Symmetries of Painlevé equations: Lecture 10 (B2)

by M. Noumi [April 23, 2021]

3 7 Functions

3.1 Poisson structure and Hamiltonian representation

Recall that our symmetric form of Py is defined by

Swv: o fo=Tfolfi— fo) +ao, fi=fi(fo—fo)+ai, fo=Folfo—fi)+ (3.1)

with normalizaion ag + a1 + @ =1 and fo+ f1 + fo =t

Denoting by K = C(ag, a1, a; fo, fi, f2) the field of rational functions in o and f; (7 =0,1,2),
we introduce a Poisson bracket { , } on K by

0 1 -1
{p, 0} = Zaf,u”af (i, € {0,1,2}), U= (uij);, o= {1 0 1], (3.2)

,7=0

so that {fi, f;} = wij, {05} ={a, f;} =0.

{fo, it =1, {fi.fo} =1 (3.3)
{fi,fo} =1, {fo, i} =-1 [O——04 '

{fo, fo} =1, {fo,fo} =-1
By a Poisson bracket, we mean a C-bilinear form { , }: K x K — K satisfying the conditions

(1) {fvf}:()7 {gaf}:_{fag}v
2) A{fo.hy=Arhrg+ f{g.h}, {f,gh}={fgth+g{f R}, (3.4)
3) {f{g, n}} +{g.{h, f1} +{hAf 9}} = 0.

Then the system of differential equations (3.1) is expressed as

féZ{Haf0}+1a f{:{Hufl}’ fé:{H’fQ} (35)
in terms of the Hamiltonian
H = fofifa+ 5(0n —a2)fo+ 5(0n +202)f1 — 5 (2o + ). (3.6)



From this expression, we see that, for any ¢ € K, the derivation’ : K — K defining Sty is described
as

d¢
'={H, o} + . 3.7
¢ ={H, ¢} s (3.7)
We set p = f1, ¢ = f2 so that
Jo=t—-p—q, fi=p, fa=q foth+f2=t (3.8)
Then we have
{p,at =1, {p.p}={a,at =0, {p.t} ={q,t} ={t,t} =0. (3.9)
Note also that £ = C(ay, a1, a2;p, ¢;t). In terms of the coordinates (g, p;t), we have
Op 0 D 9y
_0p0Y 0p0y 3.10
and .
H = (t = q=p)pg+azp — cng + g(ar - az)t. (3.11)
From this, we see that the symmetric form of Py is equivalent to the Hamiltonian system
0OH 0OH
' (H =2 = (Hpy = =2 3.12
q{q}app{p} 94 (3.12)
Namely
Hy: ¢ =qlt—q—2p)+as, p=p2q+p—1t)+ai. (3.13)

We also remark that the Biacklund transformations s; (i = 0,1, 2) are described as
@ .

in terms of the Poisson bracket. Furthermore, one can verify that, for any w € W = <30, S1, 82, 7T>,
the corresponding Béacklund transformation w : I — C defines a canonical transformation in the
sense that

w({p,¥}) = {w(p),w®)}  (p,¢ €K). (3.15)

This means that the extended Weyl group W = <50, 51, 52,7r> is realized as a group of birational
canonical transformations which preserve the differential system Sty invariant.

3.2 7 Functions

In order to recover the cyclic symmetry, we intoduce three Hamiltonians hg, hi, he by hg = H,
hl = W(ho), hg = ﬂ'(hl)t

ho = fofif2 + %(041 —a2)fo+ %(Oq +2a9)f1 — %(2(11 + a2) fa,
hi = fofifa + %(062 —ao)f1+ %(042 + 2a0) f2 — é(%éz + ao) fo, (3.16)

ha = fofifa + %(Oéo —a1)fa+ %(040 +2a1) fo — %(2040 + o) fi1.
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We introduce three 7 functions (7 variables) 79, 71, 2 as dependent variables such that

7_/ / /
ho=-2, hi=- hy=2 (3.17)

70 1 T2

Formally, we can write h; = (log ;)" and 7, = exp([ hidt) (i = 0,1,2). Then, by (3.16), we see
directly that the f variables are recovered as

fo=hy—h +-=-2_—"14 (3.18)

