Introduction to Macdonald polynomials: Lecture 8

by M. Noumi [March 26, 2021]

8 Affine Hecke algebra and *q*-Dunkl operators

We denote by $W = \mathfrak{S}_n$ the symmetric group of degree n (Weyl group of type A_{n-1}), following the convention of Macdonald-Cherednik theory for general root systems. In this section, we denote by $\tau_i = T_{q,x_i}$ (i = 1, ..., n) the q-shift operators in variables x_i , in order to avoid the conflict with the generators T_i of Hecke algebras. Setting $\tau = (\tau_1, ..., \tau_n)$, we denote by $\mathcal{D}_{q,x} = \mathbb{C}(x)[\tau^{\pm 1}]$ the algebra of q-difference operators in x variables with rational coefficients, and by $\mathcal{D}_{q,x}[W]$ the algebra of all operators of the form,

$$A_x = \sum_{\mu \in P, w \in W} a_{\mu,w}(x) \tau^{\mu} w \quad \text{(finite sum)}, \quad a_{\mu,w}(x) \in \mathbb{C}(x) \quad (\mu \in P, \ w \in W), \tag{8.1}$$

called the *q*-difference-reflection operators, where $P = \mathbb{Z}^n$ (weight lattice of GL_n), and for $\mu = (\mu_1, \ldots, \mu_n) \in P$, $\tau^{\mu} = \tau_1^{\mu_1} \cdots \tau_n^{\mu_n}$. Through their natural action on rational functions, we regard $\mathcal{D}_{q,x}[W]$ as a subalgebra of $\operatorname{End}_{\mathbb{C}}(\mathbb{C}(x))$.

8.1 Affine Weyl groups and affine Hecke algebras

We denote by $\tau^P = \{\tau^{\mu} \mid \mu \in P\}$ the group of q-shift operators (*translations*) by P, and define the extended affine Weyl group \widetilde{W} by

$$\widetilde{W} = \tau^P \rtimes W = \{\tau^\mu w \mid \mu \in P, w \in W\}; \qquad w\tau^\mu = \tau^{w.\mu} w \quad (\mu \in P, w \in W), \tag{8.2}$$

which is an extension of the standard affine Weyl group $W^{\text{aff}} = \tau^Q \rtimes W$ with the group of translations by $Q = \{\mu \in P \mid |\mu| = \mu_1 + \dots + \mu_n\}$ (root lattice). Denoting the canonical basis of P by ε_i $(i = 1, \dots, n)$, we use the notation $\alpha_1 = \varepsilon_1 - \varepsilon_2$, $\alpha_2 = \varepsilon_2 - \varepsilon_3$, \dots , $\alpha_{n-1} = \varepsilon_{n-1} - \varepsilon_n$ of the simple roots, so that $Q = \mathbb{Z}\alpha_1 \oplus \dots \oplus \mathbb{Z}\alpha_{n-1} \subset P$. The idea of (affine) Hecke algebras is to construct *t*-deformations of the groups

$$W = \mathfrak{S}_n \subset W^{\mathrm{aff}} = \tau^Q \rtimes W \subset \widetilde{W} = \tau^P \rtimes W \subset \mathcal{D}_{q,x}[W]$$
(8.3)

within the algebra $\mathcal{D}_{q,x}[W]$ of q-difference-reflection operators. Note that the group-ring of \widetilde{W}

$$\mathbb{C}[\widetilde{W}] = \mathbb{C}[\tau^P \rtimes W] = \mathbb{C}[\tau^{\pm 1}][W] \subset \mathcal{D}_{q,x}[W]$$
(8.4)

is the ring of q-difference-reflection operators with constant coefficients.

