
Symmetries of Painlevé equations: Lecture 10 (B2)

by M. Noumi [April 23, 2021]

3 τ Functions

3.1 Poisson structure and Hamiltonian representation

Recall that our symmetric form of PIV is defined by

SIV : f ′0 = f0(f1 − f2) + α0, f ′1 = f1(f2 − f0) + α1, f ′2 = f2(f0 − f1) + α2 (3.1)

with normalizaion α0 + α1 + α2 = 1 and f0 + f1 + f2 = t.

Denoting by K = C(α0, α1, α2; f0, f1, f2) the field of rational functions in αj and fj (j = 0, 1, 2),
we introduce a Poisson bracket { , } on K by

{φ,ψ} =
2∑

i,j=0

∂φ

∂fi
ui,j

∂ψ

∂fj
, (i, j ∈ {0, 1, 2}), U =

(
ui,j

)2
i,j=0

=

 0 1 −1
−1 0 1
1 −1 0

 , (3.2)

so that {fi, fj} = uij , {αi, αj} = {αi, fj} = 0.

{fj , fj} = 0 (j = 0, 1, 2)

{f0, f1} = 1, {f1, f0} = −1

{f1, f2} = 1, {f2, f1} = −1

{f2, f0} = 1, {f0, f2} = −1
d d

d
-





� J

JJ]

0

1 2

(3.3)

By a Poisson bracket, we mean a C-bilinear form { , } : K ×K → K satisfying the conditions

(1) {f, f} = 0, {g, f} = −{f, g} ,
(2) {fg, h} = {f, h} g + f {g, h} , {f, gh} = {f, g}h+ g {f, h} ,
(3) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

(3.4)

Then the system of differential equations (3.1) is expressed as

f ′0 = {H, f0}+ 1, f ′1 = {H, f1} , f ′2 = {H, f2} (3.5)

in terms of the Hamiltonian

H = f0f1f2 +
1

3
(α1 − α2)f0 +

1

3
(α1 + 2α2)f1 −

1

3
(2α1 + α2)f2. (3.6)
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From this expression, we see that, for any φ ∈ K, the derivation ′ : K → K defining SIV is described
as

φ′ = {H,φ}+ ∂φ

∂f0
. (3.7)

We set p = f1, q = f2 so that

f0 = t− p− q, f1 = p, f2 = q, f0 + f1 + f2 = t. (3.8)

Then we have
{p, q} = 1, {p, p} = {q, q} = 0, {p, t} = {q, t} = {t, t} = 0. (3.9)

Note also that K = C(α0, α1, α2; p, q; t). In terms of the coordinates (q, p; t), we have

{φ,ψ} =
∂φ

∂p

∂ψ

∂q
− ∂φ

∂q

∂ψ

∂p
(3.10)

and

H = (t− q − p)pq + α2p− α1q +
1

3
(α1 − α2)t. (3.11)

From this, we see that the symmetric form of PIV is equivalent to the Hamiltonian system

q′ = {H, q} =
∂H

∂p
, p′ = {H, p} = −∂H

∂q
. (3.12)

Namely
HIV : q′ = q(t− q − 2p) + α2, p′ = p(2q + p− t) + α1. (3.13)

We also remark that the Bäcklund transformations si (i = 0, 1, 2) are described as

si(fj) = fj +
αi

fi
{fi, fj} (i, j ∈ {0, 1, 2}) (3.14)

in terms of the Poisson bracket. Furthermore, one can verify that, for any w ∈ W̃ =
〈
s0, s1, s2, π

〉
,

the corresponding Bäcklund transformation w : K → K defines a canonical transformation in the
sense that

w({φ,ψ}) = {w(φ), w(ψ)} (φ,ψ ∈ K). (3.15)

This means that the extended Weyl group W̃ =
〈
s0, s1, s2, π

〉
is realized as a group of birational

canonical transformations which preserve the differential system SIV invariant.