We now compute the differential equations to be satisfied by h;. Since H = hg, we have

Oh 1
ho = {ho, ho} + 7 = fifa+ (01 — az) (3.19)
dfo 3
Combinig three formulas
; 1 , 1 , 1
0= fifet gl —a2), = fafot (a2 —a0), hy=fofi+ (a0 —aw), (3.20)
one can verify that
, 9 T 2, 1
(ho + h1)" + (ho — h1)* + g(ho —hy) — §t + 5(040 —ap)=0. (3.21)

Using h; = 7//7;, this equation can be rewritten into the bilinear equation

t 2 1
o = 27 + Tty + 5(7'67'1 — 107} — (§t2 - g(ao - al))mﬁ =0, (3.22)
namely,
t 2 1
<Dt2+th—§t2+§(0&0—@1))70'71 =0 (3.23)

in terms of the Hirota derivatives
Di(f-9)=fg—fd., Di(f-9)=f'g9-2f9g+fd", ... (3.24)

In this way, the differential system Sty is translated into the system of bilinear differential equations

t 2 1
(Df +3Di - §t2 + 3 (a0 - oq))To -1 =0,
9 2, 1
(Dt + th - §t + g(al - 042))7'1 -T2 =0, (3.25)
t 2 1
(Dt2 =+ th — §t2 + g(O{Q — ao))Tg -10=0
for the 7 functions 7y, 71, 7. The f variables are recovered from the 7 functions by
T ot T Tt T o1y ot
fo=2-24+2, A=2-24-, p=2L-2L4- (3.26)
T T 3 T T2 3 T T 3
namely
Di+ )17 Di+ 810+ 72 Di+Hm-m
Jo= %, h= %7 Ja = % (3.27)
T2T1 T0T2 7170
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3.3 Lifting the Backlund transformations to the 7 functions

It is not an obvious procedure to find Béacklund transformations for the 7 functions.

Noting that h; = Tj’~ /7 = (log7;), we investigate how the three hamiltonians transform by the
action of W. It is a direct computation, but the result is interesting:

. . (07

si(hj)=h; (i#7), sj(h;)=hj+ 2>

fi

Namely, h; is invariant under s; (i # j) and transforms by s; only. (This means that h; and 7; are

in some way attached to the fundamental weights of the affine root system, while f; correspond to

the simple roots «;.) Noting that fi — fo = 2hg — h1 — hg, from

(i,5 € {0,1,2}). (3.28)

/
E =2ho — h1 —h2+%, 80<h0) :ho—i-@, (3.29)
fo fo fo
we obtain )
So(ho) = ;,0 + h1 + ho — hg. (3.30)
0
This means that ) , . , ,
80(E> =l n,. 2 To (3.31)
0 fo ™ T T
which would imply
s0(10) = const. fy nr, (3.32)
70
Theorem: Define the trasformations sg, s1, so and 7 for 7 functios by
L, Tj—1Tj+1 ..
SZ‘(T]‘):T]‘ (Z#]), Sj(Tj):fj%, W(Tj):Tj+1 (Z,j EZ/SZ) (333)
J

Then, these commute with the derivation ’, providing Backlund transformations for 7 functions.
Furthermore, they satisfy the fundamental relations

812 = 1, (8i8i+1)3 = 1, TS = Sj41T (Z € Z/?)Z), 7r3 =1 (3.34)
for W, with respect to all the variables including 7 functions.

Wer remark that the variables f; are recovered from 7 functions by

fi= 75 5(75) (j € Z/3Z) (3.35)
Tj—1Tj+1

in terms of the fundamental Backlund transformations s;. Recall that

s1(f2) = fo+ % sa(f1) = fr — =2 (3.36)
1 f2

In terms of the 7 functions, these two equations can be rewritten as
T15182(T2) — $1(71)82(T2) = 04173, s1(11)s2(m2) — s2s1(11)T2 = 042702 (3.37)
Then, eliminating 7y we obtain the Hirota-Miwa equation
(g — 1) s1(11) s2(T2) + a1 $251(T1) T2 + 2 71 5152(72) =0 (3.38)

relating six 7 functions placed at the vertices of a regular hexagon.



