Symmetries of Painlevé equations: Lecture 9 (B1)

by M. Noumi [April 16, 2021]

- References:

[1] M. Noumi: Painlevé Equations through Symmetry, Translations of Mathematical Monographs 223, American Mathematical Society, 2004. x+156 pp.
[2] K. Kajiwara, M. Noumi and Y. Yamada: Geometric aspects of Painlevé equations, Topical Review, J. Phys. A: Math. Theor. 50 (2017), 073001 (164 pp.)

1 An example: P_{II}

In order to describe some characteristic features of Painlevé equations, we begin by an example of the second Painlevé differential equation P_{II}.

1.1 Hamiltonian representation of $P_{\text {II }}$

We consider the second order nonlinear differential equation

$$
\begin{equation*}
P_{\mathrm{II}}=P_{\mathrm{II}}(b): \quad q^{\prime \prime}=2 q^{3}+t q+b-\frac{1}{2} \tag{1.1}
\end{equation*}
$$

for the unknown function $q=q(t)$, called P_{II}, where ${ }^{\prime}=d / d t$ and $b \in \mathbb{C}$. This equation can be equivalently written as a system of differential equations for two unkown functions $q=q(t)$ and $p=p(t)$

$$
\begin{equation*}
H_{\mathrm{II}}=H_{\mathrm{II}}(b): \quad q^{\prime}=p-q^{2}-\frac{t}{2}, \quad p^{\prime}=2 q p+b, \tag{1.2}
\end{equation*}
$$

where $q=y$. If we set

$$
\begin{equation*}
H=H(p, q ; t)=\frac{1}{2} p^{2}-\left(q^{2}+\frac{t}{2}\right) p-b q=\frac{1}{2} p\left(p-2 q^{2}-t\right)-b q, \tag{1.3}
\end{equation*}
$$

equation (1.2) is expressed as the Hamiltonian system

$$
\begin{equation*}
q^{\prime}=\frac{\partial H}{\partial p}, \quad p^{\prime}=-\frac{\partial H}{\partial q} \tag{1.4}
\end{equation*}
$$

with a time dependent Hamiltonian H.

1.2 Some special solutions

For some special values of $b \in \mathbb{C}, H_{\mathrm{II}}(b)$ has "elementary" special solutions.

- Case $\boldsymbol{b}=\frac{1}{2}: H_{\mathrm{II}}\left(\frac{1}{2}\right)$ has a simple rational solution $(q, p)=\left(0, \frac{t}{2}\right)$.
- Case $\boldsymbol{b}=\mathbf{0}: \quad H_{\mathrm{II}}(0)$ has a 1-paramter family of solutions expressible by Hermite functions.

Suppose $b=0$:

$$
\begin{equation*}
H_{\mathrm{II}}(0): \quad q^{\prime}=p-q^{2}-\frac{t}{2}, \quad p^{\prime}=2 q p \tag{1.5}
\end{equation*}
$$

If we set $p=0$, this equation is reduced to the Riccati equation

$$
\begin{equation*}
q^{\prime}=-q^{2}-\frac{t}{2} \tag{1.6}
\end{equation*}
$$

By the Hopf-Cole transformation $q=u^{\prime} / u$, it can be rewritten into the linear differential equation (equivalent to Airy's equation)

$$
\begin{equation*}
u^{\prime \prime}+\frac{t}{2} u=0 . \tag{1.7}
\end{equation*}
$$

Taking two linearly independent solutions $\varphi_{0}(t), \varphi_{1}(t)$ of (1.7), we obtain particular solutions

$$
\begin{equation*}
q=\frac{c_{0} \varphi_{0}^{\prime}(t)+c_{1} \varphi_{1}^{\prime}(t)}{c_{0} \varphi_{0}(t)+c_{1} \varphi_{1}(t)}, \quad p=0 \quad\left(c_{0}, c_{1} \in \mathbb{C} ;\left(c_{0}, c_{1}\right) \neq(0,0)\right) \tag{1.8}
\end{equation*}
$$

of $H_{\mathrm{II}}(0)$ parametrized by $\left[c_{0}: c_{1}\right] \in \mathbb{P}^{1}$.
Other elementary solutions?

