators $\tau_{i}\left(=T_{q, x_{i}}\right)$ are expressed as follows:

$$
\begin{equation*}
\tau_{1}=s_{1} \cdots s_{n-1} \omega, \quad \tau_{2}=s_{2} \cdots s_{n-1} \omega s_{1}, \quad \cdots, \quad \tau_{n}=\omega s_{1} \cdots s_{n-1} . \tag{8.10}
\end{equation*}
$$

We now defines the q-difference-reflection operators $T_{i}(i=0,1 \ldots, n-1)$ by

$$
\begin{equation*}
T_{i}=t^{-\frac{1}{2}} \frac{1-t x_{i} / x_{i+1}}{1-x_{i} / x_{i+1}}\left(s_{i}-1\right)+t^{\frac{1}{2}}=t^{-\frac{1}{2}} \frac{1-t x_{i} / x_{i+1}}{1-x_{i} / x_{i+1}} s_{i}+\frac{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}{1-x_{i} / x_{i+1}} \tag{8.11}
\end{equation*}
$$

for $i=1, \ldots, n-1$ and

$$
\begin{equation*}
T_{0}=t^{-\frac{1}{2}} \frac{1-t q x_{n} / x_{i}}{1-q x_{n} / x_{1}}\left(s_{0}-1\right)+t^{\frac{1}{2}}=t^{-\frac{1}{2}} \frac{1-t q x_{n} / x_{i}}{1-q x_{n} / x_{1}} s_{0}+\frac{t^{\frac{1}{2}}-t^{-\frac{1}{2}}}{1-q x_{n} / x_{1}} \tag{8.12}
\end{equation*}
$$

Note that $x_{i} / x_{i+1}=x^{\alpha_{i}}(i=1, \ldots, n-1)$ correspond to the simple roots, and $q x_{n} / x_{1}=x^{\alpha_{0}}$ to the simple affine root $\alpha_{0}=\delta-\varepsilon_{1}+\varepsilon_{n}$ with the convention $x^{\delta}=q$.
Theorem A: These operators $T_{i}(i=0,1, \ldots, n-1)$ in $\mathcal{D}_{q, x}[W]$ together with ω satisfy the following relations.

$$
\begin{align*}
& \text { (0) } \\
& \left(T_{i}-t^{\frac{1}{2}}\right)\left(T_{i}+t^{-\frac{1}{2}}\right)=1 \quad(i=0,1, \ldots, n-1) \tag{8.13}\\
& \text { (1) } \\
& T_{i} T_{j}=T_{j} T_{i} \quad(j \not \equiv i, i \pm 1 \quad \bmod n) \\
& \text { (2) } T_{i} T_{j} T_{i}=T_{j} T_{i} T_{j} \quad(j=i \pm 1 \quad \bmod n) \\
& \text { (3) }
\end{align*} \omega T_{i}=T_{i-1} \omega \quad(i=1, \ldots, n-1) . \quad \omega T_{0}=T_{n-1} \omega . ~ l
$$

In this way, we obtain t-deformations of the group-rings of $W, W^{\text {aff }}, \widetilde{W}$ in $\mathcal{D}_{q, x}[W]$ as follows:

$$
\begin{align*}
\mathbb{C}[W] & =\mathbb{C}\left\langle s_{1}, \ldots, s_{n-1}\right\rangle & H[W] & =\mathbb{C}\left\langle T_{1}, \ldots, T_{n-1}\right\rangle \\
& \cap & \cap & \cap \\
\mathbb{C}\left[W^{\text {aff }}\right] & =\mathbb{C}\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle & H\left[W^{\text {aff }}\right] & =\mathbb{C}\left\langle T_{0}, T_{1}, \ldots, T_{n-1}\right\rangle \tag{8.14}\\
& \cap & \cap & \cap \\
\mathbb{C}[\widetilde{W}] & =\mathbb{C}\left\langle s_{0}, s_{1}, \ldots, s_{n-1}, \omega^{ \pm 1}\right\rangle & H[\widetilde{W}] & =\mathbb{C}\left\langle T_{0}, T_{1}, \ldots, T_{n-1}, \omega^{ \pm 1}\right\rangle
\end{align*}
$$

Here $H(W)$ denotes the Hecke algebra associate with the Weyl group $W ; H\left(W^{\text {aff }}\right)$ and $H(\widetilde{W})$ are called (extended) affine Hecke algebras. Note that the fundamental relations $s_{i}^{2}=1$ are replaced by the quadratic relations $\left(T_{i}-t^{\frac{1}{2}}\right)\left(T_{i}+t^{-\frac{1}{2}}\right)=0$, and hence $T_{i}^{-1}=T_{i}-\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)$.

