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8 Affine Hecke algebra and ¢-Dunkl operators

We denote by W = &,, the symmetric group of degree n ( Weyl group of type A,,_1), following the
convention of Macdonald-Cherednik theory for general root systems. In this section, we denote by
7i = Tqx, (1 = 1,...,n) the g-shift operators in variables x;, in order to avoid the conflict with
the generators T; of Hecke algebras. Setting 7 = (71,...,7,), we denote by D, = C(z)[r*!] the
algebra of ¢-difference operators in x variables with rational coefficients, and by D, ,[W] the algebra
of all operators of the form,

Ay = Z ayw(z) ™ w (finite sum), ayw(z) € C(z) (pe P, we W), (8.1)
peEP, weW

called the g-difference-reflection operators, where P = 7" (weight lattice of GL,,), and for p =
(W1, s pin) € P, 7 = 7" .. ™. Through their natural action on rational functions, we regard
Dy .[W] as a subalgebra of Endc(C(z)).

8.1 Affine Weyl groups and affine Hecke algebras

We denote by 77 = {7# | 1 € P} the group of ¢-shift operators (translations) by P, and define the
extended affine Weyl group W by

W:TPNW:{T“QU\MGP,WGW}; wrt =7 (pe P, weW), (8.2)

which is an extension of the standard affine Weyl group W2 = 79« W with the group of translations
by Q@ ={p€P||ul=pm~+- -+ un} (root lattice). Denoting the canonical basis of P by ¢; (i =
1,...,n), we use the notation ay = 1 — g, @y = €9 — €3, ..., Qp_1 = €n—1 — &y, Of the simple
roots, so that QQ = Zay @ -+ @ Zay—1 C P. The idea of (affine) Hecke algebras is to construct
t-deformations of the groups

W=6,CcW =79 WcW=r"xW cCDy.[W] (8.3)

within the algebra D, ,[W] of g-difference-reflection operators. Note that the group-ring of 1%

CIW] = C[rF'x W] = C[rEY[W] C Dy.[W] (8.4)

is the ring of g-difference-reflection operators with constant coefficients.
We denote by
s1=(12), s2 =(23), ..., sp_1=(n—1,n) (8.5)



the adjacent transpositions in W = &,, (simple reflections) so that W = <81, ce sn_1>. Note that
s; acts on the x variables by exchanging x; and z;1,. Besides these generators, we use the affine
reflection sg and the diagram automorphism w by setting

sp = Tl_lTn(l,n) ew™ o= T(n—1,...,1) =TpSp_1--51 € W (8.6)

where (1,7n) stands for the transposition of 1 and n, and (n,n—1,...,1) for the cyclic permutation
n—n—1-—--+—1—n. These sp and w are characterized as field automorphisms of C(z) acting
on the z-variables by

so(1) = qon, so(zi) =2 (i=2,...,n=1), so(zn)=q 'z ®.7)
w(z1) = qxn, w(xs) =1, ..., w(@p)=Tp_1.
If fact, it is known that the three groups in (8.3) are generate by these operators as
W= (s1,...,8n-1) C W™ = (50,51,...,8n-1) CW = (s0,51,...,8n-1,w), (8-8)
with the fundamental relations:
0) s2=1 (i=0,1,...,n—1)
(1) sisj=s58 (j#i,i£1 modn) (8.9)
(2) sisj8i =sj8:5; (j=1E+1 mod n) '
(3) wsi=si—w (i=1,....,n—1), WSy = Sp_1W.
In terms of these generators, the ¢-shift operators 7; (= Ty ,) are expressed as follows:
TI =81 " Sp_1W, To =82 " Sp_1WS1, **+, Tp = WS " Sp_1. (8.10)
We now defines the g-difference-reflection operators T; (i = 0,1...,n — 1) by
1— tz;/ 1— tz;/ t3 —t73
— s s 1 — ts s 3 — 173
Ty=t 3T 1) ppr m e T (8.11)
1 — /w1 1 — /T 1 — /w1
fori=1,...,n—1 and
1 — tqzn/ 1—tqzn/ 2 —t2
1 Tn /X 1 11 —=1qrn/x; 2 — 2
Ty=t 23—/ Tig gy s = ¢a T . (8.12)
1—qzy/x1 1 —qxy /21 1 —qxy /21
Note that z;/z;4+1 = ® (i = 1,...,n — 1) correspond to the simple roots, and gz, /z1 = ® to

the simple affine root ag = § — €1 + €, with the convention z° = q.