We denote by

$$s_1 = (12), \ s_2 = (23), \ \dots, \ s_{n-1} = (n-1, n)$$

$$(8.5)$$

the adjacent transpositions in $W = \mathfrak{S}_n$ (simple reflections) so that $W = \langle s_1, \ldots, s_{n-1} \rangle$. Note that s_i acts on the x variables by exchanging x_i and x_{i+1} . Besides these generators, we use the affine reflection s_0 and the diagram automorphism ω by setting

$$s_0 = \tau_1^{-1} \tau_n(1, n) \in W^{\text{aff}}, \quad \omega = \tau_n(n - 1, \dots, 1) = \tau_n s_{n-1} \cdots s_1 \in \widetilde{W}$$

$$(8.6)$$

where (1, n) stands for the transposition of 1 and n, and (n, n-1, ..., 1) for the cyclic permutation $n \to n-1 \to \cdots \to 1 \to n$. These s_0 and ω are characterized as field automorphisms of $\mathbb{C}(x)$ acting on the x-variables by

$$s_0(x_1) = qx_n, \quad s_0(x_i) = x_i \quad (i = 2, \dots, n-1), \quad s_0(x_n) = q^{-1}x_1$$

$$\omega(x_1) = qx_n, \quad \omega(x_2) = x_1, \quad \dots, \quad \omega(x_n) = x_{n-1}.$$
(8.7)

If fact, it is known that the three groups in (8.3) are generate by these operators as

$$W = \langle s_1, \dots, s_{n-1} \rangle \subset W^{\text{aff}} = \langle s_0, s_1, \dots, s_{n-1} \rangle \subset \widetilde{W} = \langle s_0, s_1, \dots, s_{n-1}, \omega \rangle,$$
(8.8)

with the fundamental relations:

(0)
$$s_i^2 = 1$$
 $(i = 0, 1, ..., n - 1)$
(1) $s_i s_j = s_j s_i$ $(j \neq i, i \pm 1 \mod n)$
(2) $s_i s_j s_i = s_j s_i s_j$ $(j = i \pm 1 \mod n)$
(3) $\omega s_i = s_{i-1}\omega$ $(i = 1, ..., n - 1), \quad \omega s_0 = s_{n-1}\omega.$
(8.9)

In terms of these generators, the q-shift operators τ_i (= T_{q,x_i}) are expressed as follows:

$$\tau_1 = s_1 \cdots s_{n-1}\omega, \ \tau_2 = s_2 \cdots s_{n-1}\omega s_1, \ \cdots, \ \tau_n = \omega s_1 \cdots s_{n-1}.$$
 (8.10)

We now defines the q-difference-reflection operators T_i (i = 0, 1, ..., n - 1) by

$$T_{i} = t^{-\frac{1}{2}} \frac{1 - tx_{i}/x_{i+1}}{1 - x_{i}/x_{i+1}} (s_{i} - 1) + t^{\frac{1}{2}} = t^{-\frac{1}{2}} \frac{1 - tx_{i}/x_{i+1}}{1 - x_{i}/x_{i+1}} s_{i} + \frac{t^{\frac{1}{2}} - t^{-\frac{1}{2}}}{1 - x_{i}/x_{i+1}}$$
(8.11)

for i = 1, ..., n - 1 and

$$T_0 = t^{-\frac{1}{2}} \frac{1 - tqx_n/x_i}{1 - qx_n/x_1} (s_0 - 1) + t^{\frac{1}{2}} = t^{-\frac{1}{2}} \frac{1 - tqx_n/x_i}{1 - qx_n/x_1} s_0 + \frac{t^{\frac{1}{2}} - t^{-\frac{1}{2}}}{1 - qx_n/x_1}.$$
(8.12)

Note that $x_i/x_{i+1} = x^{\alpha_i}$ (i = 1, ..., n - 1) correspond to the simple roots, and $qx_n/x_1 = x^{\alpha_0}$ to the simple affine root $\alpha_0 = \delta - \varepsilon_1 + \varepsilon_n$ with the convention $x^{\delta} = q$.

Theorem A: These operators T_i (i = 0, 1, ..., n - 1) in $\mathcal{D}_{q,x}[W]$ together with ω satisfy the following relations.

$$\begin{array}{ll} (0) & (T_i - t^{\frac{1}{2}})(T_i + t^{-\frac{1}{2}}) = 1 & (i = 0, 1, \dots, n-1) \\ (1) & T_i T_j = T_j T_i & (j \not\equiv i, i \pm 1 \mod n) \\ (2) & T_i T_j T_i = T_j T_i T_j & (j = i \pm 1 \mod n) \\ (3) & \omega T_i = T_{i-1} \omega & (i = 1, \dots, n-1). & \omega T_0 = T_{n-1} \omega. \end{array}$$

$$\begin{array}{ll} (8.13) \\ \end{array}$$

In this way, we obtain t-deformations of the group-rings of W, W^{aff} , \widetilde{W} in $\mathcal{D}_{q,x}[W]$ as follows:

Here H(W) denotes the Hecke algebra associate with the Weyl group W; $H(W^{\text{aff}})$ and $H(\widetilde{W})$ are called (extended) affine Hecke algebras. Note that the fundamental relations $s_i^2 = 1$ are replaced by the quadratic relations $(T_i - t^{\frac{1}{2}})(T_i + t^{-\frac{1}{2}}) = 0$, and hence $T_i^{-1} = T_i - (t^{\frac{1}{2}} - t^{-\frac{1}{2}})$.

8.2 *q*-Dunkl operators

In view of the two expressions

$$\mathbb{C}[\widetilde{W}] = \mathbb{C}\langle s_0, s_1, \dots, s_{n-1}, \omega^{\pm 1} \rangle = \mathbb{C}[\tau^{\pm 1}][W]$$
(8.15)

of the group-ring of \widetilde{W} , it would be natural to ask what are the "translations" in $H(\widetilde{W})$. Imitating the formulas (8.10) for τ_i (i = 1, ..., n), we define the *q*-Dunkl operators (or Cherednik operators) Y_1, \ldots, Y_n by

$$Y_1 = T_1 \cdots T_{n-1}\omega, \quad Y_2 = T_2 \cdots T_{n-1}\omega T_1^{-1}, \quad \dots, \quad Y_n = \omega T_1^{-1} \cdots T_{n-1}^{-1} \in H(\widetilde{W}).$$
(8.16)

Notice here that T_i are replaced by their inverses T_i^{-1} when they are located to the right side of ω . **Theorem B:** The *q*-Dunkl operators $Y_1, \ldots, Y_n \in H(\widetilde{W})$ commute with each other. Furthermore, they generate a commutative subalgebra $\mathbb{C}[Y^{\pm 1}] = \mathbb{C}[Y_1^{\pm 1}, \ldots, Y_n^{\pm 1}] \subset H(\widetilde{W})$ isomorphic to the algebra of Laurent polynomials in *n* variables.

One can directly verify the commutativity $Y_iY_j = Y_jY_i$ $(i, j \in \{1, ..., n\})$ by the definition (8.16) and the fundamental relations of T_i , ω in (8.13). With this "translation subalgebra" of q-Dunkl operators, the extended affine Heck algebra is expressed in the form

$$H(\widetilde{W}) = \mathbb{C}[Y^{\pm 1}] \otimes H(W) = \bigoplus_{w \in W} \mathbb{C}[Y^{\pm 1}] T_w,$$
(8.17)

where, for each $w \in W$, T_w is the element defined as $T_w = T_{s_{i_1}} \cdots T_{s_{i_l}}$ in terms of a reduced (shortest) expression $w = s_{i_1} \cdots s_{i_l}$ of w; this definition does not depend on the choice of the reduced expression (Lemma of Iwahori-Matsumoto). From this, we see that one can take T_1, \ldots, T_{n-1} and the q-Dunkl operators $Y_1^{\pm 1}, \ldots, Y_n^{\pm 1}$ for the generators of the extended affine Heck algebra:

$$H(\widetilde{W}) = \mathbb{C}\langle T_0, T_1, \dots, T_{n-1}; \omega^{\pm 1} \rangle = \mathbb{C}\langle T_1, \dots, T_n; Y_1^{\pm 1}, \dots, Y_n^{\pm 1} \rangle.$$
(8.18)

Theorem C (Bernstein): The center $\mathcal{Z}H(\widetilde{W})$ of the extended affine Hecke algebra is precisely the *W*-invariant part of the commutative algebra of *q*-Dunkl operators:

$$\mathcal{Z}H(\widetilde{W}) = \mathbb{C}[Y^{\pm 1}]^W = \left\{ f(Y) \mid f(\xi) \in \mathbb{C}[\xi^{\pm 1}]^W \right\}, \quad \xi = (\xi_1, \dots, \xi_n).$$
(8.19)