$8.2 q$-Dunkl operators

In view of the two expressions

$$
\begin{equation*}
\mathbb{C}[\widetilde{W}]=\mathbb{C}\left\langle s_{0}, s_{1}, \ldots, s_{n-1}, \omega^{ \pm 1}\right\rangle=\mathbb{C}\left[\tau^{ \pm 1}\right][W] \tag{8.15}
\end{equation*}
$$

of the group-ring of \widetilde{W}, it would be natural to ask what are the "translations" in $H(\widetilde{W})$. Imitating the formulas (8.10) for $\tau_{i}(i=1, \ldots, n)$, we define the q-Dunkl operators (or Cherednik operators) Y_{1}, \ldots, Y_{n} by

$$
\begin{equation*}
Y_{1}=T_{1} \cdots T_{n-1} \omega, \quad Y_{2}=T_{2} \cdots T_{n-1} \omega T_{1}^{-1}, \quad \ldots, \quad Y_{n}=\omega T_{1}^{-1} \cdots T_{n-1}^{-1} \in H(\widetilde{W}) \tag{8.16}
\end{equation*}
$$

Notice here that T_{i} are replaced by their inverses T_{i}^{-1} when they are located to the right side of ω. Theorem B: The q-Dunkl operators $Y_{1}, \ldots, Y_{n} \in H(\widetilde{W})$ commute with each other. Furthermore, they generate a commutative subalgebra $\mathbb{C}\left[Y^{ \pm 1}\right]=\mathbb{C}\left[Y_{1}^{ \pm 1}, \ldots, Y_{n}^{ \pm 1}\right] \subset H(\widetilde{W})$ isomorphic to the algebra of Laurent polynomials in n variables.
One can directly verify the commutativity $Y_{i} Y_{j}=Y_{j} Y_{i}(i, j \in\{1, \ldots, n\})$ by the definition (8.16) and the fundamental relations of T_{i}, ω in (8.13). With this "translation subalgebra" of q-Dunkl operators, the extended affine Heck algebra is expressed in the form

$$
\begin{equation*}
H(\widetilde{W})=\mathbb{C}\left[Y^{ \pm 1}\right] \otimes H(W)=\bigoplus_{w \in W} \mathbb{C}\left[Y^{ \pm 1}\right] T_{w} \tag{8.17}
\end{equation*}
$$

where, for each $w \in W, T_{w}$ is the element defined as $T_{w}=T_{s_{i_{1}}} \cdots T_{s_{i_{l}}}$ in terms of a reduced (shortest) expression $w=s_{i_{1}} \cdots s_{i_{l}}$ of w; this definition does not depend on the choice of the reduced expression (Lemma of Iwahori-Matsumoto). From this, we see that one can take T_{1}, \ldots, T_{n-1} and the q-Dunkl operators $Y_{1}^{ \pm 1}, \ldots, Y_{n}^{ \pm 1}$ for the generators of the extended affine Heck algebra:

$$
\begin{equation*}
H(\widetilde{W})=\mathbb{C}\left\langle T_{0}, T_{1}, \ldots, T_{n-1} ; \omega^{ \pm 1}\right\rangle=\mathbb{C}\left\langle T_{1}, \ldots, T_{n} ; Y_{1}^{ \pm 1}, \ldots Y_{n}^{ \pm 1}\right\rangle \tag{8.18}
\end{equation*}
$$

