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8 Affine Hecke algebra and q-Dunkl operators

We denote by W = Sn the symmetric group of degree n (Weyl group of type An−1), following the
convention of Macdonald-Cherednik theory for general root systems. In this section, we denote by
τi = Tq,xi (i = 1, . . . , n) the q-shift operators in variables xi, in order to avoid the conflict with
the generators Ti of Hecke algebras. Setting τ = (τ1, . . . , τn), we denote by Dq,x = C(x)[τ±1] the
algebra of q-difference operators in x variables with rational coefficients, and by Dq,x[W ] the algebra
of all operators of the form,

Ax =
∑

µ∈P,w∈W
aµ,w(x) τ

µw (finite sum), aµ,w(x) ∈ C(x) (µ ∈ P, w ∈ W ), (8.1)

called the q-difference-reflection operators, where P = Zn (weight lattice of GLn), and for µ =
(µ1, . . . , µn) ∈ P , τµ = τµ1

1 · · · τµn
n . Through their natural action on rational functions, we regard

Dq,x[W ] as a subalgebra of EndC(C(x)).

8.1 Affine Weyl groups and affine Hecke algebras

We denote by τP = {τµ | µ ∈ P} the group of q-shift operators (translations) by P , and define the

extended affine Weyl group W̃ by

W̃ = τP⋊W = {τµw | µ ∈ P,w ∈ W} ; wτµ = τw.µw (µ ∈ P, w ∈ W ), (8.2)

which is an extension of the standard affine Weyl groupW aff = τQ⋊W with the group of translations
by Q = {µ ∈ P | |µ| = µ1 + · · ·+ µn} (root lattice). Denoting the canonical basis of P by εi (i =
1, . . . , n), we use the notation α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn of the simple
roots, so that Q = Zα1 ⊕ · · · ⊕ Zαn−1 ⊂ P . The idea of (affine) Hecke algebras is to construct
t-deformations of the groups

W = Sn ⊂ W aff = τQ⋊W ⊂ W̃ = τP⋊W ⊂ Dq,x[W ] (8.3)

within the algebra Dq,x[W ] of q-difference-reflection operators. Note that the group-ring of W̃

C[W̃ ] = C[τP⋊W ] = C[τ±1][W ] ⊂ Dq,x[W ] (8.4)

is the ring of q-difference-reflection operators with constant coefficients.
We denote by

s1 = (12), s2 = (23), . . . , sn−1 = (n− 1, n) (8.5)
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the adjacent transpositions in W = Sn (simple reflections) so that W =
〈
s1, . . . , sn−1

〉
. Note that

si acts on the x variables by exchanging xi and xi+1. Besides these generators, we use the affine
reflection s0 and the diagram automorphism ω by setting

s0 = τ−1
1 τn(1, n) ∈ W aff , ω = τn(n− 1, . . . , 1) = τnsn−1 · · · s1 ∈ W̃ (8.6)

where (1, n) stands for the transposition of 1 and n, and (n, n−1, . . . , 1) for the cyclic permutation
n → n−1 → · · · → 1 → n. These s0 and ω are characterized as field automorphisms of C(x) acting
on the x-variables by

s0(x1) = qxn, s0(xi) = xi (i = 2, . . . , n− 1), s0(xn) = q−1x1

ω(x1) = qxn, ω(x2) = x1, . . . , ω(xn) = xn−1.
(8.7)

If fact, it is known that the three groups in (8.3) are generate by these operators as

W =
〈
s1, . . . , sn−1

〉
⊂ W aff =

〈
s0, s1, . . . , sn−1

〉
⊂ W̃ =

〈
s0, s1, . . . , sn−1, ω

〉
, (8.8)

with the fundamental relations:

(0) s2i = 1 (i = 0, 1, . . . , n− 1)

(1) sisj = sjsi (j ̸≡ i, i± 1 mod n)

(2) sisjsi = sjsisj (j = i± 1 mod n)

(3) ωsi = si−1ω (i = 1, . . . , n− 1), ωs0 = sn−1ω.