Theorem A: These operators T; (i = 0,1,...,n — 1) in D, ,[W] together with w satisfy the
following relations.

(T, —t3)(T;+t3) =1 (i=0,1,...,n— 1)
LT, =TT, (j#i,i%1 modn)
TLT — LT, (j—i+1 modn)

Wwh =Tiqw (1=1,...,n—1). wTy =Ty _qw.

(8.13)

~~ ~~ —~
\)
O — —



In this way, we obtain ¢-deformations of the group-rings of W, Wi, W in Dy.»[W] as follows:

CW]=C(s1,..-,5n-1) HW]=C(Ty,...,Tn1)
N N
C[Waﬁ] :(C<$07817"'7Sn—1> H[Waﬁ] = (C<T(],T1,...,Tn_1> (814)
N N
C[W] = (C<$0a S1y- -y 5n—17wi1> H[W] = (C<T0,T1, R ,Tn_l,wi1>

Here H (W) denotes the Hecke algebra associate with the Weyl group W; H(W?T) and H (W) are

called (extended) affine Hecke algebms. Note that the fundamental relations s? = 1 are replaced

by the quadratic relations (7; — t2 (T + t_%) =0, and hence T, ! =T, — (t% - t_%).

8.2 ¢-Dunkl operators

In view of the two expressions
CIW] = C{s0, 51, - $n_1,wt) = ClrE W] (8.15)

of the group-ring of W, it would be natural to ask what are the “translations” in H (W) Imitating
the formulas (8.10) for 7; (¢ = 1,...,n), we define the g-Dunkl operators (or Cherednik operators)
Yl, ey Yn by

Vi=T Ty aw, Yo=Ty- T T, ..., Yo=wIjt-- T\ € HW). (8.16)

Notice here that T; are replaced by their inverses T_1 when they are located to the right side of w.

Theorem B: The ¢g-Dunkl operators Y7, .. ( ) commute with each other. Furthermore,
they generate a commutative subalgebra (C[Yil] C[YEL, ...,V ¢ H(W) isomorphic to the
algebra of Laurent polynomials in n variables.

One can directly verify the commutativity Y;Y; = Y;Y; (4,5 € {1,...,n}) by the definition (8.16)
and the fundamental relations of T;, w in (8.13). With this “translation subalgebra” of ¢-Dunkl
operators, the extended affine Heck algebra is expressed in the form

H(W)=Cly* o HW)= P C[Y*|T,, (8.17)
weW

where, for each w € W, T, is the element defined as T;,, = siy "'Tsz-l in terms of a reduced
(shortest) expression w = s;, - - - s, of w; this definition does not depend on the choice of the reduced
expression (Lemma of Iwahori-Matsumoto). From this, we see that one can take 71,...,T,_1 and
the ¢g-Dunkl operators Ylﬂ, ..., YFL for the generators of the extended affine Heck algebra:

HW) =C(To, Th, ..., Tp-1;wtt) = C(T1, ..., Tp; Vi, . VED. (8.18)

Theorem C (Bernstein): The center ZH (/V[v/) of the extended affine Hecke algebra is precisely
the W-invariant part of the commutative algebra of g-Dunkl operators:

ZHW) =ClYE Y = {f(Y) | f(&) e C[EENVY, €= (&,. ., &) (8.19)



8.3 From ¢-Dunkl operators to Macdonald-Ruijsenaars operators
Let A, € Dy (W] be a g-difference-reflection operator in the form
A = Z ayw(r) ™ w  (finite sum), auw(z) € Clx) (pe P, weW). (8.20)
nEP, weW

If p(x) is a symmetric (W-invariant) function, A, acts on ¢(x) as a g-difference operator: since
we(x) = p(z) (w e W), we have

Ap(x) = D apuw(@)TMo(@) = Lop(x),  Le= Y  auu(x)7™ (8:21)
pneP,weW pneP,weW
In order to describe the action of g-Dunkl operators, we set

c(z) = 2 11—_15227 di(z) = s — c(z) (8.22)

so that
T = c(xi/wig1)si + de(zifzipa) (i=1,...,n—1), T = clgun/zg)si + di(qrn/z1). (8.23)

Note also that c(z) satisfies c(2) + c(z7 1) = t2 4473,

e Example (n = 2): In this case, we have two ¢g-Dunkl operators.