3.2 τ Functions

In order to recover the cyclic symmetry, we intoduce three Hamiltonians h0, h1, h2 by h0 = H,
h1 = π(h0), h2 = π(h1):

h0 = f0f1f2 +
1

3
(α1 − α2)f0 +

1

3
(α1 + 2α2)f1 −

1

3
(2α1 + α2)f2,

h1 = f0f1f2 +
1

3
(α2 − α0)f1 +

1

3
(α2 + 2α0)f2 −

1

3
(2α2 + α0)f0,

h2 = f0f1f2 +
1

3
(α0 − α1)f2 +

1

3
(α0 + 2α1)f0 −

1

3
(2α0 + α1)f1.

(3.16)
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We introduce three τ functions (τ variables) τ0, τ1, τ2 as dependent variables such that

h0 =
τ ′0
τ0
, h1 =

τ ′1
τ1
, h2 =

τ ′2
τ2
. (3.17)

Formally, we can write hi = (log τi)
′ and τi = exp(

∫
hidt) (i = 0, 1, 2). Then, by (3.16), we see

directly that the f variables are recovered as

f0 = h2 − h1 +
t

3
=
τ ′2
τ2

− τ ′1
τ1

+
t

3
. (3.18)

We now compute the differential equations to be satisfied by hi. Since H = h0, we have

h′0 = {h0, h0}+
∂h0
∂f0

= f1f2 +
1

3
(α1 − α2) (3.19)

Combinig three formulas

h′0 = f1f2 +
1

3
(α1 − α2), h′1 = f2f0 +

1

3
(α2 − α0), h′2 = f0f1 +

1

3
(α0 − α1), (3.20)

one can verify that

(h0 + h1)
′ + (h0 − h1)

2 +
t

3
(h0 − h1)−

2

9
t2 +

1

3
(α0 − α1) = 0. (3.21)

Using hi = τ ′i/τi, this equation can be rewritten into the bilinear equation

τ ′′0 τ1 − 2τ ′0τ
′
1 + τ0τ

′′
1 +

t

3
(τ ′0τ1 − τ0τ

′
1)−

(2
9
t2 − 1

3
(α0 − α1)

)
τ0τ1 = 0, (3.22)

namely, (
D2

t +
t

3
Dt −

2

9
t2 +

1

3
(α0 − α1)

)
τ0 · τ1 = 0 (3.23)

in terms of the Hirota derivatives

Dt(f · g) = f ′g − fg′, D2
t (f · g) = f ′′g − 2f ′g′ + fg′′, . . . . (3.24)

In this way, the differential system SIV is translated into the system of bilinear differential equations(
D2

t +
t

3
Dt −

2

9
t2 +

1

3
(α0 − α1)

)
τ0 · τ1 = 0,(

D2
t +

t

3
Dt −

2

9
t2 +

1

3
(α1 − α2)

)
τ1 · τ2 = 0,(

D2
t +

t

3
Dt −

2

9
t2 +

1

3
(α2 − α0)

)
τ2 · τ0 = 0

(3.25)

for the τ functions τ0, τ1, τ2. The f variables are recovered from the τ functions by

f0 =
τ ′2
τ2

− τ ′1
τ1

+
t

3
, f1 =

τ ′0
τ0

− τ ′2
τ2

+
t

3
, f2 =

τ ′1
τ1

− τ ′0
τ0

+
t

3
, (3.26)

namely

f0 =
(Dt +

t
3)τ2 · τ1
τ2τ1

, f1 =
(Dt +

t
3)τ0 · τ2
τ0τ2

, f2 =
(Dt +

t
3)τ1 · τ0
τ1τ0

. (3.27)
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3.3 Lifting the Bäcklund transformations to the τ functions

It is not an obvious procedure to find Bäcklund transformations for the τ functions.