(8.9)

In terms of these generators, the q-shift operators τi (= Tq,xi) are expressed as follows:

τ1 = s1 · · · sn−1ω, τ2 = s2 · · · sn−1ωs1, · · · , τn = ωs1 · · · sn−1. (8.10)

We now defines the q-difference-reflection operators Ti (i = 0, 1 . . . , n− 1) by

Ti = t−
1
2
1− txi/xi+1

1− xi/xi+1
(si − 1) + t

1
2 = t−

1
2
1− txi/xi+1

1− xi/xi+1
si +

t
1
2 − t−

1
2

1− xi/xi+1
(8.11)

for i = 1, . . . , n− 1 and

T0 = t−
1
2
1− tqxn/xi
1− qxn/x1

(s0 − 1) + t
1
2 = t−

1
2
1− tqxn/xi
1− qxn/x1

s0 +
t
1
2 − t−

1
2

1− qxn/x1
. (8.12)

Note that xi/xi+1 = xαi (i = 1, . . . , n − 1) correspond to the simple roots, and qxn/x1 = xα0 to
the simple affine root α0 = δ − ε1 + εn with the convention xδ = q.

Theorem A: These operators Ti (i = 0, 1, . . . , n − 1) in Dq,x[W ] together with ω satisfy the
following relations.

(0) (Ti − t
1
2 )(Ti + t−

1
2 ) = 1 (i = 0, 1, . . . , n− 1)

(1) TiTj = TjTi (j ̸≡ i, i± 1 mod n)

(2) TiTjTi = TjTiTj (j = i± 1 mod n)

(3) ωTi = Ti−1ω (i = 1, . . . , n− 1). ωT0 = Tn−1ω.

(8.13)
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In this way, we obtain t-deformations of the group-rings of W , W aff , W̃ in Dq,x[W ] as follows:

C[W ] = C
〈
s1, . . . , sn−1

〉
∩

C[W aff ] = C
〈
s0, s1, . . . , sn−1

〉
∩

C[W̃ ] = C
〈
s0, s1, . . . , sn−1, ω

±1
〉

H[W ] = C
〈
T1, . . . , Tn−1

〉
∩

H[W aff ] = C
〈
T0, T1, . . . , Tn−1

〉
∩

H[W̃ ] = C
〈
T0, T1, . . . , Tn−1, ω

±1
〉 (8.14)

Here H(W ) denotes the Hecke algebra associate with the Weyl group W ; H(W aff) and H(W̃ ) are
called (extended) affine Hecke algebras. Note that the fundamental relations s2i = 1 are replaced

by the quadratic relations (Ti − t
1
2 )(Ti + t−

1
2 ) = 0, and hence T−1

i = Ti − (t
1
2 − t−

1
2 ).

8.2 q-Dunkl operators

In view of the two expressions

C[W̃ ] = C
〈
s0, s1, . . . , sn−1, ω

±1
〉
= C[τ±1][W ] (8.15)

of the group-ring of W̃ , it would be natural to ask what are the “translations” in H(W̃ ). Imitating
the formulas (8.10) for τi (i = 1, . . . , n), we define the q-Dunkl operators (or Cherednik operators)
Y1, . . . , Yn by

Y1 = T1 · · ·Tn−1ω, Y2 = T2 · · ·Tn−1ωT
−1
1 , . . . , Yn = ωT−1

1 · · ·T−1
n−1 ∈ H(W̃ ). (8.16)

Notice here that Ti are replaced by their inverses T−1
i when they are located to the right side of ω.

Theorem B: The q-Dunkl operators Y1, . . . , Yn ∈ H(W̃ ) commute with each other. Furthermore,

they generate a commutative subalgebra C[Y ±1] = C[Y ±1
1 , . . . , Y ±1

n ] ⊂ H(W̃ ) isomorphic to the
algebra of Laurent polynomials in n variables.

