Symmetries of Painlevé equations: Lecture 11 (B3)

by M. Noumi [April 30, 2021]

4 Relation to integrable hierarchies

In general, there are several ways to interpret a Painlevé equation as the compatibility condition of a linear differential equation. In this section, we explain how the Painlevé equations $P_{\mathrm{II}}, P_{\mathrm{IV}}$ as well as P_{V} are related with the modified KP hierarchy.

4.1 A Lax pair for P_{IV}

We consider a system of linear differential equations

$$
\begin{equation*}
x \partial_{x} \boldsymbol{u}=A(x, t) \boldsymbol{u}, \quad \partial_{t} \boldsymbol{u}=B(x, t) \boldsymbol{u} \tag{4.1}
\end{equation*}
$$

for a vector $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)^{\mathrm{t}}$ of unknown functions $u_{i}=u_{i}(x, t)(i=1, \ldots, n)$ in two variables (x, t), where $\partial_{x}=\partial / \partial_{x}$ and $\partial_{t}=\partial / \partial t$. We assume that

$$
\begin{equation*}
A(x, t)=\left(a_{i j}(x, t)\right)_{i, j=1}^{n}, \quad B(x, t)=\left(b_{i j}(x, t)\right)_{i, j=1}^{n} \tag{4.2}
\end{equation*}
$$

are $n \times n$ matrices of rational functions in x depending holomorphically on t. Then the compatibility (integrability, zero curvature) condition for (4.1) is given by

$$
\begin{equation*}
\left[x \partial_{x}-A(x, t), \partial_{t}-B(x, t)\right]=\partial_{t} A(x, t)-x \partial_{x} B(x, y)+[A(x, t), B(x, t)]=0, \tag{4.3}
\end{equation*}
$$

where [,] denotes the commutator of matrices of differential operators. In general, this type of compatibility condition implies a system of nonlinear differential equations for the coefficients of $A(x, t), B(x, t)$. In the following, we use the notations like $u_{i}(x)=u_{i}(x, t), A(x)=A(x, t)$, $B(x)=B(x, t), \ldots$ suppressing the dependence on t.

The symmteric form $S_{\text {IV }}$ of the fourth Painlevé equation $P_{\text {IV }}$ is relevant to the following system of linear differential equations. Setting $n=3$, we consider 3×3 matrices $A(x), B(x)$ of the form

$$
\begin{align*}
& A(x)=-\left[\begin{array}{ccc}
\varepsilon_{1} & f_{1} & 1 \\
x & \varepsilon_{2} & f_{2} \\
f_{0} x & x & \varepsilon_{3}
\end{array}\right]=-\left[\begin{array}{ccc}
\varepsilon_{1} & f_{1} & 1 \\
0 & \varepsilon_{2} & f_{2} \\
0 & 0 & \varepsilon_{3}
\end{array}\right]-\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
f_{0} & 1 & 0
\end{array}\right] x, \tag{4.4}\\
& B(x)=\left[\begin{array}{ccc}
v_{1} & -1 & 0 \\
0 & v_{2} & -1 \\
-x & 0 & v_{3}
\end{array}\right]=\left[\begin{array}{ccc}
v_{1} & -1 & 0 \\
0 & v_{2} & -1 \\
0 & 0 & v_{3}
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] x .
\end{align*}
$$

In this case, we have

$$
\begin{aligned}
& \partial_{t} A(x)-x \partial_{x} B(x)+[A(x), B(x)] \\
& =\left[\begin{array}{ccc}
-\varepsilon_{1}^{\prime} & \varepsilon_{1}-\varepsilon_{2}+\left(v_{1}-v_{2}\right) f_{1}-f_{1}^{\prime} & f_{1}-f_{2}+v_{1}-v_{3} \\
\left(f_{2}-f_{0}+v_{2}-v_{1}\right) x & -\varepsilon_{2}^{\prime} & \varepsilon_{2}-\varepsilon_{3}+\left(v_{2}-v_{3}\right) f_{2}-f_{2}^{\prime} \\
\left(1+\varepsilon_{3}-\varepsilon_{1}+\left(v_{3}-v_{1}\right) f_{0}-f_{0}^{\prime}\right) x & \left(f_{0}-f_{1}+v_{3}-v_{2}\right) x & -\varepsilon_{3}^{\prime}
\end{array}\right],
\end{aligned}
$$