1.3 Fundamental Bäcklund transformations s and r

There are changes of dependent variables that transform any generic solution of $H_{\text {II }}$ to another. Such transformations are called Bäcklund transformations.

Supposing that a pair of functions (q, p) satisfies $H_{\mathrm{II}}(b)$, we define

$$
\begin{equation*}
\widetilde{q}=q+\frac{b}{p}, \quad \widetilde{p}=p \tag{1.9}
\end{equation*}
$$

Then one can compute the equation to be satisfied by $(\widetilde{q}, \widetilde{p})$ as follows:

$$
\begin{align*}
\widetilde{q}^{\prime} & =q^{\prime}-\frac{b}{p^{2}} p^{\prime}=p-q^{2}-\frac{t}{2}-\frac{b}{p^{2}}(2 q p+b) \\
& =p-\left(q+\frac{b}{p}\right)^{2}-\frac{t}{2}=\widetilde{p}-\widetilde{q}^{2}-\frac{t}{2} \tag{1.10}\\
\widetilde{p}^{\prime} & =p^{\prime}=2 q p+b=2\left(q+\frac{b}{p}\right) p-b=2 \widetilde{q} \widetilde{p}-b .
\end{align*}
$$

This means that $(\widetilde{q}, \widetilde{p})$ is a solution of $H_{\text {II }}(-b)$. In other words, the Hamiltonian system $H_{\text {II }}$ is invariant under the change of dependent variables and the parameter

$$
\begin{equation*}
s: \quad \widetilde{q}=q+\frac{b}{p}, \quad \widetilde{p}=p, \quad \widetilde{b}=-b \tag{1.11}
\end{equation*}
$$

Similarly, one can verify that the change of variables

$$
\begin{equation*}
\widetilde{q}=-q, \quad \widetilde{p}=-p+2 q^{2}+t \tag{1.12}
\end{equation*}
$$

transforms any solution of $H_{\mathrm{II}}(b)$ to a solution $H(1-b)$. We call this transformation as

$$
\begin{equation*}
r: \quad \widetilde{q}=-q, \quad \widetilde{p}=-p+2 q^{2}+t, \quad \widetilde{b}=1-b . \tag{1.13}
\end{equation*}
$$

These s and r are the two fundamental Bäcklund transformations of H_{II}.
For example, applying these transformations to the rational solution $(q, p ; b)=\left(0, \frac{t}{2} ; \frac{1}{2}\right)$ of H_{II}, we obtain

$$
\begin{equation*}
\left(0, \frac{t}{2} ; \frac{1}{2}\right) \xrightarrow{s}\left(\frac{1}{t}, \frac{t}{2} ;-\frac{1}{2}\right) \xrightarrow{r}\left(-\frac{1}{t}, \frac{t^{3}+4}{2 t^{2}} ; \frac{3}{2}\right) . \tag{1.14}
\end{equation*}
$$

Starting from the seed solution $(q, p ; b)=\left(0, \frac{t}{2} ; \frac{1}{2}\right)$, we can use Bäcklund transformations to generate an infinite number of rational solutions at the paramter values $b \in \frac{1}{2}+\mathbb{Z}$.
Remark: Let $\mathcal{K}=\mathbb{C}(q, p, t, b)$ be the field of rational functions in (q, p, t, b) and define a derivation $\delta: \mathcal{K} \rightarrow \mathcal{K}$ by

$$
\begin{equation*}
\delta(q)=p-q^{2}-\frac{t}{2}, \quad \delta(p)=2 q p+b, \quad \delta(t)=1, \quad \delta(b)=0 . \tag{1.15}
\end{equation*}
$$

The pair (\mathcal{K}, δ) is the differential field associated with the Hamiltonian system $H_{\text {II }}$. Then a Bäcklund transformation of $H_{\text {II }}$ is interpreted as a field automorphism $w: \mathcal{K} \rightarrow \mathcal{K}$ is that commutes with the derivation δ. W define two automorphisms $s, r: \mathcal{K} \rightarrow \mathcal{K}$ by

$$
\begin{array}{llll}
s: & s(q)=q+\frac{b}{p}, & s(p)=p, & s(t)=t, \tag{1.16}\\
r: & r(q)=-q, & r(p)=-p+2 q^{2}+t, & r(t)=t, \\
r(b)=1-b .
\end{array}
$$

