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1 An example: PII

In order to describe some characteristic features of Painlevé equations, we begin by an example of
the second Painlevé differential equation PII.

1.1 Hamiltonian representation of PII

We consider the second order nonlinear differential equation

PII = PII(b) : q′′ = 2q3 + tq + b− 1

2
(1.1)

for the unknown function q = q(t), called PII, where
′ = d/dt and b ∈ C. This equation can be

equivalently written as a system of differential equations for two unkown functions q = q(t) and
p = p(t)

HII = HII(b) : q′ = p− q2 − t

2
, p′ = 2qp+ b, (1.2)

where q = y. If we set

H = H(p, q; t) =
1

2
p2 −

(
q2 +

t

2

)
p− bq =

1

2
p
(
p− 2q2 − t

)
− bq, (1.3)

equation (1.2) is expressed as the Hamiltonian system

q′ =
∂H

∂p
, p′ = −∂H

∂q
(1.4)

with a time dependent Hamiltonian H.
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1.2 Some special solutions

For some special values of b ∈ C, HII(b) has “elementary” special solutions.

• Case b = 1
2
: HII(

1
2) has a simple rational solution (q, p) = (0, t

2).

• Case b = 0: HII(0) has a 1-paramter family of solutions expressible by Hermite functions.

Suppose b = 0:

HII(0) : q′ = p− q2 − t

2
, p′ = 2qp (1.5)

If we set p = 0, this equation is reduced to the Riccati equation

q′ = −q2 − t

2
. (1.6)

By the Hopf-Cole transformation q = u′/u, it can be rewritten into the linear differential equation
(equivalent to Airy’s equation)

u′′ +
t

2
u = 0. (1.7)

Taking two linearly independent solutions φ0(t), φ1(t) of (1.7), we obtain particular solutions

q =
c0φ

′
0(t) + c1φ

′
1(t)

c0φ0(t) + c1φ1(t)
, p = 0 (c0, c1 ∈ C; (c0, c1) ̸= (0, 0)) (1.8)

of HII(0) parametrized by [c0 : c1] ∈ P1.
Other elementary solutions?

1.3 Fundamental Bäcklund transformations s and r

There are changes of dependent variables that transform any generic solution of HII to another.
Such transformations are called Bäcklund transformations.

Supposing that a pair of functions (q, p) satisfies HII(b), we define

q̃ = q +
b

p
, p̃ = p. (1.9)

Then one can compute the equation to be satisfied by (q̃, p̃) as follows:

q̃ ′ = q′ − b

p2
p′ = p− q2 − t

2
− b

p2
(2qp+ b)

= p−
(
q +

b

p

)2

− t

2
= p̃− q̃ 2 − t

2

p̃′ = p′ = 2qp+ b = 2

(
q +

b

p

)
p− b = 2q̃p̃− b.

(1.10)

This means that (q̃, p̃) is a solution of HII(−b). In other words, the Hamiltonian system HII is
invariant under the change of dependent variables and the parameter

s : q̃ = q +
b

p
, p̃ = p, b̃ = −b. (1.11)
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Similarly, one can verify that the change of variables

q̃ = −q, p̃ = −p+ 2q2 + t (1.12)

transforms any solution of HII(b) to a solution H(1− b). We call this transformation as

r : q̃ = −q, p̃ = −p+ 2q2 + t, b̃ = 1− b. (1.13)

These s and r are the two fundamental Bäcklund transformations of HII.
For example, applying these transformations to the rational solution (q, p; b) = (0, t

2 ;
1
2) of HII,

we obtain (
0,

t

2
;
1

2

)
s→

(
1

t
,
t

2
;−1

2

)
r→

(
−1

t
,
t3 + 4

2t2
;
3

2

)
. (1.14)

Starting from the seed solution (q, p; b) = (0, t
2 ;

1
2), we can use Bäcklund transformations to generate

an infinite number of rational solutions at the paramter values b ∈ 1
2 + Z.