where ${ }^{\prime}=\partial_{t}$, and hence, the compatibility condition is given by

$$
\left\{\begin{array} { l }
{ \varepsilon _ { 1 } ^ { \prime } = 0 } \tag{4.5}\\
{ \varepsilon _ { 2 } ^ { \prime } = 0 } \\
{ \varepsilon _ { 3 } ^ { \prime } = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ f _ { 0 } ^ { \prime } = (v _ { 3 } - v _ { 1 }) f _ { 0 } + (1 + \varepsilon _ { 3 } - \varepsilon _ { 1 }) } \\
{ f _ { 1 } ^ { \prime } = (v _ { 1 } - v _ { 2 }) f _ { 1 } + (\varepsilon _ { 1 } - \varepsilon _ { 2 }) } \\
{ f _ { 2 } ^ { \prime } = (v _ { 2 } - v _ { 3 }) f _ { 2 } + (\varepsilon _ { 2 } - \varepsilon _ { 3 }) }
\end{array} \quad \left\{\begin{array}{l}
f_{1}-f_{2}=v_{3}-v_{1} \\
f_{2}-f_{0}=v_{1}-v_{2} \\
f_{0}-f_{1}=v_{2}-v_{3}
\end{array}\right.\right.\right.
$$

This system is equivalent to the symmetric form $S_{\text {IV }}$:

$$
\left\{\begin{array} { l }
{ f _ { 0 } ^ { \prime } = (f _ { 1 } - f _ { 2 }) f _ { 0 } + \alpha _ { 0 } } \tag{4.6}\\
{ f _ { 1 } ^ { \prime } = (f _ { 2 } - f _ { 0 }) f _ { 1 } + \alpha _ { 1 } } \\
{ f _ { 2 } ^ { \prime } = (f _ { 1 } - f _ { 2 }) f _ { 2 } + \alpha _ { 2 } }
\end{array} \quad \text { with parameters } \quad \left\{\begin{array}{l}
\alpha_{0}=1+\varepsilon_{3}-\varepsilon_{1} \\
\alpha_{1}=\varepsilon_{1}-\varepsilon_{2} \\
\alpha_{2}=\varepsilon_{2}-\varepsilon_{3}
\end{array}\right.\right.
$$

The v variables here can be parametrized by hamiltonians as

$$
\begin{equation*}
v_{1}=h_{1}-h_{0}, \quad v_{2}=h_{2}-h_{1}, \quad v_{3}=h_{0}-h_{2} . \tag{4.7}
\end{equation*}
$$

4.2 Relation to the \boldsymbol{n}-reduced modified KP hierarchy

Generalizing this construction of the symmetric form $S_{\text {IV }}$ for $P_{\text {IV }}$, one can formulate a class of nonlinear differential equations associated with $n \times n$ linear differential systems for arbitrary $n=$ $1,2,3, \ldots$.

In the following, we denote by $\mathbb{C}\left(\left(x^{-1}\right)\right)=\mathbb{C}\left[\left[x^{-1}\right]\right][x]$ the ring of formal Laurent series in x whose exponents are bounded above, and by $\operatorname{Mat}\left(n ; \mathbb{C}\left(\left(x^{-1}\right)\right)\right)$ the algebra of $n \times n$ matrices with coefficients in $\mathbb{C}\left(\left(x^{-1}\right)\right) ; \operatorname{Mat}\left(n ; \mathbb{C}\left(\left(x^{-1}\right)\right)\right)$ is the space of all matrices