Y1 = Tiw = c(z1/22)s1w + d4(z1/22)w = c(x1/22)T1 + di(T1/22)T251

_ (8.24)
Yy = wTj = we(xy/xa)s1 +wd_(x1/x2) = c(qra/z1)T2 + d_(qra/T1)T281
Then,
Y1+ Yo = c(z1/m2)11 + c(qra/21)72 + (d—(q2/71) + didy (21 /22))T251
2 (8.25)
oY1 =w'=mm
Since X )
c(qra/x1) +d_(qre/x2) + dy(x1/m2) =172 + 12 — c(w1/22) = c(w2/21), (8.26)
for any symmetric function ¢(z) = ¢(z1,z2), we have
(Y1 + Y2)p(z) = (c(z1/22)71 + c(z2/21)T2)P(2)
_1 1—tw1/x2 1—t1‘2/$1
=12 1+ T T
( 1—21/29 - T2/ 2)90( ) (8.27)
= t72DMp(x)
(YaY1)e(x) = mimap(x) =t DP (),
where Dg(gl), D;E?) are the Macdonald-Ruijsenaars operators in two variables.
For each f(&) € C[¢F!], there exists a unique g-difference operator Ll e D,z such that
F(Y)p(x) = Lig() (8-28)



for any symmetric function ¢(z); express A, = f(Y) in the form (8.20), and take L, = L} as in
(8.21).

Theorem D: For any f € C[¢T1]W, Ll e D,z is a W-invariant ¢-difference operator. Furthermore,
L (f € C[¢FY"Y) commute with each other: LLLS = LILL for any f,g € C[¢E1 W,

Let’s take the elementary symmetric functions e,(¢) € C[¢FHW (r =1,...,n) for f(¢). Then, one
can show that the ¢-Dunkl operators

1<i1 < <ipr<n

induce a commuting family of W-invariant ¢-difference operator LS of the form

1 —ta;/x;
Ler:< t*%#) 8.30
* H 1—z/x; Tt (8-30)
1<ilr
r4+1<j<n

This implies that LS are constant multiples of Dg(cr) respectively,

Lo =t 200D (r=0,1,...,n), (8.31)
and also that they are diagonalized by the Macdonald polynomials:
Lo Py(z) = e,(tP¢")Pr(z) (A € Py), (8.32)
where p =33, 1 (n—2i+1)g; =6 — L(n — 1)(1").
To summarize: There is an isomorphism of algebras
ZHW) =C[y*1" S cpW,..., DM (D). f(Y)— L] (8.33)

from the algebra of symmetric ¢g-Dunkl operators to the algebra of Macdonald-Ruijsenaars opera-
tors. Furthermore, for all f(&) € C[¢1]W | we have

f(Y)P\(z) = LIP\(z) = f(t°¢")PA(z) (X € Py). (8.34)

One can directly check that the operators T; (i = 0.1,...,n — 1 stabilize the algebra C[zT!] of
Laurent polynomials in # = (21, ...,,). Hence C[z*!] can be regarded as a left H(W)—module. It
would be natural to anticipate that the commutative subalgebra C[Y*!] of H (W) can be simulta-
neously diagonalized on C[z*!]. In fact, the g-Dunkl operators have common eigenfunctions E,,(x)
(1 € P), called the nonsymmetric Macdonald polynomials.

In the following, we denote by

P+:{)\:()\1,...,)\n)GP‘)\1Z)\QZ”-ZAn}:Nwl@-"@an_l@an, (835)

the cone of dominant integral weights, where, forr =1,... ,n, w, = (1") = e1+- - -+&, (fundamental
weights). Then, for each u € P, there exists a unique py € Py in the W-orbit of u: W.un Py =
{p+}. For the diagonalization of the ¢g-Dunkl operators, we make use of the partial order

u=v <= py<vy or (uy=vyand p<v). (8.36)



defined by applying the dominance order in two steps.