One can directly verify the commutativity YiYj = YjYi (i, j ∈ {1, . . . , n}) by the definition (8.16)
and the fundamental relations of Ti, ω in (8.13). With this “translation subalgebra” of q-Dunkl
operators, the extended affine Heck algebra is expressed in the form

H(W̃ ) = C[Y ±1]⊗H(W ) =
⊕
w∈W

C[Y ±1]Tw, (8.17)

where, for each w ∈ W , Tw is the element defined as Tw = Tsi1
· · ·Tsil

in terms of a reduced
(shortest) expression w = si1 · · · sil of w; this definition does not depend on the choice of the reduced
expression (Lemma of Iwahori-Matsumoto). From this, we see that one can take T1, . . . , Tn−1 and
the q-Dunkl operators Y ±1

1 , . . . , Y ±1
n for the generators of the extended affine Heck algebra:

H(W̃ ) = C
〈
T0, T1, . . . , Tn−1;ω

±1
〉
= C

〈
T1, . . . , Tn;Y

±1
1 , . . . Y ±1

n

〉
. (8.18)

Theorem C (Bernstein): The center ZH(W̃ ) of the extended affine Hecke algebra is precisely
the W -invariant part of the commutative algebra of q-Dunkl operators:

ZH(W̃ ) = C[Y ±1]W =
{
f(Y ) | f(ξ) ∈ C[ξ±1]W

}
, ξ = (ξ1, . . . , ξn). (8.19)
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8.3 From q-Dunkl operators to Macdonald-Ruijsenaars operators

Let Ax ∈ Dq,x[W ] be a q-difference-reflection operator in the form

Ax =
∑

µ∈P,w∈W
aµ,w(x) τ

µw (finite sum), aµ,w(x) ∈ C(x) (µ ∈ P, w ∈ W ). (8.20)

If φ(x) is a symmetric (W -invariant) function, Ax acts on φ(x) as a q-difference operator: since
wφ(x) = φ(x) (w ∈ W ), we have

Axφ(x) =
∑

µ∈P,w∈W
aµ,w(x) τ

µφ(x) = Lxφ(x), Lx =
∑

µ∈P,w∈W
aµ,w(x) τ

µ. (8.21)

In order to describe the action of q-Dunkl operators, we set

c(z) = t−
1
2
1− tz

1− z
, d±(z) = t±

1
2 − c(z) (8.22)

so that

T±1
i = c(xi/xi+1)si + d±(xi/xi+1) (i = 1, . . . , n− 1), T±1

0 = c(qxn/xq)si + d±(qxn/x1). (8.23)

Note also that c(z) satisfies c(z) + c(z−1) = t
1
2 + t−

1
2 .

• Example (n = 2): In this case, we have two q-Dunkl operators.

Y1 = T1ω = c(x1/x2)s1ω + d+(x1/x2)ω = c(x1/x2)τ1 + d+(x1/x2)τ2s1

Y2 = ωT−1
1 = ωc(x1/x2)s1 + ωd−(x1/x2) = c(qx2/x1)τ2 + d−(qx2/x1)τ2s1

(8.24)

Then,

Y1 + Y2 = c(x1/x2)τ1 + c(qx2/x1)τ2 + (d−(qx2/x1) + d+d+(x1/x2))τ2s1

Y2Y1 = ω2 = τ1τ2
(8.25)

Since
c(qx2/x1) + d−(qx2/x2) + d+(x1/x2) = t−

1
2 + t−

1
2 − c(x1/x2) = c(x2/x1), (8.26)

for any symmetric function φ(x) = φ(x1, x2), we have

(Y1 + Y2)φ(x) = (c(x1/x2)τ1 + c(x2/x1)τ2)φ(x)

= t−
1
2

(1− tx1/x2
1− x1/x2

τ1 +
1− tx2/x1
1− x2/x1

τ2

)
φ(x)

= t−
1
2D(1)

x φ(x)

(Y2Y1)φ(x) = τ1τ2φ(x) = t−1D(2)
x φ(x),

(8.27)

where D
(1)
x , D

(2)
x are the Macdonald-Ruijsenaars operators in two variables.

For each f(ξ) ∈ C[ξ±1], there exists a unique q-difference operator Lf
x ∈ Dq,x such that

f(Y )φ(x) = Lf
xφ(x) (8.28)
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for any symmetric function φ(x); express Ax = f(Y ) in the form (8.20), and take Lx = Lf
x as in

(8.21).

Theorem D: For any f ∈ C[ξ±1]W , Lf
x ∈ Dq,x is aW -invariant q-difference operator. Furthermore,

Lf
x (f ∈ C[ξ±1]W ) commute with each other: Lf

xL
g
x = Lg

xL
f
x for any f, g ∈ C[ξ±1]W .