$$
\begin{equation*}
A(x)=\sum_{k \in \mathbb{Z}} A_{k} x^{k}, \quad A_{k} \in \operatorname{Mat}(n ; \mathbb{C}) \quad(k \in \mathbb{Z}), \tag{4.8}
\end{equation*}
$$

such that $A_{k}=0$ for $k \gg 0$. We also denote by $\operatorname{GL}\left(n ; \mathbb{C}\left(\left(x^{-1}\right)\right)\right)$ the group of invertible matrices in $\operatorname{Mat}\left(n ; \mathbb{C}\left(\left(x^{-1}\right)\right)\right)$. (We regard $\operatorname{Mat}\left(n ; \mathbb{C}\left(\left(x^{-1}\right)\right)\right)$ and $\mathrm{GL}\left(n ; \mathbb{C}\left(\left(x^{-1}\right)\right)\right)$ as formal versions of the loop algebra of $\mathfrak{g l}_{n}=\operatorname{Mat}(n ; \mathbb{C})$ and the loop group of $\mathrm{GL}(n ; \mathbb{C})$.) We introduce the matrix (cyclic element)

$$
\Lambda(x)=\sum_{i=1}^{n-1} E_{i, i+1}+E_{1, n} x=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \tag{4.9}\\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
x & 0 & \ldots & 0 & 0
\end{array}\right] \in \operatorname{Mat}\left(n ; \mathbb{C}\left(\left(x^{-1}\right)\right)\right)
$$

so that

$$
\begin{equation*}
\Lambda(x)^{k}=\sum_{i=1}^{n-k} E_{i, i+k}+\sum_{j=1}^{k} x E_{n-k+j, j} \quad(k=0,1, \ldots, n-1), \quad \Lambda(x)^{n}=x I_{n} . \tag{4.10}
\end{equation*}
$$

(Note that $\Lambda(x)^{k}(k \in \mathbb{Z})$ are generators of the Heisenberg algebra). Then each matrix $A(x) \in$ $\operatorname{Mat}\left(n ; \mathbb{C}\left(\left(x^{-1}\right)\right)\right)$ can be expressed in the form

$$
\begin{equation*}
A(x)=\sum_{k=-\infty}^{m} \operatorname{diag}\left(\boldsymbol{a}_{k}\right) \Lambda(x)^{k}, \quad \boldsymbol{a}_{k} \in \mathbb{C}^{n} \quad(k \in \mathbb{Z}, \quad k \leq m) \tag{4.11}
\end{equation*}
$$

for some $m \in \mathbb{Z}$, where $\operatorname{diag}(\boldsymbol{a})=\sum_{i=1}^{n} a_{i} E_{i i}$ denotes the diagonal matrix attached to $\boldsymbol{a}=$ $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$. In the following, we use the notation

$$
\begin{equation*}
A(x)_{\geq 0}=\sum_{k \geq 0} \operatorname{diag}\left(\boldsymbol{a}_{k}\right) \Lambda(x)^{k}, \quad A(x)_{<0}=\sum_{k<0} \operatorname{diag}\left(\boldsymbol{a}_{k}\right) \Lambda(x)^{k}, \tag{4.12}
\end{equation*}
$$

for the nonnegative part and the negative part of $A(x)$ respectively, so that $A(x)=A(x)_{\geq 0}+A(x)_{<0}$. In this convention, the nonegative part of $A(x)$ takes the form

$$
A(x)_{\geq 0}=\left[\begin{array}{ccccc}
a_{1}^{(0)} & a_{1}^{(1)} & \ldots & \ldots & a_{1}^{(n-1)} \tag{4.13}\\
0 & a_{2}^{(0)} & a_{2}^{(1)} & \ldots & a_{2}^{(n-2)} \\
\vdots & & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n-1}^{(0)} & a_{n-1}^{(1)} \\
0 & 0 & \ldots & 0 & a_{n}^{(0)}
\end{array}\right]+\left[\begin{array}{cccc}
a_{1}^{(n)} & a_{1}^{(n+1)} & \ldots & a_{1}^{(2 n-1)} \\
a_{2}^{(n-1)} & a_{2}^{(n)} & \ldots & a_{2}^{(2 n-2)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}^{(1)} & a_{n}^{(2)} & \ldots & a_{n}^{(n)}
\end{array}\right] x+\cdots
$$