8.3 From q-Dunkl operators to Macdonald-Ruijsenaars operators

Let $A_x \in \mathcal{D}_{q,x}[W]$ be a q-difference-reflection operator in the form

$$A_x = \sum_{\mu \in P, w \in W} a_{\mu,w}(x) \tau^{\mu} w \quad \text{(finite sum)}, \quad a_{\mu,w}(x) \in \mathbb{C}(x) \quad (\mu \in P, \ w \in W).$$
(8.20)

If $\varphi(x)$ is a symmetric (W-invariant) function, A_x acts on $\varphi(x)$ as a q-difference operator: since $w\varphi(x) = \varphi(x) \ (w \in W)$, we have

$$A_x\varphi(x) = \sum_{\mu \in P, w \in W} a_{\mu,w}(x) \tau^{\mu}\varphi(x) = L_x\varphi(x), \qquad L_x = \sum_{\mu \in P, w \in W} a_{\mu,w}(x) \tau^{\mu}.$$
(8.21)

In order to describe the action of q-Dunkl operators, we set

$$c(z) = t^{-\frac{1}{2}} \frac{1 - tz}{1 - z}, \quad d_{\pm}(z) = t^{\pm \frac{1}{2}} - c(z)$$
 (8.22)

so that

$$T_i^{\pm 1} = c(x_i/x_{i+1})s_i + d_{\pm}(x_i/x_{i+1}) \quad (i = 1, \dots, n-1), \quad T_0^{\pm 1} = c(qx_n/x_q)s_i + d_{\pm}(qx_n/x_1).$$
(8.23)

Note also that c(z) satisfies $c(z) + c(z^{-1}) = t^{\frac{1}{2}} + t^{-\frac{1}{2}}$.

• Example (n = 2): In this case, we have two q-Dunkl operators.

$$Y_{1} = T_{1}\omega = c(x_{1}/x_{2})s_{1}\omega + d_{+}(x_{1}/x_{2})\omega = c(x_{1}/x_{2})\tau_{1} + d_{+}(x_{1}/x_{2})\tau_{2}s_{1}$$

$$Y_{2} = \omega T_{1}^{-1} = \omega c(x_{1}/x_{2})s_{1} + \omega d_{-}(x_{1}/x_{2}) = c(qx_{2}/x_{1})\tau_{2} + d_{-}(qx_{2}/x_{1})\tau_{2}s_{1}$$
(8.24)

Then,

$$Y_1 + Y_2 = c(x_1/x_2)\tau_1 + c(qx_2/x_1)\tau_2 + (d_-(qx_2/x_1) + d_+d_+(x_1/x_2))\tau_2s_1$$

$$Y_2Y_1 = \omega^2 = \tau_1\tau_2$$
(8.25)

Since

$$c(qx_2/x_1) + d_-(qx_2/x_2) + d_+(x_1/x_2) = t^{-\frac{1}{2}} + t^{-\frac{1}{2}} - c(x_1/x_2) = c(x_2/x_1),$$
(8.26)

for any symmetric function $\varphi(x) = \varphi(x_1, x_2)$, we have

$$(Y_1 + Y_2)\varphi(x) = (c(x_1/x_2)\tau_1 + c(x_2/x_1)\tau_2)\varphi(x)$$

$$= t^{-\frac{1}{2}} \Big(\frac{1 - tx_1/x_2}{1 - x_1/x_2}\tau_1 + \frac{1 - tx_2/x_1}{1 - x_2/x_1}\tau_2\Big)\varphi(x)$$

$$= t^{-\frac{1}{2}} D_x^{(1)}\varphi(x)$$

$$(Y_2Y_1)\varphi(x) = \tau_1\tau_2\varphi(x) = t^{-1} D_x^{(2)}\varphi(x),$$

(8.27)

where $D_x^{(1)}$, $D_x^{(2)}$ are the Macdonald-Ruijsenaars operators in two variables. For each $f(\xi) \in \mathbb{C}[\xi^{\pm 1}]$, there exists a unique q-difference operator $L_x^f \in \mathcal{D}_{q,x}$ such that

$$f(Y)\varphi(x) = L_x^f\varphi(x) \tag{8.28}$$

for any symmetric function $\varphi(x)$; express $A_x = f(Y)$ in the form (8.20), and take $L_x = L_x^f$ as in (8.21).