Let’s take the elementary symmetric functions er(ξ) ∈ C[ξ±1]W (r = 1, . . . , n) for f(ξ). Then, one
can show that the q-Dunkl operators

er(Y ) =
∑

1≤i1<···<ir≤n

Yi1 · · ·Yir (8.29)

induce a commuting family of W -invariant q-difference operator Ler
x of the form

Ler
x =

( ∏
1≤i≤r

r+1≤j≤n

t−
1
2
1− txi/xj
1− xi/xj

)
τ1 · · · τr + · · · . (8.30)

This implies that Ler
x are constant multiples of D

(r)
x respectively,

Ler
x = t−

1
2
(n−1)rD(r)

x (r = 0, 1, . . . , n), (8.31)

and also that they are diagonalized by the Macdonald polynomials:

Ler
x Pλ(x) = er(t

ρqλ)Pλ(x) (λ ∈ Pn), (8.32)

where ρ = 1
2

∑
i=1(n− 2i+ 1)εi = δ − 1

2(n− 1)(1n).

To summarize: There is an isomorphism of algebras

ZH(W̃ ) = C[Y ±1]W
∼→ C[D(1)

1 , . . . , D(n)
x , (D(n)

x )−1] : f(Y ) → Lf
x (8.33)

from the algebra of symmetric q-Dunkl operators to the algebra of Macdonald-Ruijsenaars opera-
tors. Furthermore, for all f(ξ) ∈ C[ξ±1]W , we have

f(Y )Pλ(x) = Lf
xPλ(x) = f(tρqλ)Pλ(x) (λ ∈ Pn). (8.34)

One can directly check that the operators Ti (i = 0.1, . . . , n− 1 stabilize the algebra C[x±1] of

Laurent polynomials in x = (x1, . . . , xn). Hence C[x±1] can be regarded as a left H(W̃ )-module. It

would be natural to anticipate that the commutative subalgebra C[Y ±1] of H(W̃ ) can be simulta-
neously diagonalized on C[x±1]. In fact, the q-Dunkl operators have common eigenfunctions Eµ(x)
(µ ∈ P ), called the nonsymmetric Macdonald polynomials.

In the following, we denote by

P+ = {λ = (λ1, . . . , λn) ∈ P | λ1 ≥ λ2 ≥ · · · ≥ λn} = Nϖ1 ⊕ · · · ⊕ Nϖn−1 ⊕ Zϖn, (8.35)

the cone of dominant integral weights, where, for r = 1, . . . , n, ϖr = (1r) = ε1+· · ·+εr (fundamental
weights). Then, for each µ ∈ P , there exists a unique µ+ ∈ P+ in the W -orbit of µ: W.µ ∩ P+ =
{µ+}. For the diagonalization of the q-Dunkl operators, we make use of the partial order

µ ⪯ ν ⇐⇒ µ+ < ν+ or (µ+ = ν+ and µ ≤ ν). (8.36)
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defined by applying the dominance order in two steps.

Theorem E: Assume that t ∈ C∗ is generic. Then there exists a unique Laurent polynomial
Eµ(x) ∈ C[x±1] such that

(1) f(Y )Eµ(x) = f(tρµqµ)Eµ(x) for all f(ξ) ∈ C[ξ±1],

(2) Eµ(x) = xµ + (lower order terms with respect to ⪯).

Then, regarded as a H(W̃ )-module, the algebra of Laurent polynomials C[x±1] is decomposed into
irreducible components as follows:

C[x±1] =
⊕
λ∈P+

V (λ), V (λ) =
⊕

µ∈W.λ

CEµ(x). (8.37)

Furthermore, for each λ ∈ P+, we have

V (λ)H(W ) =
{
v ∈ V (λ) | Tiv = t

1
2 v (i = 1, . . . , n− 1)

}
= CPλ(x), (8.38)

where Pλ(x) is the Macdonald (Laurent) polynomial attached λ; if we take l ∈ Z and µ ∈ Pn such
that λ = µ+ (ln), then Pλ(x) is expressed as Pλ(x) = (x1 . . . xn)

lPµ(x) in terms of the Macdonald
polynomial Pµ(x) attached to a partition µ ∈ Pn.