Remark: Let K = C(q, p, t, b) be the field of rational functions in (q, p, t, b) and define a derivation
δ : K → K by

δ(q) = p− q2 − t

2
, δ(p) = 2qp+ b, δ(t) = 1, δ(b) = 0. (1.15)

The pair (K, δ) is the differential field associated with the Hamiltonian systemHII. Then a Bäcklund
transformation of HII is interpreted as a field automorphism w : K → K is that commutes with the
derivation δ. W define two automorphisms s, r : K → K by

s : s(q) = q +
b

p
, s(p) = p, s(t) = t, s(b) = −b,

r : r(q) = −q, r(p) = −p+ 2q2 + t, r(t) = t, r(b) = 1− b.
(1.16)

Then, the computations presented as above imply that s and r commute with the derivation δ.
Note also that s2 = 1 and r2 = 1. On the b-line, s and r represent the reflections with respect to the
origin b = 0 and b = 1

2 , respectively. The group W̃ =
〈
s, r

〉
⊂ Autδ(K) is the extended affine Weyl

group of type A1. Since sr(b) = b+ 1, the Bäcklund transformation w = (sr)n (n ∈ Z) transforms
a generic solution (q, p) with parameter b to a solution (w(q), w(p)) with paramter w(b) = b+ n.

1.4 Classical solutions of HII

Theorem A:
(1) When b ∈ Z, HII(b) has a 1-paramter family of solutions which are expressible by the Airy
function and its derivatives.
(2) When b ∈ 1

2 + Z, HII(b) has a rational solution.

These solutions are obtained by Bäcklund transformations from those at b = 0 and b = 1
2 , respec-

tively. Also, it is known that any other solution of HII is very transcendental.

The rational solutions at b ∈ 1
2 + Z has a remarkable factorization property.

Theorem B: There are two sequences of polynomials Pn = Pn(t) and Qn = Qn(t) (n ∈ Z) in t
such that the rational solution at b = 1

2 − n is expressed in the form

q =
nQn

PnPn+1
, p =

Pn−1Pn+1

2P 2
n

, b =
1

2
− n (n ∈ Z). (1.17)
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Table 1: Generating Rational Solutions
b q p
...

...
...

−7
2

...
(t3 + 4)(t10 + 60t7 + 11200t)

2(t6 + 20t3 − 80)2

−5
2

3(t8 + 8t5 + 160t2)

(t3 + 4)(t6 + 20t3 − 80)

t(t6 + 20t3 − 80)

2(t3 + 4)2

−3
2

2(t3 − 2)

t(t3 + 4)

t3 + 4

2t2

−1
2

1

t

t

2

1
2 0

t

2

3
2 −1

t

t3 + 4

2t2

5
2 −2(t3 − 2)

t(t3 + 4)

t(t6 + 20t3 − 80)

2(t3 + 4)2

7
2 − 3(t8 + 8t5 + 160t2)

(t3 + 4)(t6 + 20t3 − 80)

(t3 + 4)(t10 + 60t7 + 11200t)

2(t6 + 20t3 − 80)2
...

...
...

Here, Pn and Qn are monic polynomials with integer coefficients and satisfy

degPn =
n(n− 1)

2
, Pn = P1−n; degQn = n2 − 1, Qn = Q−n. (1.18)

These polynomials Pn are called the Yablonski-Vorobiev polynomials:

P1 = 1, P2 = t, P3 = t3 + 4, P4 = t6 + 20t3 − 80, P5 = t10 + 60t7 + 11200t, . . .

Q0 = 0, Q1 = 1, Q2 = t3 − 2, Q3 = t8 + 8t5 + 160t2, . . .
(1.19)

2 Symmetric form of PIV

We now describe the symmetry of the fourth Painlevé equation

PIV : y′′ =
1

2y
(y′)2 +

3

2
y3 + 4ty2 + 2(t2 − α)y +

β

y
(2.1)

for y = y(t), ′ = d/dt, from a slightly different point of view.
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2.1 Symmetric form

We consider the following system of ordinary differential equations for three dependent variables
f0, f1, f2 with parameters α0, α1, α2:

SIV :


f ′
0 = f0(f1 − f2) + α0,

f ′
1 = f1(f2 − f0) + α1,

f ′
2 = f2(f0 − f1) + α2.