Theorem C (Bernstein): The center $\mathcal{Z} H(\widetilde{W})$ of the extended affine Hecke algebra is precisely the W-invariant part of the commutative algebra of q-Dunkl operators:

$$
\begin{equation*}
\mathcal{Z} H(\widetilde{W})=\mathbb{C}\left[Y^{ \pm 1}\right]^{W}=\left\{f(Y) \mid f(\xi) \in \mathbb{C}\left[\xi^{ \pm 1}\right]^{W}\right\}, \quad \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \tag{8.19}
\end{equation*}
$$

8.3 From q-Dunkl operators to Macdonald-Ruijsenaars operators

Let $A_{x} \in \mathcal{D}_{q, x}[W]$ be a q-difference-reflection operator in the form

$$
\begin{equation*}
A_{x}=\sum_{\mu \in P, w \in W} a_{\mu, w}(x) \tau^{\mu} w \quad(\text { finite sum }), \quad a_{\mu, w}(x) \in \mathbb{C}(x) \quad(\mu \in P, w \in W) \tag{8.20}
\end{equation*}
$$

If $\varphi(x)$ is a symmetric (W-invariant) function, A_{x} acts on $\varphi(x)$ as a q-difference operator: since $w \varphi(x)=\varphi(x)(w \in W)$, we have

$$
\begin{equation*}
A_{x} \varphi(x)=\sum_{\mu \in P, w \in W} a_{\mu, w}(x) \tau^{\mu} \varphi(x)=L_{x} \varphi(x), \quad L_{x}=\sum_{\mu \in P, w \in W} a_{\mu, w}(x) \tau^{\mu} . \tag{8.21}
\end{equation*}
$$

In order to describe the action of q-Dunkl operators, we set

$$
\begin{equation*}
c(z)=t^{-\frac{1}{2}} \frac{1-t z}{1-z}, \quad d_{ \pm}(z)=t^{ \pm \frac{1}{2}}-c(z) \tag{8.22}
\end{equation*}
$$

so that

$$
\begin{equation*}
T_{i}^{ \pm 1}=c\left(x_{i} / x_{i+1}\right) s_{i}+d_{ \pm}\left(x_{i} / x_{i+1}\right) \quad(i=1, \ldots, n-1), \quad T_{0}^{ \pm 1}=c\left(q x_{n} / x_{q}\right) s_{i}+d_{ \pm}\left(q x_{n} / x_{1}\right) . \tag{8.23}
\end{equation*}
$$

Note also that $c(z)$ satisfies $c(z)+c\left(z^{-1}\right)=t^{\frac{1}{2}}+t^{-\frac{1}{2}}$.

- Example ($\boldsymbol{n}=\mathbf{2}$): In this case, we have two q-Dunkl operators.

$$
\begin{align*}
& Y_{1}=T_{1} \omega=c\left(x_{1} / x_{2}\right) s_{1} \omega+d_{+}\left(x_{1} / x_{2}\right) \omega=c\left(x_{1} / x_{2}\right) \tau_{1}+d_{+}\left(x_{1} / x_{2}\right) \tau_{2} s_{1} \\
& Y_{2}=\omega T_{1}^{-1}=\omega c\left(x_{1} / x_{2}\right) s_{1}+\omega d_{-}\left(x_{1} / x_{2}\right)=c\left(q x_{2} / x_{1}\right) \tau_{2}+d_{-}\left(q x_{2} / x_{1}\right) \tau_{2} s_{1} \tag{8.24}
\end{align*}
$$

Then,

$$
\begin{align*}
Y_{1}+Y_{2} & =c\left(x_{1} / x_{2}\right) \tau_{1}+c\left(q x_{2} / x_{1}\right) \tau_{2}+\left(d_{-}\left(q x_{2} / x_{1}\right)+d_{+} d_{+}\left(x_{1} / x_{2}\right)\right) \tau_{2} s_{1} \\
Y_{2} Y_{1} & =\omega^{2}=\tau_{1} \tau_{2} \tag{8.25}
\end{align*}
$$