8.4 Double affine Hecke algebra and Cherednik involution

The algebra Dq,x[W ] contains the subalgebra

C[x±1; τ±][W ] = C
〈
x±1
1 , . . . , x±n; s1, . . . , sn−1; τ

±1
1 , . . . , τ±1

n

〉
⊂ Dq,x[W ] (8.39)

of q-difference-reflection operators with Laurent polynomial coefficients. This algebra can be
thought of as a q-version of C[x; ∂x][W ] (crossed product of the Heisenberg algebra and the Weyl
group.) One can consider the t-deformation of this algebra

DH(W̃ ) = C[x±1]⊗H(W )⊗ C[Y ±1]

= C
〈
x±1
1 , . . . , x±1

n ;T1, . . . , Tn−1;Y
±1
1 , . . . , Y n−1

n

〉
⊂ Dq,x[W ],

(8.40)

called the double affine Hecke algebra. This algebra consists of all operators of the form

A =
∑

µ,ν∈P ;w∈W
aµ,w,ν x

µ Tw Y ν (finite sum) (aµ,w,ν ∈ C). (8.41)

Also, commutation relations between Ti and xj , Yj are given by

TixiTi = xi+1 (i = 1, . . . , n− 1), Tixj = xjTi (j ̸= i, i+ 1). (8.42)

and
TiYi+1Ti = Yi (i = 1, . . . , n− 1), TiYj = YjTi (j ̸= i, i+ 1). (8.43)

Theorem F (Cherednik): There exists a unique involutive anti-homomorphism ϕ : DH(W̃ ) →
DH(W̃ ) such that

ϕ(xi) = Y −i, ϕ(Yi) = x−1
i (i = 1, . . . , n), ϕ(Ti) = Ti (i = 1, . . . , n− 1). (8.44)
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This anti-involution ϕ is called the Cherednik involution (ϕ(ab) = ϕ(b)ϕ(a), ϕ2 = 1).

We define the expectation value
〈 〉

: DH(W̃ ) → C by〈
A
〉
= A(1)

∣∣
x=t−ρ =

∑
µ,ν∈P ;w∈W

aµ,w,νt
−⟨ρ,µ⟩t

1
2
ℓ(w)t⟨ρ,ν⟩, (8.45)

where ℓ(w) the length of w (= the number of pairs (i, j) (1 ≤ i < j ≤ n) such that w(i) > w(j)).
We also define a scalar product (bilinear form)〈

,
〉
: DH(W̃ )×DH(W̃ ) → C (8.46)

by 〈
A,B

〉
=

〈
ϕ(A)B

〉
∈ C (A,B ∈ DH(W̃ ). (8.47)

By the definition of the Cherednik involution, we have〈
ϕ(A)

〉
=

〈
A
〉
,

〈
A,B

〉
=

〈
B,A

〉
. (8.48)

(This bilinear form is a variation of Fisher’s scalar product.)

We apply formula (8.48) to Macdonald polynomials A = Pλ(x) and B = Pµ(x) (λ, ν ∈ P+).〈
Pλ(x), Pµ(x)

〉
=

〈
ϕ(Pλ(x))Pµ(x)

〉
=

〈
Pλ(Y

−1)Pµ(x)
〉

=
〈
Pλ(t

−ρq−µ)Pµ(x)
〉
= Pλ(t

−ρq−µ)Pµ(t
−ρ)

(8.49)

Since
〈
Pλ(x), Pµ(x)

〉
=

〈
Pµ(x), Pλ(x)

〉
, we have

Pλ(t
−ρq−µ)Pµ(t

−ρ) = Pµ(t
−ρq−λ)Pλ(t

−ρ) (λ, µ ∈ P+), (8.50)

and hence
Pλ(t

−ρq−µ)

Pλ(t−ρ)
=

Pµ(t
−ρq−λ)

Pµ(t−ρ)
. (8.51)

By the property Pλ(x; q, t) = Pλ(x; q
−1, t−1) of Macdonald polynomials, from (8.51) we obtain

Pλ(t
ρqµ)

Pλ(tρ)
=

Pµ(t
ρqλ)

Pµ(tρ)
(λ, µ ∈ P+). (8.52)

Since ρ = δ − 1
2(n− 1)(1n), this formula is identical to the self-duality we discussed in Section 5.
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