(2.2)

When α0 = α1 = α2, (2.2) reduces to the Lotka-Volterra equation (competition model for three
species.) Since

(f0 + f1 + f2)
′ = α0 + α1 + α2 = k (constant), (2.3)

we have f0 + f1 + f2 = kt + c. Assuming that k ̸= 0, we normalize the variables so that k = 1,
c = 0:

α0 + α1 + α2 = 1, f0 + f1 + f2 = t. (2.4)

In the following, we regard the indices for fj and αj as elements of Z/3Z. Then equation (2.2) has
a manifest rotation symmetry π of order 3:

π : π(fj) = fj+1, π(αj) = αj+1 (j ∈ Z/3Z); π3 = 1. (2.5)

Under the normalization condition (2.4), the system of differential equations (2.2) is equivalent to
the fourth Painlevé equation PIV. Since f0 = t− f1 − f2, we can eliminate f0:

f ′
1 = f1(f1 + 2f2 − t) + α1, f ′

2 = f2(t− 2f1 − f2) + α2. (2.6)

From these two equations, together with the one obtained from the second by differentiation, we
can eliminate f1 and f ′

1. The resulting equation for q = f2 is given by

q′′ =
1

2q
(q′)2 +

3

2
q3 − 2tq2 +

(
t2

2
+ α0 − α1

)
q − α2

2

2q
, (2.7)

which is identified with PIV above (by rescaling q and t).

2.2 Some special solutions

If we impose the symmetry condition α0 = α1 = α2 and f0 = f1 = f2, we obtain a rational solution

(α0, α1, α2; f0, f1, f2) =

(
1

3
,
1

3
,
1

3
;
t

3
,
t

3
,
t

3

)
(2.8)

(the fixed point of π). On the other hand, when α0 = 0, the equation f ′
0 = f0(f1 − f2) for f0 is

satisfied by f0 = 0. Since α1+α2 = 1 and f1+ f2 = t, the remaining equations give rise to a single
Riccati equation

f ′
1 = f1(t− f1) + α1 (2.9)

for f1. This Riccati equation is transformed by the change of variables f1 = u′/u to the linear
differential equation

u′′ − tu′ − α1u = 0 (2.10)
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Figure 1: Triangular Coordinate System

equivalent to Hermite’s differential equation. This means that, when α0 = 0, the system (2.2)

has a 1-parameter family of solutions (f0, f1, f2) = (0, φ
′

φ , t− φ′

φ ) which are expressible in terms of
Hermite functions.

Note that the parameter space for (α0, α1, α2) is the plane α0 + α1 + α2 = 1 in C3 endowed
with the triangular coordinate system. In this picture, the rational solution (2.8) is located at the
barycenter of the triangle ∆P0P1P2. Also, we know that along the three lines αj = 0 (j = 0, 1, 2)
bounding the triangle, there appear Riccati solutions expressible in terms of Hermite functions. At
the three vertices P0, P1, P2 where two lines intersect, there arise three simple rational solutions

(α0, α1, α2; f0, f1, f2) = (1, 0, 0 : t, 0, 0), (0, 1, 0 : 0, t, 0), (0, 0, 1 : 0, 0, t). (2.11)

On this parameter space, one can consider three reflections (mirror images) s0, s1, s2 with
respect to the three lines α0 = 0, α1 = 0, α2 = 0, and the rotation π by 120◦ around the barycenter
of ∆P0P1P2. The reflections sj and the rotation π act as follows on the field C(α0, α1, α2) of rational
functions on the parameter space:

α0 α1 α2

s0 −α0 α1 + α0 α2 + α0

s1 α0 + α1 −α1 α2 + α1

s2 α0 + α2 α1 + α2 −α2

π α1 α2 α0

(2.12)

The group W̃ =
〈
s0, s1, s2, π

〉
, generated by sj and π, is called the extended affine Weyl group of

type A2. As an abstract group, W̃ can be defined by the fundamental relations

s2j = 1, (sjsj+1)
3 = 1, πsj = sj+1π, π3 = 1, (2.13)

where j ∈ Z/3Z. 1

1It is sometimes more convenient to exclude the condition π3 = 1 from the set of fundamental relations.