Since

$$
\begin{equation*}
c\left(q x_{2} / x_{1}\right)+d_{-}\left(q x_{2} / x_{2}\right)+d_{+}\left(x_{1} / x_{2}\right)=t^{-\frac{1}{2}}+t^{-\frac{1}{2}}-c\left(x_{1} / x_{2}\right)=c\left(x_{2} / x_{1}\right), \tag{8.26}
\end{equation*}
$$

for any symmetric function $\varphi(x)=\varphi\left(x_{1}, x_{2}\right)$, we have

$$
\begin{align*}
\left(Y_{1}+Y_{2}\right) \varphi(x) & =\left(c\left(x_{1} / x_{2}\right) \tau_{1}+c\left(x_{2} / x_{1}\right) \tau_{2}\right) \varphi(x) \\
& =t^{-\frac{1}{2}}\left(\frac{1-t x_{1} / x_{2}}{1-x_{1} / x_{2}} \tau_{1}+\frac{1-t x_{2} / x_{1}}{1-x_{2} / x_{1}} \tau_{2}\right) \varphi(x) \tag{8.27}\\
& =t^{-\frac{1}{2}} D_{x}^{(1)} \varphi(x) \\
\left(Y_{2} Y_{1}\right) \varphi(x) & =\tau_{1} \tau_{2} \varphi(x)=t^{-1} D_{x}^{(2)} \varphi(x),
\end{align*}
$$

where $D_{x}^{(1)}, D_{x}^{(2)}$ are the Macdonald-Ruijsenaars operators in two variables.
For each $f(\xi) \in \mathbb{C}\left[\xi^{ \pm 1}\right]$, there exists a unique q-difference operator $L_{x}^{f} \in \mathcal{D}_{q, x}$ such that

$$
\begin{equation*}
f(Y) \varphi(x)=L_{x}^{f} \varphi(x) \tag{8.28}
\end{equation*}
$$

for any symmetric function $\varphi(x)$; express $A_{x}=f(Y)$ in the form (8.20), and take $L_{x}=L_{x}^{f}$ as in (8.21).

Theorem D: For any $f \in \mathbb{C}\left[\xi^{ \pm 1}\right]^{W}, L_{x}^{f} \in \mathcal{D}_{q, x}$ is a W-invariant q-difference operator. Furthermore, $L_{x}^{f}\left(f \in \mathbb{C}\left[\xi^{ \pm 1}\right]^{W}\right)$ commute with each other: $L_{x}^{f} L_{x}^{g}=L_{x}^{g} L_{x}^{f}$ for any $f, g \in \mathbb{C}\left[\xi^{ \pm 1}\right]^{W}$.
Let's take the elementary symmetric functions $e_{r}(\xi) \in \mathbb{C}\left[\xi^{ \pm 1}\right]^{W}(r=1, \ldots, n)$ for $f(\xi)$. Then, one can show that the q-Dunkl operators

$$
\begin{equation*}
e_{r}(Y)=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq n} Y_{i_{1}} \cdots Y_{i_{r}} \tag{8.29}
\end{equation*}
$$

induce a commuting family of W-invariant q-difference operator $L_{x}^{e_{r}}$ of the form

$$
\begin{equation*}
L_{x}^{e_{r}}=\left(\prod_{\substack{1 \leq i \leq r \\ r+1 \leq j \leq n}} t^{-\frac{1}{2}} \frac{1-t x_{i} / x_{j}}{1-x_{i} / x_{j}}\right) \tau_{1} \cdots \tau_{r}+\cdots \tag{8.30}
\end{equation*}
$$

This implies that $L_{x}^{e_{r}}$ are constant multiples of $D_{x}^{(r)}$ respectively,

$$
\begin{equation*}
L_{x}^{e_{r}}=t^{-\frac{1}{2}(n-1) r} D_{x}^{(r)} \quad(r=0,1, \ldots, n), \tag{8.31}
\end{equation*}
$$

and also that they are diagonalized by the Macdonald polynomials:

$$
\begin{equation*}
L_{x}^{e_{r}} P_{\lambda}(x)=e_{r}\left(t^{\rho} q^{\lambda}\right) P_{\lambda}(x) \quad\left(\lambda \in \mathcal{P}_{n}\right) \tag{8.32}
\end{equation*}
$$