Then, the computations presented as above imply that s and r commute with the derivation δ. Note also that $s^{2}=1$ and $r^{2}=1$. On the b-line, s and r represent the reflections with respect to the origin $b=0$ and $b=\frac{1}{2}$, respectively. The group $\widetilde{W}=\langle s, r\rangle \subset \operatorname{Aut}_{\delta}(\mathcal{K})$ is the extended affine Weyl group of type A_{1}. Since $s r(b)=b+1$, the Bäcklund transformation $w=(s r)^{n}(n \in \mathbb{Z})$ transforms a generic solution (q, p) with parameter b to a solution $(w(q), w(p))$ with paramter $w(b)=b+n$.

1.4 Classical solutions of $H_{\text {II }}$

Theorem A:

(1) When $b \in \mathbb{Z}, H_{\mathrm{II}}(b)$ has a 1-paramter family of solutions which are expressible by the Airy function and its derivatives.
(2) When $b \in \frac{1}{2}+\mathbb{Z}, H_{\text {II }}(b)$ has a rational solution.

These solutions are obtained by Bäcklund transformations from those at $b=0$ and $b=\frac{1}{2}$, respectively. Also, it is known that any other solution of $H_{\text {II }}$ is very transcendental.

The rational solutions at $b \in \frac{1}{2}+\mathbb{Z}$ has a remarkable factorization property.
Theorem B: There are two sequences of polynomials $P_{n}=P_{n}(t)$ and $Q_{n}=Q_{n}(t)(n \in \mathbb{Z})$ in t such that the rational solution at $b=\frac{1}{2}-n$ is expressed in the form

$$
\begin{equation*}
q=\frac{n Q_{n}}{P_{n} P_{n+1}}, \quad p=\frac{P_{n-1} P_{n+1}}{2 P_{n}^{2}}, \quad b=\frac{1}{2}-n \quad(n \in \mathbb{Z}) . \tag{1.17}
\end{equation*}
$$

Table 1: Generating Rational Solutions

b	q	p
\vdots	\vdots	\vdots
$-\frac{7}{2}$	\vdots	$\frac{\left(t^{3}+4\right)\left(t^{10}+60 t^{7}+11200 t\right)}{2\left(t^{6}+20 t^{3}-80\right)^{2}}$
$-\frac{5}{2}$	$\frac{3\left(t^{8}+8 t^{5}+160 t^{2}\right)}{\left(t^{3}+4\right)\left(t^{6}+20 t^{3}-80\right)}$	$\frac{t\left(t^{6}+20 t^{3}-80\right)}{2\left(t^{3}+4\right)^{2}}$
$-\frac{3}{2}$	$\frac{2\left(t^{3}-2\right)}{t\left(t^{3}+4\right)}$	$\frac{t^{3}+4}{2 t^{2}}$
$-\frac{1}{2}$	$\frac{1}{t}$	$\frac{t}{2}$
$\frac{1}{2}$	0	$\frac{t}{2}$
$\frac{3}{2}$	$-\frac{1}{t}$	$\frac{t^{3}+4}{2 t^{2}}$
$\frac{5}{2}$	$-\frac{2\left(t^{3}-2\right)}{t\left(t^{3}+4\right)}$	$\frac{t\left(t^{6}+20 t^{3}-80\right)}{2\left(t^{3}+4\right)^{2}}$
$\frac{7}{2}$	$-\frac{3\left(t^{8}+8 t^{5}+160 t^{2}\right)}{\left(t^{3}+4\right)\left(t^{6}+20 t^{3}-80\right)}$	$\frac{\left(t^{3}+4\right)\left(t^{10}+60 t^{7}+11200 t\right)}{2\left(t^{6}+20 t^{3}-80\right)^{2}}$
\vdots	\vdots	\vdots

Here, P_{n} and Q_{n} are monic polynomials with integer coefficients and satisfy

$$
\begin{equation*}
\operatorname{deg} P_{n}=\frac{n(n-1)}{2}, \quad P_{n}=P_{1-n} ; \quad \operatorname{deg} Q_{n}=n^{2}-1, \quad Q_{n}=Q_{-n} \tag{1.18}
\end{equation*}
$$