3.4 Computation of Backlund transformations

Let we W = <30, 81, S2, 7r> an element of the extended affine Weyl group, and set

Bj = w(ay) € Q = Zapg ® Zan © Zaz,  gj = w(fj) € Clag, a1, az; fo, f1, f2) (3.39)

for each j € Z/37Z. Then, from a generic solution (g, a1, ag; fo, f1, f2) of Sty we obtain a new
soluiotn (o, B1, B2; 9o, g1, 92) of Stv.

¢ Some examples:

ar _ fifet o
s1(f2) = [2 +f T n

B o+ folfifo+an)
s251(f2) = f2 + 1= % fif2—a

aog 2000 + a1 + o

sos2s1(f2) = fa — A Ty }10+(;2
_ (fof2— Oéo)(fgflfQ + (ap + 1) f§ — aofolfi1 — f2) — ap) (3.40)
fo(fef1f2 — (a0 + a2) fE — aofo(fi — f2) — ad)
si(r) = f—

2

s2s1(m1) = (fifa — 042)7*0
T2

sos251(11) = (f§ fifo — (a0 + 1) f§ — anfo(fr — f2)) — )TlT?

0

Theorem: For each w € W = < , 81,82, T > and 7 = 0,1, 2, there exists a unique polynomial
¢w,j € Z[aoaalaa%f()aflvf?] ( 0 ) such that

w(rj) = b1 Ty? (ko ki ke € Z), (3.41)

where ko, k1, k2 are determined from w and j. The Bécklund transformations w(f;) of f; are then
expressed as

w(ry) wsj(m5) _ Puwi Dus;,
W(Tj—)W(Tj+1)  Pwj—1 Pwj+1

This theorem explains the factorization property of the Backlund transformations. We call ¢, ;

the ¢ factor for the 7 function w(7;); this family of polynomials ¢, ; (w € W ,7 =0,1,2) is also
called the 7 cocycle. Note that ¢, ; satisfy

P15=1, Psw;= (¢md) f Y Orwg = W((z)w,j); (3.43)

By this recursion, ¢,, ; are determined as rational functions in fy, f1, f2, but it is known that they
are in fact polynomials.



3.5 Translations in the extended affine Weyl group

We remark that the extended affine Weyl group W = <so,31,32,7r> contains the commutative
subgroup of translations. We denote by T1,T5,T5 the translations with respect to the edges PyPy,
PPy, PPy of the regular triangle APy P P>, respectively. They are expressed as

T1 = TS281, T2 = 81789, T3 = S$9281T (3.44)

in terms of the generators of the extended affine Weyl group w.

()41:0 04121

: ? (3.45)
v/ v
m=ONA O AA N
ANAY 1
By the fundamental relations of W, one can directly verify that
T =11 (1,7 =1,2,3), TTTs = 1. (3.46)

From this construction, we see that the extended Weyl group W= < 80, S1, S2, ’7T> is expressed as the
semi-direct product of (s1,s2) = &3 (s1 = (12), s = (24)) and the abelian subgroup of translations:

W=63xT, T= {TllTQmT:? |, m,n € Z} L oy =Ty (0€G5i=1,23). (347

We now look at the action of 77 = wsgs1 on «; , f; and 7;. (Since 7(T1) = Ta, 7(T2) = T3, the
corresponding formulas for T and T3 are obtained by the diagram rotation .)
Tl(Oé()) =aqg+ 1, Tl(al) =a; — 1, Tl(ozz) = Q.

Ti(fo) = f1 + 22 — 22 tao _ fifif2 — aofofi + aofofo — (a0 + a2) f§ — af

o fi—F fo(fofo — ) ’
_ o _ fofama _ ao+az  fo(fofa + az) (3.48)
T(f)=h-3=""7— T)=lo+ =% = fofa—co

2
Ti(ro) =71, Ti(n)=(fof2— o)L, Ti(r)= for2.
70 0

We remark that this Bécklund transformation 77 can be regarded as the time evolution of a discrete
Painlevé equation. By iterating 17, we set

o =T1'(f1), yu=T7(fo) (n€Z) (3.49)
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Figure 1: 7-Functions on the Lattice: 7, = Timn,0

Then from
L) =h-F=t=fo-fi=5 T =ftg=t—fo-fitg ()
we obtain
Tn+ Tpy1 =t — Yn — a0+n’ yn_1+yn:t—xn+a1x—n (n€Z). (3.51)
n n

This recurrence is (a version of) the discret Painlevé equation Piy; if fact, one can show that it
passes to the Painlevé equation Pi; by an appropriate continuum limit.