with $\boldsymbol{a}_{k}=\left(a_{1}^{(k)}, \ldots, a_{n}^{(k)}\right)$. In particular, the matrix of the coefficients of x^{0} is upper triangular.
We now consider a sequence of $n \times n$ matrices of the form

$$
\begin{equation*}
B_{k}(x)=\sum_{r=0}^{k-1} \operatorname{diag}\left(\boldsymbol{b}_{r}^{(k)}\right) \Lambda(x)^{r}+\Lambda(x)^{k} \quad(k=1,2, \ldots) \tag{4.14}
\end{equation*}
$$

In what follows, we use a sequence of m time variables $t=\left(t_{1}, t_{2}, \ldots, t_{m}\right){ }^{1)}$ Regarding the coefficients $\boldsymbol{b}_{r}^{(k)}$ as vectors of functions in t, we consider the system of linear partial differential equations

$$
\begin{equation*}
\partial_{t_{k}} \boldsymbol{u}=B_{k}(x) \boldsymbol{u} \quad(k=1,2, \ldots, m) \tag{4.15}
\end{equation*}
$$

for the vector $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)^{\mathrm{t}}$ of unknown functions $u_{i}(x)=u(x, t)(i=1, \ldots n)$. The compatibility condition $\left[\partial_{t_{k}}-B_{k}(x), \partial_{t_{l}}-B_{l}(x)\right]=0(k, l=1,2, \ldots, m)$ for this linear problem is called the Zakharov-Shabat equations for the n-reduced modified KP hierarchy: namely,

$$
\begin{equation*}
\partial_{t_{l}} B_{k}(x)-\partial_{t_{k}} B_{l}(x)+\left[B_{k}(x), B_{l}(x)\right]=0 \quad(k, l=1,2, \ldots, m) . \tag{4.16}
\end{equation*}
$$

[^0]Taking another $n \times n$ matrix $A(x)$ of the form

$$
\begin{equation*}
A(x)=\sum_{r=0}^{m} \operatorname{diag}\left(\boldsymbol{a}_{r}\right) \Lambda(x)^{r}, \tag{4.17}
\end{equation*}
$$

we consider the system of linear partial differential equations

$$
\begin{equation*}
x \partial_{x} \boldsymbol{u}=A(x) \boldsymbol{u}, \quad \partial_{t_{k}} \boldsymbol{u}=B_{k}(x) \boldsymbol{u} \quad(k=1, \ldots, m) \tag{4.18}
\end{equation*}
$$

in $(x, t)=\left(x, t_{1}, \ldots, t_{m}\right)$, regarding \boldsymbol{a}_{r} as functions in t as well, In this system, we also need to assume the compatibility condition $\left[x \partial_{x}-A(x), \partial_{t_{k}}-B_{k}(x)\right]=0(k=1, \ldots, m)$ besides the Zakharov-Shabat equations (4.16):

$$
\begin{equation*}
\partial_{t_{k}} A(x)-x \partial_{x} B_{k}(x)+\left[A(x), B_{k}(x)\right]=0 \quad(k=1, \ldots, m) . \tag{4.19}
\end{equation*}
$$

These compatibility conditions (4.16) and (4.19) together can be thought of as defining a nonlinear system of partial differential equations of "Painlevé type". We remark that, in the previous setting of the Lax pair for the symmetric form S_{IV}, we considered the case where $n=3$ and $m=2$ and

$$
\begin{equation*}
\boldsymbol{a}_{\mathbf{0}}=-\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right), \quad \boldsymbol{a}_{\mathbf{1}}=-\left(f_{1}, f_{2}, f_{0}\right), \quad \boldsymbol{a}_{\mathbf{2}}=-(1,1,1) \tag{4.20}
\end{equation*}
$$

In the context of modified KP hierarchy, this procedure of adding the linear equation $x \partial_{x} \boldsymbol{u}=A(x) \boldsymbol{u}$ in x is interpreted as the similarity reduction as we will see below.