These polynomials P_{n} are called the Yablonski-Vorobiev polynomials:

$$
\begin{align*}
& P_{1}=1, \quad P_{2}=t, \quad P_{3}=t^{3}+4, \quad P_{4}=t^{6}+20 t^{3}-80, \quad P_{5}=t^{10}+60 t^{7}+11200 t, \ldots \\
& Q_{0}=0, \quad Q_{1}=1, \quad Q_{2}=t^{3}-2, \quad Q_{3}=t^{8}+8 t^{5}+160 t^{2}, \quad \ldots \tag{1.19}
\end{align*}
$$

2 Symmetric form of $\boldsymbol{P}_{\mathrm{IV}}$

We now describe the symmetry of the fourth Painlevé equation

$$
\begin{equation*}
P_{\mathrm{IV}}: \quad y^{\prime \prime}=\frac{1}{2 y}\left(y^{\prime}\right)^{2}+\frac{3}{2} y^{3}+4 t y^{2}+2\left(t^{2}-\alpha\right) y+\frac{\beta}{y} \tag{2.1}
\end{equation*}
$$

for $y=y(t),^{\prime}=d / d t$, from a slightly different point of view.

2.1 Symmetric form

We consider the following system of ordinary differential equations for three dependent variables f_{0}, f_{1}, f_{2} with parameters $\alpha_{0}, \alpha_{1}, \alpha_{2}$:

$$
S_{\mathrm{IV}}:\left\{\begin{array}{l}
f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}\right)+\alpha_{0} \tag{2.2}\\
f_{1}^{\prime}=f_{1}\left(f_{2}-f_{0}\right)+\alpha_{1} \\
f_{2}^{\prime}=f_{2}\left(f_{0}-f_{1}\right)+\alpha_{2}
\end{array}\right.
$$

When $\alpha_{0}=\alpha_{1}=\alpha_{2},(2.2)$ reduces to the Lotka-Volterra equation (competition model for three species.) Since

$$
\begin{equation*}
\left(f_{0}+f_{1}+f_{2}\right)^{\prime}=\alpha_{0}+\alpha_{1}+\alpha_{2}=k \quad(\text { constant }), \tag{2.3}
\end{equation*}
$$

we have $f_{0}+f_{1}+f_{2}=k t+c$. Assuming that $k \neq 0$, we normalize the variables so that $k=1$, $c=0$:

$$
\begin{equation*}
\alpha_{0}+\alpha_{1}+\alpha_{2}=1, \quad f_{0}+f_{1}+f_{2}=t . \tag{2.4}
\end{equation*}
$$

In the following, we regard the indices for f_{j} and α_{j} as elements of $\mathbb{Z} / 3 \mathbb{Z}$. Then equation (2.2) has a manifest rotation symmetry π of order 3:

$$
\begin{equation*}
\pi: \quad \pi\left(f_{j}\right)=f_{j+1}, \quad \pi\left(\alpha_{j}\right)=\alpha_{j+1} \quad(j \in \mathbb{Z} / 3 \mathbb{Z}) ; \quad \pi^{3}=1 \tag{2.5}
\end{equation*}
$$

Under the normalization condition (2.4), the system of differential equations (2.2) is equivalent to the fourth Painlevé equation P_{IV}. Since $f_{0}=t-f_{1}-f_{2}$, we can eliminate f_{0} :

$$
\begin{equation*}
f_{1}^{\prime}=f_{1}\left(f_{1}+2 f_{2}-t\right)+\alpha_{1}, \quad f_{2}^{\prime}=f_{2}\left(t-2 f_{1}-f_{2}\right)+\alpha_{2} . \tag{2.6}
\end{equation*}
$$

From these two equations, together with the one obtained from the second by differentiation, we can eliminate f_{1} and f_{1}^{\prime}. The resulting equation for $q=f_{2}$ is given by

$$
\begin{equation*}
q^{\prime \prime}=\frac{1}{2 q}\left(q^{\prime}\right)^{2}+\frac{3}{2} q^{3}-2 t q^{2}+\left(\frac{t^{2}}{2}+\alpha_{0}-\alpha_{1}\right) q-\frac{\alpha_{2}^{2}}{2 q} \tag{2.7}
\end{equation*}
$$

which is identified with P_{IV} above (by rescaling q and t).