Noting that hj = τ ′j/τ = (log τj)
′, we investigate how the three hamiltonians transform by the

action of W̃ . It is a direct computation, but the result is interesting:

si(hj) = hj (i ̸= j), sj(hj) = hj +
αj

fj
(i, j ∈ {0, 1, 2}). (3.28)

Namely, hj is invariant under si (i ̸= j) and transforms by sj only. (This means that hj and τj are
in some way attached to the fundamental weights of the affine root system, while fj correspond to
the simple roots αj .) Noting that f1 − f2 = 2h0 − h1 − h2, from

f ′0
f0

= 2h0 − h1 − h2 +
α0

f0
, s0(h0) = h0 +

α0

f0
, (3.29)

we obtain

s0(h0) =
f ′0
f0

+ h1 + h2 − h0. (3.30)

This means that

s0

(τ ′0
τ0

)
=
f ′0
f0

+
τ ′1
τ1

+
τ ′2
τ2

− τ ′0
τ0
, (3.31)

which would imply

s0(τ0) = const. f0
τ1τ2
τ0

. (3.32)

Theorem: Define the trasformations s0, s1, s2 and π for τ functios by

si(τj) = τj (i ̸= j), sj(τj) = fj
τj−1τj+1

τj
, π(τj) = τj+1 (i, j ∈ Z/3Z). (3.33)

Then, these commute with the derivation ′, providing Bäcklund transformations for τ functions.
Furthermore, they satisfy the fundamental relations

s2i = 1, (sisi+1)
3 = 1, πsi = si+1π (i ∈ Z/3Z), π3 = 1 (3.34)

for W̃ , with respect to all the variables including τ functions.

Wer remark that the variables fj are recovered from τ functions by

fj =
τj sj(τj)

τj−1τj+1
(j ∈ Z/3Z) (3.35)

in terms of the fundamental Bäcklund transformations sj . Recall that

s1(f2) = f2 +
α1

f1
, s2(f1) = f1 −

α2

f2
. (3.36)

In terms of the τ functions, these two equations can be rewritten as

τ1s1s2(τ2)− s1(τ1)s2(τ2) = α1τ
2
0 , s1(τ1)s2(τ2)− s2s1(τ1)τ2 = α2τ

2
0 (3.37)

Then, eliminating τ0 we obtain the Hirota-Miwa equation

(α0 − 1) s1(τ1) s2(τ2) + α1 s2s1(τ1) τ2 + α2 τ1 s1s2(τ2) = 0 (3.38)

relating six τ functions placed at the vertices of a regular hexagon.
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3.4 Computation of Bäcklund transformations

Let w ∈ W̃ =
〈
s0, s1, s2, π

〉
an element of the extended affine Weyl group, and set

βj = w(αj) ∈ Q = Zα0 ⊕ Zα1 ⊕ Zα2, gj = w(fj) ∈ C(α0, α1, α2; f0, f1, f2) (3.39)

for each j ∈ Z/3Z. Then, from a generic solution (α0, α1, α2; f0, f1, f2) of SIV we obtain a new
soluiotn (β0, β1, β2; g0, g1, g2) of SIV.

• Some examples:

s1(f2) = f2 +
α1

f1
=
f1f2 + α1

f1

s2s1(f2) = f2 +
α1 + α2

f1 − α2
f2

=
f2(f1f2 + α1)

f1f2 − α2

s0s2s1(f2) = f2 −
a0
f0

− 2α0 + α1 + α2

f1 +
α0
f0

+ a0+a2
f2−α0

f0

=
(f0f2 − α0)

(
f20 f1f2 + (α0 + α1)f

2
0 − α0f0(f1 − f2)− α2

0

)
f0
(
f20 f1f2 − (α0 + α2)f20 − α0f0(f1 − f2)− α2

0

)
s1(τ1) = f1

τ0τ2
τ1

s2s1(τ1) = (f1f2 − α2)
τ20
τ2

s0s2s1(τ1) =
(
f20 f1f2 − (α0 + α1)f

2
0 − α0f0(f1 − f2))− α2

0

)τ21 τ2
τ20

(3.40)

Theorem: For each w ∈ W̃ =
〈
s0, s1, s2, π

〉
and j = 0, 1, 2, there exists a unique polynomial

ϕw,j ∈ Z[α0, α1, α2, f0, f1, f2] (j = 0, 1, 2) such that

w(τj) = ϕw,j τ
k0
0 τk11 τk22 (k0, k1, k2 ∈ Z), (3.41)

where k0, k1, k2 are determined from w and j. The Bäcklund transformations w(fj) of fj are then
expressed as

w(fj) =
w(τj) wsj(τj)

w(τj−1)w(τj+1)
=

ϕw,j ϕwsj ,j

ϕw,j−1 ϕw,j+1
(j = 0, 1, 2). (3.42)