Theorem E: Assume that ¢ € C* is generic. Then there exists a unique Laurent polynomial
E,(x) € C[z*!] such that

(1) JY)Eu(w) = f(tPq")Eyu(x) for all f(€) € C[g*],
(2) E,(x) = a" + (lower order terms with respect to =<).

Then, regarded as a H(W)-module, the algebra of Laurent polynomials C[z*!] is decomposed into
irreducible components as follows:

Ca™l= P VY, V=  CE.(x). (8.37)

AePy pneEW.A

Furthermore, for each A € Py, we have
VO = {vev() [ Tw=thv (i=1,...,n-1)} =CP\(a), (8.38)

where Py(z) is the Macdonald (Laurent) polynomial attached A; if we take [ € Z and pu € P,, such
that A = p + (I"), then Py(z) is expressed as P\(z) = (z1...2,) P, (z) in terms of the Macdonald
polynomial P,(x) attached to a partition p € P,.

8.4 Double affine Hecke algebra and Cherednik involution

The algebra D, ,[W] contains the subalgebra
Clz™t 7w = C<x{c1, o a s s T L ,T,jf1> C Dy (W] (8.39)

of g-difference-reflection operators with Laurent polynomial coefficients. This algebra can be
thought of as a g-version of C[z;d;][W] (crossed product of the Heisenberg algebra and the Weyl
group.) One can consider the ¢-deformation of this algebra

DH(W) = Clz™) @ H(W) @ C[y™]

8.40)
=C{af, .. 2t T, T Y7, YT C Dy [W, (
called the double affine Hecke algebra. This algebra consists of all operators of the form
A= Z apwp o T Y"?  (finite sum) (ayw,, € C). (8.41)
wrveP;weW

Also, commutation relations between T; and x;, Y; are given by

TixiTizl’i—H (izl,...,n—l), Tixj :-TjTi (j;ﬁi,i—f—l). (8.42)
and

TYinTi=Y, (i=1,...,n-1), TY;=YT; (j#ii+1). (8.43)

Theorem F (Cherednik): There exists a unique involutive anti-homomorphism ¢ : DH(W) —

DH (W) such that

pz) =Y oY) =2t (i=1,...,n), oT)=T; (i=1,...,n—1). (8.44)



This anti-involution ¢ is called the Cherednik involution (¢(ab) = ¢(b)p(a), ¢* = 1).

We define the ezpectation value ( ) : DH(W) — C by

(A) = A(1)] = Yt P @), (8.45)
n,vePweW

where ¢(w) the length of w (= the number of pairs (7,7) (1 < ¢ < j < n) such that w(i) > w(j)).
We also define a scalar product (bilinear form)

{,): DH(W)x DH(W)—C (8.46)

by

(A,B)=(¢(A)B)e C  (A,Be DH(W). (8.47)
By the definition of the Cherednik involution, we have
(p(A)) =(4), (A,B)=(B,A). (8.48)

(This bilinear form is a variation of Fisher’s scalar product.)

We apply formula (8.48) to Macdonald polynomials A = Py\(z) and B = P,(z) (A v € Py).

(Pa(2), Pu(2)) = (¢(Pr(x)) Fu()) = (PA(Y 1) Fu(2))

= (PP M) Pue)) = Pa(t g ) Palt ) (549
Since (Py(2), Pu(z)) = (Pu(z), Pa()), we have
Py P (0) = Pt g BT (e Py), (3.50)
and hence
P(t~Pq ") Pu(t™"q?) (8.51)

PA(t=r) Pt
By the property Py(x;q,t) = Py(x;¢~,t~1) of Macdonald polynomials, from (8.51) we obtain

Py(t'q")  Pu(t’qY)
Py(tr) — Pu(tr)

(At € Py). (8.52)

Since p = § — (n — 1)(1™), this formula is identical to the self-duality we discussed in Section 5.