2.2 Some special solutions

If we impose the symmetry condition $\alpha_{0}=\alpha_{1}=\alpha_{2}$ and $f_{0}=f_{1}=f_{2}$, we obtain a rational solution

$$
\begin{equation*}
\left(\alpha_{0}, \alpha_{1}, \alpha_{2} ; f_{0}, f_{1}, f_{2}\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} ; \frac{t}{3}, \frac{t}{3}, \frac{t}{3}\right) \tag{2.8}
\end{equation*}
$$

(the fixed point of π). On the other hand, when $\alpha_{0}=0$, the equation $f_{0}^{\prime}=f_{0}\left(f_{1}-f_{2}\right)$ for f_{0} is satisfied by $f_{0}=0$. Since $\alpha_{1}+\alpha_{2}=1$ and $f_{1}+f_{2}=t$, the remaining equations give rise to a single Riccati equation

$$
\begin{equation*}
f_{1}^{\prime}=f_{1}\left(t-f_{1}\right)+\alpha_{1} \tag{2.9}
\end{equation*}
$$

for f_{1}. This Riccati equation is transformed by the change of variables $f_{1}=u^{\prime} / u$ to the linear differential equation

$$
\begin{equation*}
u^{\prime \prime}-t u^{\prime}-\alpha_{1} u=0 \tag{2.10}
\end{equation*}
$$

Figure 1: Triangular Coordinate System
equivalent to Hermite's differential equation. This means that, when $\alpha_{0}=0$, the system (2.2) has a 1-parameter family of solutions $\left(f_{0}, f_{1}, f_{2}\right)=\left(0, \frac{\varphi^{\prime}}{\varphi}, t-\frac{\varphi^{\prime}}{\varphi}\right)$ which are expressible in terms of Hermite functions.

Note that the parameter space for $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ is the plane $\alpha_{0}+\alpha_{1}+\alpha_{2}=1$ in \mathbb{C}^{3} endowed with the triangular coordinate system. In this picture, the rational solution (2.8) is located at the barycenter of the triangle $\Delta P_{0} P_{1} P_{2}$. Also, we know that along the three lines $\alpha_{j}=0(j=0,1,2)$ bounding the triangle, there appear Riccati solutions expressible in terms of Hermite functions. At the three vertices P_{0}, P_{1}, P_{2} where two lines intersect, there arise three simple rational solutions

$$
\begin{equation*}
\left(\alpha_{0}, \alpha_{1}, \alpha_{2} ; f_{0}, f_{1}, f_{2}\right)=(1,0,0: t, 0,0), \quad(0,1,0: 0, t, 0), \quad(0,0,1: 0,0, t) \tag{2.11}
\end{equation*}
$$

On this parameter space, one can consider three reflections (mirror images) s_{0}, s_{1}, s_{2} with respect to the three lines $\alpha_{0}=0, \alpha_{1}=0, \alpha_{2}=0$, and the rotation π by 120° around the barycenter of $\Delta P_{0} P_{1} P_{2}$. The reflections s_{j} and the rotation π act as follows on the field $\mathbb{C}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ of rational functions on the parameter space:

	α_{0}	α_{1}	α_{2}
s_{0}	$-\alpha_{0}$	$\alpha_{1}+\alpha_{0}$	$\alpha_{2}+\alpha_{0}$
s_{1}	$\alpha_{0}+\alpha_{1}$	$-\alpha_{1}$	$\alpha_{2}+\alpha_{1}$
s_{2}	$\alpha_{0}+\alpha_{2}$	$\alpha_{1}+\alpha_{2}$	$-\alpha_{2}$
π	α_{1}	α_{2}	α_{0}

The group $\widetilde{W}=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle$, generated by s_{j} and π, is called the extended affine Weyl group of type A_{2}. As an abstract group, \widetilde{W} can be defined by the fundamental relations

$$
\begin{equation*}
s_{j}^{2}=1, \quad\left(s_{j} s_{j+1}\right)^{3}=1, \quad \pi s_{j}=s_{j+1} \pi, \quad \pi^{3}=1 \tag{2.13}
\end{equation*}
$$

where $j \in \mathbb{Z} / 3 \mathbb{Z} .{ }^{1}$

[^0]Table 2: Bäcklund Transformations for the Symmetric Form of $P_{\text {IV }}$