where $\rho=\frac{1}{2} \sum_{i=1}(n-2 i+1) \varepsilon_{i}=\delta-\frac{1}{2}(n-1)\left(1^{n}\right)$.
To summarize: There is an isomorphism of algebras

$$
\begin{equation*}
\mathcal{Z} H(\widetilde{W})=\mathbb{C}\left[Y^{ \pm 1}\right]^{W} \xrightarrow{\sim} \mathbb{C}\left[D_{1}^{(1)}, \ldots, D_{x}^{(n)},\left(D_{x}^{(n)}\right)^{-1}\right]: \quad f(Y) \rightarrow L_{x}^{f} \tag{8.33}
\end{equation*}
$$

from the algebra of symmetric q-Dunkl operators to the algebra of Macdonald-Ruijsenaars operators. Furthermore, for all $f(\xi) \in \mathbb{C}\left[\xi^{ \pm 1}\right]^{W}$, we have

$$
\begin{equation*}
f(Y) P_{\lambda}(x)=L_{x}^{f} P_{\lambda}(x)=f\left(t^{\rho} q^{\lambda}\right) P_{\lambda}(x) \quad\left(\lambda \in \mathcal{P}_{n}\right) \tag{8.34}
\end{equation*}
$$

One can directly check that the operators $T_{i}\left(i=0.1, \ldots, n-1\right.$ stabilize the algebra $\mathbb{C}\left[x^{ \pm 1}\right]$ of Laurent polynomials in $x=\left(x_{1}, \ldots, x_{n}\right)$. Hence $\mathbb{C}\left[x^{ \pm 1}\right]$ can be regarded as a left $H(\widetilde{W})$-module. It would be natural to anticipate that the commutative subalgebra $\mathbb{C}\left[Y^{ \pm 1}\right]$ of $H(\widetilde{W})$ can be simultaneously diagonalized on $\mathbb{C}\left[x^{ \pm 1}\right]$. In fact, the q-Dunkl operators have common eigenfunctions $E_{\mu}(x)$ $(\mu \in P)$, called the nonsymmetric Macdonald polynomials.

In the following, we denote by

$$
\begin{equation*}
P_{+}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in P \mid \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}\right\}=\mathbb{N} \varpi_{1} \oplus \cdots \oplus \mathbb{N} \varpi_{n-1} \oplus \mathbb{Z} \varpi_{n}, \tag{8.35}
\end{equation*}
$$

the cone of dominant integral weights, where, for $r=1, \ldots, n, \varpi_{r}=\left(1^{r}\right)=\varepsilon_{1}+\cdots+\varepsilon_{r}$ (fundamental weights). Then, for each $\mu \in P$, there exists a unique $\mu_{+} \in P_{+}$in the W-orbit of μ : $W \cdot \mu \cap P_{+}=$ $\left\{\mu_{+}\right\}$. For the diagonalization of the q-Dunkl operators, we make use of the partial order

$$
\begin{equation*}
\mu \preceq \nu \quad \Longleftrightarrow \quad \mu_{+}<\nu_{+} \quad \text { or } \quad\left(\mu_{+}=\nu_{+} \text {and } \mu \leq \nu\right) . \tag{8.36}
\end{equation*}
$$

defined by applying the dominance order in two steps.
Theorem E: Assume that $t \in \mathbb{C}^{*}$ is generic. Then there exists a unique Laurent polynomial $E_{\mu}(x) \in \mathbb{C}\left[x^{ \pm 1}\right]$ such that
(1) $f(Y) E_{\mu}(x)=f\left(t^{\rho_{\mu}} q^{\mu}\right) E_{\mu}(x)$ for all $f(\xi) \in \mathbb{C}\left[\xi^{ \pm 1}\right]$,
(2) $E_{\mu}(x)=x^{\mu}+$ (lower order terms with respect to $\left.\preceq\right)$.