In the theory of modified KP hierarchy, we usually assume that the linear problem (4.15) has a system of fundamental formal solutions of the form

$$
\begin{equation*}
\Psi(x)=W(x) e^{\sum_{k=1}^{m} t_{k} \Lambda(x)^{k}}, \quad W(x)=1+\sum_{r=1}^{\infty} \operatorname{diag}\left(\boldsymbol{w}_{r}\right) \Lambda(x)^{-r} \in \mathrm{GL}\left(n ; \mathbb{C}\left[\left[x^{-1}\right]\right]\right) \tag{4.21}
\end{equation*}
$$

The system of equations to be satisfied by the wave operator $W(x)$,

$$
\begin{equation*}
\partial_{t_{k}} W(x)=B_{k}(x) W(x)-W(x) \Lambda(x)^{k} \quad(k=1,2, \ldots), \tag{4.22}
\end{equation*}
$$

is sometimes called the Sato equation. We define the Lax operator $L(x)$ by

$$
\begin{equation*}
L(x)=W(x) \Lambda(x) W(x)^{-1}, \quad L(x)=\Lambda(x)+\sum_{r=1}^{\infty} \operatorname{diag}\left(\boldsymbol{u}_{r}\right) \Lambda(x)^{1-r} \tag{4.23}
\end{equation*}
$$

Then, $L(x)$ is characterized by the Lax equation

$$
\begin{equation*}
\partial_{t_{k}} L(x)=\left[B_{k}(x), L(x)\right], \quad B_{k}(x)=\left(L(x)^{k}\right)_{\geq 0} \quad(k=1,2, \ldots) . \tag{4.24}
\end{equation*}
$$

We also remark that, if $W(x)$ is obtained through the Riemann-Hilbert-Birkhoff decomposition

$$
\begin{equation*}
e^{\sum_{k} t_{k} \Lambda(x)^{k}} \stackrel{\circ}{C}(x)=W(x)^{-1} Z(x), \quad Z(x)=\sum_{r=0}^{\infty} \operatorname{diag}\left(\boldsymbol{z}_{r}\right) \Lambda(x)^{r} \tag{4.25}
\end{equation*}
$$

for a given a matrix $\stackrel{\circ}{C}(x) \in \operatorname{GL}\left(n ; \mathbb{C}\left(\left(x^{-1}\right)\right)\right)$ which does not depend on t, then $W(t)$ gives rises to a solution to (4.22) with $B_{k}(x)=\left(L(x)^{k}\right) \geq 0(k=1,2, \ldots)$.

Note that $\Lambda(x)$ satisfies the commutation relation

$$
\begin{equation*}
\left[n x \partial_{x}+\operatorname{diag}(\rho), \Lambda(x)\right]=\Lambda(x), \quad \rho=(n-1, n-2, \ldots, 0) \tag{4.26}
\end{equation*}
$$

In view of

$$
\begin{equation*}
L(x)=W(x) \Lambda(x) W(x)^{-1}=\Psi(x) \Lambda(x) \Psi(x)^{-1}, \tag{4.27}
\end{equation*}
$$

we define the M-operator $M(x)$ by

$$
\begin{equation*}
M(x)=\Psi(x)\left(n x \partial_{x}+\operatorname{diag}(\rho)\right) \Psi(x)^{-1} \tag{4.28}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
[M(x), L(x)]=L(x), \quad \partial_{t_{k}} M(x)=\left[B_{k}(x), M(x)\right] \quad(k=1,2, \ldots) . \tag{4.29}
\end{equation*}
$$