	α_{0}	α_{1}	α_{2}	f_{0}	f_{1}	f_{2}
s_{0}	$-\alpha_{0}$	$\alpha_{1}+\alpha_{0}$	$\alpha_{2}+\alpha_{0}$	f_{0}	$f_{1}+\frac{\alpha_{0}}{f_{0}}$	$f_{2}-\frac{\alpha_{0}}{f_{0}}$
s_{1}	$\alpha_{0}+\alpha_{1}$	$-\alpha_{1}$	$\alpha_{2}+\alpha_{1}$	$f_{0}-\frac{\alpha_{1}}{f_{1}}$	f_{1}	$f_{2}+\frac{\alpha_{1}}{f_{1}}$
s_{2}	$\alpha_{0}+\alpha_{2}$	$\alpha_{1}+\alpha_{2}$	$-\alpha_{2}$	$f_{0}+\frac{\alpha_{2}}{f_{2}}$	$f_{1}-\frac{\alpha_{2}}{f_{2}}$	f_{2}
π	α_{1}	α_{2}	α_{0}	f_{1}	f_{2}	f_{0}

2.3 Fundamental Bäcklund transformations

Returning to the symmetric form

$$
\begin{equation*}
S_{\mathrm{IV}}: \quad f_{j}^{\prime}=f_{j}\left(f_{j+1}-f_{j+2}\right)+\alpha_{j} \quad(j=0,1,2), \quad f_{0}+f_{1}+f_{2}=t \tag{2.14}
\end{equation*}
$$

of P_{IV}, we define three dependent variables g_{0}, g_{1}, g_{2} by

$$
\begin{equation*}
g_{0}=f_{0}, \quad g_{1}=f_{1}+\frac{\alpha_{0}}{f_{0}}, \quad g_{2}=f_{2}-\frac{\alpha_{0}}{f_{0}} \tag{2.15}
\end{equation*}
$$

The one can directly verify that g_{0}, g_{1}, g_{2} satisfy

$$
\left\{\begin{array}{l}
g_{0}^{\prime}=g_{0}\left(g_{1}-g_{2}\right)-\alpha_{0} \tag{2.16}\\
g_{1}^{\prime}=g_{1}\left(g_{2}-g_{0}\right)+\alpha_{1}+\alpha_{0} \\
g_{2}^{\prime}=g_{2}\left(g_{0}-g_{1}\right)+\alpha_{2}+\alpha_{0}
\end{array}\right.
$$

Hence we obtain a Bäcklund transformation

$$
\begin{equation*}
\left(\alpha_{0}, \alpha_{1}, \alpha_{3} ; f_{0}, f_{1}, f_{2}\right) \rightarrow\left(\beta_{0}, \beta_{1}, \beta_{2} ; g_{0}, g_{1}, g_{2}\right) \tag{2.17}
\end{equation*}
$$

with the change of parameters

$$
\begin{equation*}
\beta_{0}=-\alpha_{0}, \quad \beta_{1}=\alpha_{1}+\alpha_{0}, \quad \beta_{2}=\alpha_{2}+\alpha_{0} \tag{2.18}
\end{equation*}
$$

Note that the transformation of parameters $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right) \rightarrow\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$ is nothing but the action of the relfection s_{0} with respect to the line α_{0}. For this reason, we use the same symbol s_{0} for the Bäcklund transformation defined above. By the rotation of indices, we obtain the fundamental Bäcklund transformations s_{0}, s_{1}, s_{2} together with π.

Theorem: The change of variables s_{0}, s_{1}, s_{2} and π specified by Table 2 define Bäcklund transformations for the symmetric form (2.2) of P_{IV}. Furthermore, they satisfy the fundamental realtions

$$
\begin{equation*}
s_{j}^{2}=1, \quad\left(s_{j} s_{j+1}\right)^{3}=1, \quad \pi s_{j}=s_{j+1} \pi \quad(j \in \mathbb{Z} / 3 \mathbb{Z}), \quad \pi^{3}=1 \tag{2.19}
\end{equation*}
$$

of the extended affine Weyl group $\widetilde{W}=\left\langle s_{0}, s_{1}, s_{2}, \pi\right\rangle$ of type A_{2}.