This theorem explains the factorization property of the Bäcklund transformations. We call ϕw,j

the ϕ factor for the τ function w(τj); this family of polynomials ϕw,j (w ∈ W̃ , j = 0, 1, 2) is also
called the τ cocycle. Note that ϕw,j satisfy

ϕ1,j = 1, ϕsiw,j = si(ϕm,j) f
ki
i , ϕπw,j = π(ϕw,j); (3.43)

By this recursion, ϕw,j are determined as rational functions in f0, f1, f2, but it is known that they
are in fact polynomials.

5



3.5 Translations in the extended affine Weyl group

We remark that the extended affine Weyl group W̃ =
〈
s0, s1, s2, π

〉
contains the commutative

subgroup of translations. We denote by T1, T2, T3 the translations with respect to the edges P0P1,
P1P2, P2P0 of the regular triangle ∆P0P1P2, respectively. They are expressed as

T1 = πs2s1, T2 = s1πs2, T3 = s2s1π (3.44)

in terms of the generators of the extended affine Weyl group W̃ .
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(3.45)

By the fundamental relations of W̃ , one can directly verify that

TiTj = TjTi (i, j = 1, 2, 3), T1T2T3 = 1. (3.46)

From this construction, we see that the extended Weyl group W̃ =
〈
s0, s1, s2, π

〉
is expressed as the

semi-direct product of
〈
s1, s2

〉
= S3 (s1 = (12), s2 = (24)) and the abelian subgroup of translations:

W̃ = S3 ⋊ T, T =
{
T l
1T

m
2 T

n
3 | l,m, n ∈ Z

}
; σTj = Tσ(j)σ (σ ∈ S3; j = 1, 2, 3). (3.47)

We now look at the action of T1 = πs2s1 on αj , fj and τj . (Since π(T1) = T2, π(T2) = T3, the
corresponding formulas for T2 and T3 are obtained by the diagram rotation π.)

T1(α0) = α0 + 1, T1(α1) = α1 − 1, T1(α2) = α2.

T1(f0) = f1 +
α0

f0
− α2 + α0

f1 − α0
f0

=
f20 f1f2 − α0f0f1 + α0f2f0 − (α0 + α2)f

2
0 − α2

0

f0(f0f2 − α0)
,

T1(f1) = f2 −
α0

f0
=
f0f2 − α0

f0
, T1(f2) = f0 +

α0 + α2

f2 − α0
f0

=
f0(f0f2 + α2)

f0f2 − α0
.

T1(τ0) = τ1, T1(τ1) = (f0f2 − α0)
τ21
τ0
, T1(τ2) = f0

τ1τ2
τ0

.

(3.48)

We remark that this Bäcklund transformation T1 can be regarded as the time evolution of a discrete
Painlevé equation. By iterating T1, we set

xn = Tn
1 (f1), yn = Tn

1 (f0) (n ∈ Z). (3.49)
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τm−2,n−1 τm−1,n−1 τm,n−1 τm+1,n−1

τm−1,n τm,n τm+1,n

τm−1,n+1 τm,n+1 τm+1,n+1 τm+2,n+1

- - -

- - - -

- - -
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Figure 1: τ -Functions on the Lattice: τm,n = τm,n,0

Then from

T1(f1) = f2 −
α0

f
= t− f0 − f1 −

α0

f0
, T−1

1 (f0) = f2 +
α1

f1
= t− f0 − f1 +

α1

f1
(3.50)

we obtain

xn + xn+1 = t− yn − α0 + n

yn
, yn−1 + yn = t− xn +

α1 − n

xn
(n ∈ Z). (3.51)

This recurrence is (a version of) the discret Painlevé equation PII; if fact, one can show that it
passes to the Painlevé equation PII by an appropriate continuum limit.

A more systematic way to understand the discrete symmetry of SIV is to use the lattice τ
functions on the triangular lattice.