6



Table 2: Bäcklund Transformations for the Symmetric Form of PIV

α0 α1 α2 f0 f1 f2

s0 −α0 α1 + α0 α2 + α0 f0 f1 +
α0

f0
f2 −

α0

f0

s1 α0 + α1 −α1 α2 + α1 f0 −
α1

f1
f1 f2 +

α1

f1

s2 α0 + α2 α1 + α2 −α2 f0 +
α2

f2
f1 −

α2

f2
f2

π α1 α2 α0 f1 f2 f0

2.3 Fundamental Bäcklund transformations

Returning to the symmetric form

SIV : f ′
j = fj(fj+1 − fj+2) + αj (j = 0, 1, 2), f0 + f1 + f2 = t, (2.14)

of PIV, we define three dependent variables g0, g1, g2 by

g0 = f0, g1 = f1 +
α0

f0
, g2 = f2 −

α0

f0
. (2.15)

The one can directly verify that g0, g1, g2 satisfy
g′0 = g0(g1 − g2)− α0

g′1 = g1(g2 − g0) + α1 + α0

g′2 = g2(g0 − g1) + α2 + α0.

(2.16)

Hence we obtain a Bäcklund transformation

(α0, α1, α3; f0, f1, f2) → (β0, β1, β2; g0, g1, g2) (2.17)

with the change of parameters

β0 = −α0, β1 = α1 + α0, β2 = α2 + α0. (2.18)

Note that the transformation of parameters (α0, α1, α2) → (β0, β1, β2) is nothing but the action
of the relfection s0 with respect to the line α0. For this reason, we use the same symbol s0 for
the Bäcklund transformation defined above. By the rotation of indices, we obtain the fundamental
Bäcklund transformations s0, s1, s2 together with π.

Theorem: The change of variables s0, s1, s2 and π specified by Table 2 define Bäcklund transfor-
mations for the symmetric form (2.2) of PIV. Furthermore, they satisfy the fundamental realtions

s2j = 1, (sjsj+1)
3 = 1, πsj = sj+1π (j ∈ Z/3Z), π3 = 1, (2.19)

of the extended affine Weyl group W̃ =
〈
s0, s1, s2, π

〉
of type A2.
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This means that the action of the exteded affine Weyl group on the parameter space lifts to the
level of the dependent variables fj of the differential system SIV.

Remark: We define two integer matrices A =
(
ai,j

)2
i,j=0

and U =
(
ui,j

)2
i,j=0

as follows:

A =

 2 −1 −1
−1 2 −1
−1 −1 2

 d d
d





 J

JJ

0

1 2

U =

 0 1 −1
−1 0 1
1 −1 0

 d d
d
-





� J

JJ]

0

1 2

(2.20)

The matrix A is the Cartan matrix of the affine root system of type A
(1)
2 , and U defines an orien-

tation on the corresponding Dynkin diagram. With these matrices, the Bäcklund transformations
s0, s1, s2 in Table 2 are simply described as

si(αj) = αj − αi aij , si(fj) = fj +
αi

fi
uij (i, j ∈ Z/3Z). (2.21)
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Table 3: The Six Painlevé Equations

PI : y′′ = 6y2 + t

PII : y′′ = 2y3 + ty + α

PIII : y′′ =
1

y
(y′)2 − 1

t
y′ +

1

t
(αy2 + β) + γy3 +

δ

y

PIV : y′′ =
1

2y
(y′)2 +

3

2
y3 + 4ty2 + 2(t2 − α)y +

β

y

PV : y′′ =

(
1

2y
+

1

y − 1

)
(y′)2 − 1

t
y′

+
(y − 1)2

t2

(
αy +

β

y

)
+

γ

t
y + δ

y(y + 1)

y − 1

PVI : y′′ =
1

2

(
1

y
+

1

y − 1
+

1

y − t

)
(y′)2 −

(
1

t
+

1

t− 1
+

1

y − t

)
y′

+
y(y − 1)(y − t)

t2(t− 1)2

(
α+ β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)

In this list, y = y(t) is the dependent variable and ′ = d/dt stands for the derivative with respect
to the independent variable t. The symbols α, β, . . . are parameters.

Table 4: The Hypergeometric Equation and its Confluences

Airy: u′′ − t u = 0

Bessel: u′′ +
1

t
u′ +

(
1− α2

t2

)
u = 0

Hermite: u′′ − 2 t u′ + 2αu = 0

Kummer: u′′ +
(γ
t
− 1

)
u′ − α

t
u = 0

Gauss: u′′ +
γ − (α+ β + 1)t

t(1− t)
u′ − αβ

t(1− t)
u = 0
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