This means that the action of the exteded affine Weyl group on the parameter space lifts to the level of the dependent variables f_{j} of the differential system $S_{\text {IV }}$.
Remark: We define two integer matrices $A=\left(a_{i, j}\right)_{i, j=0}^{2}$ and $U=\left(u_{i, j}\right)_{i, j=0}^{2}$ as follows:

$$
A=\left[\begin{array}{ccc}
2 & -1 & -1 \tag{2.2.2}\\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] \stackrel{\mathrm{O}_{1}}{\stackrel{0}{0} \mathrm{O}_{2}} U=\left[\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right] \text { (}
$$

The matrix A is the Cartan matrix of the affine root system of type $A_{2}^{(1)}$, and U defines an orientation on the corresponding Dynkin diagram. With these matrices, the Bäcklund transformations s_{0}, s_{1}, s_{2} in Table 2 are simply described as

$$
\begin{equation*}
s_{i}\left(\alpha_{j}\right)=\alpha_{j}-\alpha_{i} a_{i j}, \quad s_{i}\left(f_{j}\right)=f_{j}+\frac{\alpha_{i}}{f_{i}} u_{i j} \quad(i, j \in \mathbb{Z} / 3 \mathbb{Z}) \tag{2.21}
\end{equation*}
$$

Table 3: The Six Painlevé Equations
$P_{\mathrm{I}}: \quad y^{\prime \prime}=6 y^{2}+t$
$P_{\text {II }}: \quad y^{\prime \prime}=2 y^{3}+t y+\alpha$
$P_{\text {III }}: \quad y^{\prime \prime}=\frac{1}{y}\left(y^{\prime}\right)^{2}-\frac{1}{t} y^{\prime}+\frac{1}{t}\left(\alpha y^{2}+\beta\right)+\gamma y^{3}+\frac{\delta}{y}$
$P_{\mathrm{IV}}: \quad y^{\prime \prime}=\frac{1}{2 y}\left(y^{\prime}\right)^{2}+\frac{3}{2} y^{3}+4 t y^{2}+2\left(t^{2}-\alpha\right) y+\frac{\beta}{y}$
$P_{\mathrm{V}}: \quad y^{\prime \prime}=\left(\frac{1}{2 y}+\frac{1}{y-1}\right)\left(y^{\prime}\right)^{2}-\frac{1}{t} y^{\prime}$
$+\frac{(y-1)^{2}}{t^{2}}\left(\alpha y+\frac{\beta}{y}\right)+\frac{\gamma}{t} y+\delta \frac{y(y+1)}{y-1}$

$$
\begin{aligned}
P_{\mathrm{VI}}: \quad y^{\prime \prime}= & \frac{1}{2}\left(\frac{1}{y}+\frac{1}{y-1}+\frac{1}{y-t}\right)\left(y^{\prime}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{y-t}\right) y^{\prime} \\
& +\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta \frac{t}{y^{2}}+\gamma \frac{t-1}{(y-1)^{2}}+\delta \frac{t(t-1)}{(y-t)^{2}}\right)
\end{aligned}
$$

In this list, $y=y(t)$ is the dependent variable and ${ }^{\prime}=d / d t$ stands for the derivative with respect to the independent variable t. The symbols α, β, \ldots are parameters.

Table 4: The Hypergeometric Equation and its Confluences

$$
\begin{aligned}
\text { Airy: } & u^{\prime \prime}-t u=0 \\
\text { Bessel: } & u^{\prime \prime}+\frac{1}{t} u^{\prime}+\left(1-\frac{\alpha^{2}}{t^{2}}\right) u=0 \\
\text { Hermite: } & u^{\prime \prime}-2 t u^{\prime}+2 \alpha u=0 \\
\text { Kummer: } & u^{\prime \prime}+\left(\frac{\gamma}{t}-1\right) u^{\prime}-\frac{\alpha}{t} u=0 \\
\text { Gauss: } & u^{\prime \prime}+\frac{\gamma-(\alpha+\beta+1) t}{t(1-t)} u^{\prime}-\frac{\alpha \beta}{t(1-t)} u=0
\end{aligned}
$$

[^0]: ${ }^{1}$ It is sometimes more convenient to exclude the condition $\pi^{3}=1$ from the set of fundamental relations.