Then, regarded as a $H(\widetilde{W})$-module, the algebra of Laurent polynomials $\mathbb{C}\left[x^{ \pm 1}\right]$ is decomposed into irreducible components as follows:

$$
\begin{equation*}
\mathbb{C}\left[x^{ \pm 1}\right]=\bigoplus_{\lambda \in P_{+}} V(\lambda), \quad V(\lambda)=\bigoplus_{\mu \in W \cdot \lambda} \mathbb{C} E_{\mu}(x) . \tag{8.37}
\end{equation*}
$$

Furthermore, for each $\lambda \in P_{+}$, we have

$$
\begin{equation*}
V(\lambda)^{H(W)}=\left\{v \in V(\lambda) \left\lvert\, T_{i} v=t^{\frac{1}{2}} v \quad(i=1, \ldots, n-1)\right.\right\}=\mathbb{C} P_{\lambda}(x) \tag{8.38}
\end{equation*}
$$

where $P_{\lambda}(x)$ is the Macdonald (Laurent) polynomial attached λ; if we take $l \in \mathbb{Z}$ and $\mu \in \mathcal{P}_{n}$ such that $\lambda=\mu+\left(l^{n}\right)$, then $P_{\lambda}(x)$ is expressed as $P_{\lambda}(x)=\left(x_{1} \ldots x_{n}\right)^{l} P_{\mu}(x)$ in terms of the Macdonald polynomial $P_{\mu}(x)$ attached to a partition $\mu \in \mathcal{P}_{n}$.

8.4 Double affine Hecke algebra and Cherednik involution

The algebra $\mathcal{D}_{q, x}[W]$ contains the subalgebra

$$
\begin{equation*}
\mathbb{C}\left[x^{ \pm 1} ; \tau^{ \pm}\right][W]=\mathbb{C}\left\langle x_{1}^{ \pm 1}, \ldots, x^{ \pm n} ; s_{1}, \ldots, s_{n-1} ; \tau_{1}^{ \pm 1}, \ldots, \tau_{n}^{ \pm 1}\right\rangle \subset \mathcal{D}_{q, x}[W] \tag{8.39}
\end{equation*}
$$

of q-difference-reflection operators with Laurent polynomial coefficients. This algebra can be thought of as a q-version of $\mathbb{C}\left[x ; \partial_{x}\right][W]$ (crossed product of the Heisenberg algebra and the Weyl group.) One can consider the t-deformation of this algebra

$$
\begin{align*}
D H(\widetilde{W}) & =\mathbb{C}\left[x^{ \pm 1}\right] \otimes H(W) \otimes \mathbb{C}\left[Y^{ \pm 1}\right] \tag{8.40}\\
& =\mathbb{C}\left\langle x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1} ; T_{1}, \ldots, T_{n-1} ; Y_{1}^{ \pm 1}, \ldots, Y_{n}^{n-1}\right\rangle \subset \mathcal{D}_{q, x}[W],
\end{align*}
$$

called the double affine Hecke algebra. This algebra consists of all operators of the form

$$
\begin{equation*}
A=\sum_{\mu, \nu \in P ; w \in W} a_{\mu, w, \nu} x^{\mu} T_{w} Y^{\nu} \quad \text { (finite sum) } \quad\left(a_{\mu, w, \nu} \in \mathbb{C}\right) . \tag{8.41}
\end{equation*}
$$

Also, commutation relations between T_{i} and x_{j}, Y_{j} are given by

$$
\begin{equation*}
T_{i} x_{i} T_{i}=x_{i+1} \quad(i=1, \ldots, n-1), \quad T_{i} x_{j}=x_{j} T_{i} \quad(j \neq i, i+1) . \tag{8.42}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{i} Y_{i+1} T_{i}=Y_{i} \quad(i=1, \ldots, n-1), \quad T_{i} Y_{j}=Y_{j} T_{i} \quad(j \neq i, i+1) \tag{8.43}
\end{equation*}
$$

Theorem \mathbf{F} (Cherednik): There exists a unique involutive anti-homomorphism $\phi: D H(\widetilde{W}) \rightarrow$ $D H(\widetilde{W})$ such that

$$
\begin{equation*}
\phi\left(x_{i}\right)=Y^{-i}, \phi\left(Y_{i}\right)=x_{i}^{-1}(i=1, \ldots, n), \quad \phi\left(T_{i}\right)=T_{i} \quad(i=1, \ldots, n-1) . \tag{8.44}
\end{equation*}
$$