Theorem D: For any $f \in \mathbb{C}[\xi^{\pm 1}]^W$, $L_x^f \in \mathcal{D}_{q,x}$ is a *W*-invariant *q*-difference operator. Furthermore, L_x^f ($f \in \mathbb{C}[\xi^{\pm 1}]^W$) commute with each other: $L_x^f L_x^g = L_x^g L_x^f$ for any $f, g \in \mathbb{C}[\xi^{\pm 1}]^W$.

Let's take the elementary symmetric functions $e_r(\xi) \in \mathbb{C}[\xi^{\pm 1}]^W$ (r = 1, ..., n) for $f(\xi)$. Then, one can show that the *q*-Dunkl operators

$$e_r(Y) = \sum_{1 \le i_1 < \dots < i_r \le n} Y_{i_1} \cdots Y_{i_r}$$
 (8.29)

induce a commuting family of W-invariant q-difference operator $L_x^{e_r}$ of the form

$$L_x^{e_r} = \Big(\prod_{\substack{1 \le i \le r \\ r+1 \le j \le n}} t^{-\frac{1}{2}} \frac{1 - tx_i/x_j}{1 - x_i/x_j} \Big) \tau_1 \cdots \tau_r + \cdots .$$
(8.30)

This implies that $L_x^{e_r}$ are constant multiples of $D_x^{(r)}$ respectively,

$$L_x^{e_r} = t^{-\frac{1}{2}(n-1)r} D_x^{(r)} \quad (r = 0, 1, \dots, n),$$
(8.31)

and also that they are diagonalized by the Macdonald polynomials:

$$L_x^{e_r} P_{\lambda}(x) = e_r(t^{\rho} q^{\lambda}) P_{\lambda}(x) \quad (\lambda \in \mathcal{P}_n),$$
(8.32)

where $\rho = \frac{1}{2} \sum_{i=1}^{n} (n-2i+1)\varepsilon_i = \delta - \frac{1}{2}(n-1)(1^n).$

To summarize: There is an isomorphism of algebras

$$\mathcal{Z}H(\widetilde{W}) = \mathbb{C}[Y^{\pm 1}]^W \xrightarrow{\sim} \mathbb{C}[D_1^{(1)}, \dots, D_x^{(n)}, (D_x^{(n)})^{-1}]: \quad f(Y) \to L_x^f$$
(8.33)

from the algebra of symmetric q-Dunkl operators to the algebra of Macdonald-Ruijsenaars operators. Furthermore, for all $f(\xi) \in \mathbb{C}[\xi^{\pm 1}]^W$, we have

$$f(Y)P_{\lambda}(x) = L_x^f P_{\lambda}(x) = f(t^{\rho}q^{\lambda})P_{\lambda}(x) \quad (\lambda \in \mathcal{P}_n).$$
(8.34)

One can directly check that the operators T_i (i = 0.1, ..., n-1 stabilize the algebra $\mathbb{C}[x^{\pm 1}]$ of Laurent polynomials in $x = (x_1, ..., x_n)$. Hence $\mathbb{C}[x^{\pm 1}]$ can be regarded as a left $H(\widetilde{W})$ -module. It would be natural to anticipate that the commutative subalgebra $\mathbb{C}[Y^{\pm 1}]$ of $H(\widetilde{W})$ can be simultaneously diagonalized on $\mathbb{C}[x^{\pm 1}]$. In fact, the q-Dunkl operators have common eigenfunctions $E_{\mu}(x)$ $(\mu \in P)$, called the *nonsymmetric Macdonald polynomials*.