A more systematic way to understand the discrete symmetry of Sty is to use the lattice 7
functions on the triangular lattice.

n=T"T5(19) (m,n €Z). (3.52)

Note that 1790 = 70, 71,0 = 71, 71,1 = T2. The we have three types of bilinear equations for the
lattice T-functions.

(A) Bilinear differential equations of Hirota type:

22 ag—ai+2m—n
D2 —+ Dt + 0 ! Tmun * Tm+1n = 0 (353)
3 9 3
(B) Toda equation:
1 ag— a1 +2m—n—1
Tm—1nTm+1n = <2D152 S ! 3 > Tmn " Tmn- (354)

(C) Hirota-Miwa equation:

(Oéo +m — 1) Tmn—1Tmn+l T (041 —m+ TL) Tm+1n+1 Tm—1,n—1 + (OQ - TL) Tm—1n Tm+1n = 0. (355)



Note also that there exist the ¢ factors ¢, n € Zlow, a1, a2; fo, f1, f2] such that
T = Gmn To TS (myn € Z). (3.56)
The corresponding f variables are then expressed as

TmnTm+2,n+1 ¢m,n¢m+2,n+1

90 = TT"13(fo) = = ;
Tm+1,nTm+1,n+1 ¢m+1,n¢m+1,n+1

T 1,nT 1 1 1
g = TlmTQH(fl) _ m~+1,n'm,n+ — ¢m+ ,n¢m,n+ ? (3‘57)
TmnTm+1,n+1 ¢m,n¢m+l,n+l
go = Tlngn(fQ) _ Tm4+1n+1Tmn—1 _ ¢m+1,n+1¢m,n71
TmnTm+1n ¢m,n¢m+1,n

The triple (go, g1, g2) of rational functions in fy, f1, f2 gives a solution of Sty with parameter values
(Bo, B1, B2) = (a0 +m, a1 —m +n,az —n).

3.6 Classical solutions of Sty

Theorem:

(1) When (ag, a1, a2) is the barycenter of an alcove (a triangle), Sty has a rational solution ob-

tained by a Backlund transformation from the seed solution («v, a1, a2; fo, f1, f2) = (%, %, %; %, %, %)
(2) When (ap, o1, a2) is on the line aj = n for some j = 0,1,2 and n € Z, Sty has a 1-parameter

family of solutions expressible ratioanlly by the Hermite functions and their derivatives.

It is also known that any other solution of Sty is very transcendental.

If we specialize the ¢ factors ¢, , to the rational solution (v, au, as; fo, f1, f2) = (1,4 1.0 L 1

37373137373
we obtain a family of polynomials

Fon = Fon(t) = ¢mn ) (m,n € Z). (3.58)

_ ot
i=3:.fi=3

in ¢, which we are called the Okamoto polynomials. Then the rational solution with parameter
values (ap, a1, an) = (% +m, % —m+n, % —n) is expressed as

(fo,fl,fg) _ < Fm7nFm+2,n+l 7 Fm+1,nFm,n+1 : Fm+l,n+1Fm,n71)7 (3‘59)
Fm+1,nFm+1,n+1 Fm,nFerl,nJrl Fm,nFm+1,n

in terms of Okamoto polynomials. This completely describe the factorization property of the
rational solution at the barycenter of each alcove.

Remark: It is known that the ¢ factors ¢y, for the 7 functions 7, ,, = T{"T4'(79) has an explicit
determinant formula of Jacobi-Trudi type (see [1]). Through this formula of Jacibi-Trudi type,
one can identify each Okamoto polynomial F,, ,(¢) with a specialization of the Schur function
Sxa(t1,ta,...) in the KP times (1, 12,...) attached to a 3-core partition .