Furthermore, the matrix

$$
\begin{equation*}
\Phi(x)=\Psi(x) x^{-\operatorname{diag}(\rho / n)}=W(x) e^{\sum_{k} t_{k} \Lambda(x)^{k}} x^{-\operatorname{diag}(\rho / n)} \tag{4.30}
\end{equation*}
$$

satisfies the system of differential equations

$$
\begin{equation*}
M(x) \Phi(x)=0, \quad \partial_{t_{k}} \Phi(x)=B_{k}(x) \Phi(x) \quad(k=1, \ldots, m) . \tag{4.31}
\end{equation*}
$$

By (4.21), (4.28), we see that the M-operator is decomposed as $M(x)=M(x)_{\geq 0}+M(x)_{<0}$, where

$$
\begin{align*}
& M(x)_{\geq 0}=n x \partial_{x}+\rho-\sum_{k=1}^{m} k t_{k} B_{k}(x), \quad B_{k}(x)=\left(L(x)^{k}\right)_{\geq 0}, \\
& M(x)_{<0}=-\left[n x \partial_{x}+\operatorname{diag}(\rho), W(x)\right] W(x)^{-1}+\sum_{k=1}^{m} k t_{k} B_{k}^{c}(x), \quad B_{k}^{c}(x)=-\left(L(x)^{k}\right)_{<0} . \tag{4.32}
\end{align*}
$$

From this expression, we see that the negative part $M(x)_{<0}$ vanishes if and only if the coefficients of the wave operator $W(x)$ satisfy the similarity condition

$$
\begin{equation*}
\sum_{k=1}^{m} k t_{k} \partial_{t_{k}}\left(\boldsymbol{w}_{r}\right)=-r \boldsymbol{w}_{r} \quad(r=1,2, \ldots) \tag{4.33}
\end{equation*}
$$

(the homogeneity condition in $t=\left(t_{1}, \ldots, t_{m}\right)$ with respect to the degrees $\operatorname{deg} t_{k}=k(k=1,2, \ldots)$. We define the matrix $A(x)$ by

$$
\begin{equation*}
A(x)=-\operatorname{diag}\left(\frac{\rho}{n}\right)+\sum_{k=1}^{m} \frac{k}{n} t_{k} B_{k} \tag{4.34}
\end{equation*}
$$

so that $M(x)_{\geq 0}=n\left(x \partial_{x}-A(x)\right)$. Then under the similarity codition (4.33), the matrix

$$
\begin{equation*}
\Phi(x)=\Psi(x) x^{-\operatorname{diag}(\rho / n)}=W(x) e^{\sum_{k} t_{k} \Lambda(x)^{k}} x^{-\operatorname{diag}(\rho / n)} \tag{4.35}
\end{equation*}
$$

satisfies the system of linear equations

$$
\begin{equation*}
x \partial_{x} \Phi(x)=A(x) \Phi(x), \quad \partial_{t_{k}} \Phi(x)=B_{k}(x) \Phi(x) \quad(k=1, \ldots, m) . \tag{4.36}
\end{equation*}
$$

This means that the system of nonlinear equations

$$
\begin{equation*}
\left[x \partial_{x}-A(x), \partial_{t_{k}}-B_{k}(x)\right]=0, \quad\left[\partial_{t_{k}}-B_{k}(x), \partial_{t_{l}}-B_{l}(x)\right]=0 \quad(k, l=1, \ldots, m) \tag{4.37}
\end{equation*}
$$

of "Painlevé type" can be solved (has solutions obtained) by the similarity reduction of the n reduced modified KP hierarchy.

In fact, the three cases of Painlevé equations $P_{\mathrm{II}}, P_{\mathrm{IV}}, P_{\mathrm{V}}$ are interpreted as similarity reduction of the n-reduced modified KP hierarchy ($=$ modified Drinfeld-Sokolov hierarchy of type $A_{n-1}^{(1)}$) for $n=2,3,4$ respectively. It is also known that P_{VI} can be interpreted by a version of the DrinfeldSokolov hierarchy of type $D_{4}^{(1)}$.

[^0]: ${ }^{1)}$ Formally, one can introduce an infinite number of time variables $t=\left(t_{1}, t_{2}, \ldots\right)$.