In the following, we denote by

$$P_{+} = \{\lambda = (\lambda_{1}, \dots, \lambda_{n}) \in P \mid \lambda_{1} \ge \lambda_{2} \ge \dots \ge \lambda_{n}\} = \mathbb{N}\varpi_{1} \oplus \dots \oplus \mathbb{N}\varpi_{n-1} \oplus \mathbb{Z}\varpi_{n},$$
(8.35)

the cone of dominant integral weights, where, for r = 1, ..., n, $\varpi_r = (1^r) = \varepsilon_1 + \cdots + \varepsilon_r$ (fundamental weights). Then, for each $\mu \in P$, there exists a unique $\mu_+ \in P_+$ in the W-orbit of μ : $W.\mu \cap P_+ = \{\mu_+\}$. For the diagonalization of the q-Dunkl operators, we make use of the partial order

$$\mu \leq \nu \quad \iff \quad \mu_+ < \nu_+ \quad \text{or} \quad (\mu_+ = \nu_+ \text{ and } \mu \leq \nu).$$

$$(8.36)$$

defined by applying the dominance order in two steps.

Theorem E: Assume that $t \in \mathbb{C}^*$ is generic. Then there exists a unique Laurent polynomial $E_{\mu}(x) \in \mathbb{C}[x^{\pm 1}]$ such that

- (1) $f(Y)E_{\mu}(x) = f(t^{\rho_{\mu}}q^{\mu})E_{\mu}(x)$ for all $f(\xi) \in \mathbb{C}[\xi^{\pm 1}],$
- (2) $E_{\mu}(x) = x^{\mu} + (\text{lower order terms with respect to } \preceq).$

Then, regarded as a $H(\widetilde{W})$ -module, the algebra of Laurent polynomials $\mathbb{C}[x^{\pm 1}]$ is decomposed into irreducible components as follows:

$$\mathbb{C}[x^{\pm 1}] = \bigoplus_{\lambda \in P_+} V(\lambda), \quad V(\lambda) = \bigoplus_{\mu \in W, \lambda} \mathbb{C}E_{\mu}(x).$$
(8.37)

Furthermore, for each $\lambda \in P_+$, we have

$$V(\lambda)^{H(W)} = \left\{ v \in V(\lambda) \mid T_i v = t^{\frac{1}{2}} v \quad (i = 1, \dots, n-1) \right\} = \mathbb{C}P_{\lambda}(x),$$
(8.38)

where $P_{\lambda}(x)$ is the Macdonald (Laurent) polynomial attached λ ; if we take $l \in \mathbb{Z}$ and $\mu \in \mathcal{P}_n$ such that $\lambda = \mu + (l^n)$, then $P_{\lambda}(x)$ is expressed as $P_{\lambda}(x) = (x_1 \dots x_n)^l P_{\mu}(x)$ in terms of the Macdonald polynomial $P_{\mu}(x)$ attached to a partition $\mu \in \mathcal{P}_n$.

8.4 Double affine Hecke algebra and Cherednik involution

The algebra $\mathcal{D}_{q,x}[W]$ contains the subalgebra

$$\mathbb{C}[x^{\pm 1};\tau^{\pm}][W] = \mathbb{C}\langle x_1^{\pm 1}, \dots, x^{\pm n}; s_1, \dots, s_{n-1}; \tau_1^{\pm 1}, \dots, \tau_n^{\pm 1} \rangle \subset \mathcal{D}_{q,x}[W]$$
(8.39)

of q-difference-reflection operators with Laurent polynomial coefficients. This algebra can be thought of as a q-version of $\mathbb{C}[x;\partial_x][W]$ (crossed product of the Heisenberg algebra and the Weyl group.) One can consider the t-deformation of this algebra

$$DH(\widetilde{W}) = \mathbb{C}[x^{\pm 1}] \otimes H(W) \otimes \mathbb{C}[Y^{\pm 1}]$$

= $\mathbb{C}\langle x_1^{\pm 1}, \dots, x_n^{\pm 1}; T_1, \dots, T_{n-1}; Y_1^{\pm 1}, \dots, Y_n^{n-1} \rangle \subset \mathcal{D}_{q,x}[W],$ (8.40)

called the double affine Hecke algebra. This algebra consists of all operators of the form

$$A = \sum_{\mu,\nu\in P; w\in W} a_{\mu,w,\nu} x^{\mu} T_w Y^{\nu} \quad \text{(finite sum)} \quad (a_{\mu,w,\nu} \in \mathbb{C}). \tag{8.41}$$