τm,n = Tm
1 T

n
2 (τ0) (m,n ∈ Z). (3.52)

Note that τ0,0 = τ0, τ1,0 = τ1, τ1,1 = τ2. The we have three types of bilinear equations for the
lattice τ -functions.

(A) Bilinear differential equations of Hirota type:(
D2

t +
t

3
Dt −

2t2

9
+
α0 − α1 + 2m− n

3

)
τm,n · τm+1,n = 0 (3.53)

(B) Toda equation:

τm−1,nτm+1,n =

(
1

2
D2

t −
α0 − α1 + 2m− n− 1

3

)
τm,n · τm,n. (3.54)

(C) Hirota-Miwa equation:

(α0 +m− 1) τm,n−1 τm,n+1 + (α1 −m+ n) τm+1,n+1 τm−1,n−1 + (α2 − n) τm−1,n τm+1,n = 0. (3.55)
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Note also that there exist the ϕ factors ϕm,n ∈ Z[α0, α1, α2; f0, f1, f2] such that

τm,n = ϕm,n τ
1−m
0 τm−n

1 τn2 (m,n ∈ Z). (3.56)

The corresponding f variables are then expressed as

g0 = Tm
1 T

n
2 (f0) =

τm,nτm+2,n+1

τm+1,nτm+1,n+1
=

ϕm,nϕm+2,n+1

ϕm+1,nϕm+1,n+1
,

g1 = Tm
1 T

n
2 (f1) =

τm+1,nτm,n+1

τm,nτm+1,n+1
=
ϕm+1,nϕm,n+1

ϕm,nϕm+1,n+1
,

g2 = Tm
1 T

n
2 (f2) =

τm+1,n+1τm,n−1

τm,nτm+1,n
=
ϕm+1,n+1ϕm,n−1

ϕm,nϕm+1,n
.

(3.57)

The triple (g0, g1, g2) of rational functions in f0, f1, f2 gives a solution of SIV with parameter values
(β0, β1, β2) = (α0 +m,α1 −m+ n, α2 − n).

3.6 Classical solutions of SIV

Theorem:

(1) When (α0, α1, α2) is the barycenter of an alcove (a triangle), SIV has a rational solution ob-
tained by a Bäcklund transformation from the seed solution (α0, α1, α2; f0, f1, f2) = (13 ,

1
3 ,

1
3 ;

t
3 ,

t
3 ,

t
3).

(2) When (α0, α1, α2) is on the line αj = n for some j = 0, 1, 2 and n ∈ Z, SIV has a 1-parameter
family of solutions expressible ratioanlly by the Hermite functions and their derivatives.

It is also known that any other solution of SIV is very transcendental.

If we specialize the ϕ factors ϕm,n to the rational solution (α0, α1, α2; f0, f1, f2) = (13 ,
1
3 ,

1
3 ;

t
3 ,

t
3 ,

t
3),

we obtain a family of polynomials

Fm,n = Fm,n(t) = ϕm,n

∣∣∣
αj=

1
3
,fj=

t
3

(m,n ∈ Z). (3.58)

in t, which we are called the Okamoto polynomials. Then the rational solution with parameter
values (α0, α1, α2) = (13 +m, 13 −m+ n, 13 − n) is expressed as

(f0, f1, f2) =
( Fm,nFm+2,n+1

Fm+1,nFm+1,n+1
,
Fm+1,nFm,n+1

Fm,nFm+1,n+1
,
Fm+1,n+1Fm,n−1

Fm,nFm+1,n

)
, (3.59)

in terms of Okamoto polynomials. This completely describe the factorization property of the
rational solution at the barycenter of each alcove.

Remark: It is known that the ϕ factors ϕm,n for the τ functions τm,n = Tm
1 T

n
2 (τ0) has an explicit

determinant formula of Jacobi-Trudi type (see [1]). Through this formula of Jacibi-Trudi type,
one can identify each Okamoto polynomial Fm,n(t) with a specialization of the Schur function
Sλ(t1, t2, . . .) in the KP times (t1, t2, . . .) attached to a 3-core partition λ.
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