This anti-involution ϕ is called the Cherednik involution $\left(\phi(a b)=\phi(b) \phi(a), \phi^{2}=1\right)$.
We define the expectation value $\rangle: D H(\widetilde{W}) \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\langle A\rangle=\left.A(1)\right|_{x=t^{-\rho}}=\sum_{\mu, \nu \in P ; w \in W} a_{\mu, w, \nu} t^{-\langle\rho, \mu\rangle} t^{\frac{1}{2} \ell(w)} t^{\langle\rho, \nu\rangle} \tag{8.45}
\end{equation*}
$$

where $\ell(w)$ the length of $w(=$ the number of pairs $(i, j)(1 \leq i<j \leq n)$ such that $w(i)>w(j))$. We also define a scalar product (bilinear form)

$$
\begin{equation*}
\langle,\rangle: \quad D H(\widetilde{W}) \times D H(\widetilde{W}) \rightarrow \mathbb{C} \tag{8.46}
\end{equation*}
$$

by

$$
\begin{equation*}
\langle A, B\rangle=\langle\phi(A) B\rangle \in \mathbb{C} \quad(A, B \in D H(\widetilde{W}) \tag{8.47}
\end{equation*}
$$

By the definition of the Cherednik involution, we have

$$
\begin{equation*}
\langle\phi(A)\rangle=\langle A\rangle, \quad\langle A, B\rangle=\langle B, A\rangle \tag{8.48}
\end{equation*}
$$

(This bilinear form is a variation of Fisher's scalar product.)
We apply formula (8.48) to Macdonald polynomials $A=P_{\lambda}(x)$ and $B=P_{\mu}(x) \quad\left(\lambda, \nu \in P_{+}\right)$.

$$
\begin{align*}
\left\langle P_{\lambda}(x), P_{\mu}(x)\right\rangle & =\left\langle\phi\left(P_{\lambda}(x)\right) P_{\mu}(x)\right\rangle=\left\langle P_{\lambda}\left(Y^{-1}\right) P_{\mu}(x)\right\rangle \tag{8.49}\\
& =\left\langle P_{\lambda}\left(t^{-\rho} q^{-\mu}\right) P_{\mu}(x)\right\rangle=P_{\lambda}\left(t^{-\rho} q^{-\mu}\right) P_{\mu}\left(t^{-\rho}\right)
\end{align*}
$$

Since $\left\langle P_{\lambda}(x), P_{\mu}(x)\right\rangle=\left\langle P_{\mu}(x), P_{\lambda}(x)\right\rangle$, we have

$$
\begin{equation*}
P_{\lambda}\left(t^{-\rho} q^{-\mu}\right) P_{\mu}\left(t^{-\rho}\right)=P_{\mu}\left(t^{-\rho} q^{-\lambda}\right) P_{\lambda}\left(t^{-\rho}\right) \quad\left(\lambda, \mu \in P_{+}\right) \tag{8.50}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{P_{\lambda}\left(t^{-\rho} q^{-\mu}\right)}{P_{\lambda}\left(t^{-\rho}\right)}=\frac{P_{\mu}\left(t^{-\rho} q^{-\lambda}\right)}{P_{\mu}\left(t^{-\rho}\right)} \tag{8.51}
\end{equation*}
$$

By the property $P_{\lambda}(x ; q, t)=P_{\lambda}\left(x ; q^{-1}, t^{-1}\right)$ of Macdonald polynomials, from (8.51) we obtain

$$
\begin{equation*}
\frac{P_{\lambda}\left(t^{\rho} q^{\mu}\right)}{P_{\lambda}\left(t^{\rho}\right)}=\frac{P_{\mu}\left(t^{\rho} q^{\lambda}\right)}{P_{\mu}\left(t^{\rho}\right)} \quad\left(\lambda, \mu \in P_{+}\right) \tag{8.52}
\end{equation*}
$$

Since $\rho=\delta-\frac{1}{2}(n-1)\left(1^{n}\right)$, this formula is identical to the self-duality we discussed in Section 5.