Also, commutation relations between T_i and x_j , Y_j are given by

$$T_i x_i T_i = x_{i+1}$$
 $(i = 1, ..., n-1), \quad T_i x_j = x_j T_i$ $(j \neq i, i+1).$ (8.42)

and

$$T_i Y_{i+1} T_i = Y_i \quad (i = 1, \dots, n-1), \quad T_i Y_j = Y_j T_i \quad (j \neq i, i+1).$$
 (8.43)

Theorem F (Cherednik): There exists a unique involutive anti-homomorphism ϕ : $DH(\widetilde{W}) \rightarrow DH(\widetilde{W})$ such that

$$\phi(x_i) = Y^{-i}, \ \phi(Y_i) = x_i^{-1} \ (i = 1, \dots, n), \qquad \phi(T_i) = T_i \quad (i = 1, \dots, n-1).$$
(8.44)

This anti-involution ϕ is called the *Cherednik involution* ($\phi(ab) = \phi(b)\phi(a), \phi^2 = 1$).

We define the expectation value $\langle \rangle : DH(\widetilde{W}) \to \mathbb{C}$ by

$$\left\langle A\right\rangle = A(1)\big|_{x=t^{-\rho}} = \sum_{\mu,\nu\in P; w\in W} a_{\mu,w,\nu} t^{-\langle\rho,\mu\rangle} t^{\frac{1}{2}\ell(w)} t^{\langle\rho,\nu\rangle}, \tag{8.45}$$

where $\ell(w)$ the length of w (= the number of pairs (i, j) $(1 \le i < j \le n)$ such that w(i) > w(j)). We also define a scalar product (bilinear form)

$$\langle , \rangle : DH(\widetilde{W}) \times DH(\widetilde{W}) \to \mathbb{C}$$
 (8.46)

by

$$\langle A, B \rangle = \langle \phi(A)B \rangle \in \mathbb{C} \qquad (A, B \in DH(\widetilde{W}).$$
 (8.47)

By the definition of the Cherednik involution, we have

$$\langle \phi(A) \rangle = \langle A \rangle, \quad \langle A, B \rangle = \langle B, A \rangle.$$
 (8.48)

(This bilinear form is a variation of Fisher's scalar product.)

We apply formula (8.48) to Macdonald polynomials $A = P_{\lambda}(x)$ and $B = P_{\mu}(x)$ $(\lambda, \nu \in P_{+})$.

$$\langle P_{\lambda}(x), P_{\mu}(x) \rangle = \langle \phi(P_{\lambda}(x))P_{\mu}(x) \rangle = \langle P_{\lambda}(Y^{-1})P_{\mu}(x) \rangle$$

= $\langle P_{\lambda}(t^{-\rho}q^{-\mu})P_{\mu}(x) \rangle = P_{\lambda}(t^{-\rho}q^{-\mu})P_{\mu}(t^{-\rho})$ (8.49)

Since $\langle P_{\lambda}(x), P_{\mu}(x) \rangle = \langle P_{\mu}(x), P_{\lambda}(x) \rangle$, we have

$$P_{\lambda}(t^{-\rho}q^{-\mu})P_{\mu}(t^{-\rho}) = P_{\mu}(t^{-\rho}q^{-\lambda})P_{\lambda}(t^{-\rho}) \qquad (\lambda, \mu \in P_{+}),$$
(8.50)

and hence

$$\frac{P_{\lambda}(t^{-\rho}q^{-\mu})}{P_{\lambda}(t^{-\rho})} = \frac{P_{\mu}(t^{-\rho}q^{-\lambda})}{P_{\mu}(t^{-\rho})}.$$
(8.51)

By the property $P_{\lambda}(x;q,t) = P_{\lambda}(x;q^{-1},t^{-1})$ of Macdonald polynomials, from (8.51) we obtain

$$\frac{P_{\lambda}(t^{\rho}q^{\mu})}{P_{\lambda}(t^{\rho})} = \frac{P_{\mu}(t^{\rho}q^{\lambda})}{P_{\mu}(t^{\rho})} \qquad (\lambda, \mu \in P_{+}).$$
(8.52)

Since $\rho = \delta - \frac{1}{2}(n-1)(1^n)$, this formula is identical to the self-duality we discussed in Section 5.