Symmetries of Painlevé equations: Lecture 11 (B3)

by M. Noumi [April 30, 2021]

4 Relation to integrable hierarchies

In general, there are several ways to interpret a Painlevé equation as the compatibility condition
of a linear differential equation. In this section, we explain how the Painlevé equations P, Pv as
well as Py are related with the modified KP hierarchy.

4.1 A Lax pair for Prv

We consider a system of linear differential equations

x0,u = A(z,t)u, Owu = B(z,t)u. (4.1)
for a vector w = (u1,...,u,)" of unknown functions u; = u;(z,t) (i = 1,...,n) in two variables
(x,t), where 0, = 0/0, and 0 = 0/0t. We assume that

Az, t) = (aij(:v,t))zjzl, B(x,t) = (bij(x’t))?,jzl (4.2)

are n X n matrices of rational functions in x depending holomorphically on ¢. Then the compatibility
(integrability, zero curvature) condition for (4.1) is given by

[0y — A(z,t),0; — B(x,t)] = 0;A(z,t) — 20, B(x,y) + [A(x,t), B(x,t)] =0, (4.3)

where [ , ] denotes the commutator of matrices of differential operators. In general, this type
of compatibility condition implies a system of nonlinear differential equations for the coeflicients
of A(z,t), B(z,t). In the following, we use the notations like u;(x) = wu;(z,t), A(z) = A(z,t),
B(x) = B(x,t), ... suppressing the dependence on t.

The symmteric form Sty of the fourth Painlevé equation Ppy is relevant to the following system
of linear differential equations. Setting n = 3, we consider 3 x 3 matrices A(x), B(x) of the form

er fi 1 er fi 1 0 0 0
A(l’) = — x £9 f2 =—10 £9 f2 — 1 0 0] x,
f() r X €£3 0 0 83__ __f() 1 0 (4'4)
V1 —1 0 V1 —1 0 0 0 0
Bx)= |0 wvy —-1|= [0 wvo —=1|+|[0 0 0|=
—x 0 s 0 0 3] -1 0 0




In this case, we have

O A(z) — 30, B(z) + [A(z), B(w)]

—€} g1 —e+ (v1 —v2)f1 — fi fi—fot+vi—uv3
= (f2— fo+v2—wv)x —é5 g2 —e3+ (v2 —v3)fa— f3|
(1+e3—e1+ (v3—v1)fo— fo)z (fo—fi+vs—w)x —&3

where = 9;, and hence, the compatibility condition is given by

g1 =0 fo=(vs—v1)fo+ (1 +e3—¢1) fi—fo=vs—n
£y = 1= (v1 —v2)fi + (e1 —e2) fo— fo=v1 — vy (4.5)
€3 = fo = (v2 —v3)fa + (e2 — €3) fo—fi=ve—vs3

This system is equivalent to the symmetric form Sty:

fo = (fi — f2)fo + a0 ag=1+e3—¢e;
fi=(fo— fo)fi + a1  with parameters a1 =e1 — &9 (4.6)
fo=01—fo)fe+an ay =€3 — €3

The v variables here can be parametrized by hamiltonians as

V1 = h1 — ho, Vo = hg - hl, V3 = ho - hg. (47)

4.2 Relation to the n-reduced modified KP hierarchy

Generalizing this construction of the symmetric form Sty for Pry, one can formulate a class of
nonlinear differential equations associated with n x n linear differential systems for arbitrary n =
1,2,3,....

In the following, we denote by C((z~!)) = C[[x~!]][x] the ring of formal Laurent series in
whose exponents are bounded above, and by Mat(n; C((z~1))) the algebra of n x n matrices with
coefficients in C((z~1)); Mat(n; C((x~1))) is the space of all matrices

A(z) = Apa*, A € Mat(n;C) (k€ Z), (4.8)
kEZ

such that Ay = 0 for k > 0. We also denote by GL(n;C((z~1))) the group of invertible matrices
in Mat(n; C((x~1)). (We regard Mat(n; C((x~1))) and GL(n;C((z~!))) as formal versions of the
loop algebra of gl,, = Mat(n; C) and the loop group of GL(n;C).) We introduce the matrix (cyclic
element)

01 0 ... 0
0o 0 1 ... 0
n—1
AMa)=> Eijp1+Einr=|: ¢ - . | €Mat(n;C(a")) (4.9)
i=1 00 ... 0 1
z 0 ... 0 0




so that
n—=k k
A@)* = Eiip+ Y 2Bnpyyy; (k=01,...,n-1), A@)"==zl,. (4.10)
i=1 j=1

(Note that A(z)* (k € Z) are generators of the Heisenberg algebra). Then each matrix A(z) €
Mat(n; C((z~1))) can be expressed in the form

A(x)= Y diag(ap)A(2)",  areC* (k€Z, k<m) (4.11)
k=—oc0
for some m € Z, where diag(a) = ;" a;E;; denotes the diagonal matrix attached to a =
(a1,...,a,) € C". In the following, we use the notation
Az)z0 = diag(ap)A(z)*, A(x)<o =) diag(ar)A(z)", (4.12)
k>0 k<0

for the nonnegative part and the negative part of A(z) respectively, so that A(z) = A(z)>0+A(z)<o.
In this convention, the nonegative part of A(z) takes the form

’ago) agl) cee e agn_l)- I aﬁ”) agn—H) e ag%_l)_
0 1 n—2
0 ag) ag) ag ) agn—l) aén) ag%—?)
Alx)>o= | + . . . T+ (4.13)
0o ... anofl agllll : : ' '
0 ... 0 a o d? o d
with a;, = (agk), cel, a%k)). In particular, the matrix of the coefficients of z° is upper triangular.

We now consider a sequence of n X n matrices of the form
k—1
Bi(x) =Y diag(®")A(x)" + A=) (k=1,2,..) (4.14)
r=0

In what follows, we use a sequence of m time variables t = (¢1, %o, ... ,tm).l) Regarding the coeffi-

cients bgk) as vectors of functions in ¢, we consider the system of linear partial differential equations

Oy u = Bp(z)u (E=1,2,...,m) (4.15)

for the vector u = (uq, ..., u,)" of unknown functions w;(z) = u(x,t) (i = 1,....n). The compat-
ibility condition [y, — Bk(z),d, — Bi(z)] =0 (k,1 =1,2,...,m) for this linear problem is called
the Zakharov-Shabat equations for the n-reduced modified KP hierarchy: namely,

Oy Bi(z) — 8y, Bi(z) + [Bi(z), Bi(z)] =0 (k,1=1,2,...,m). (4.16)

1)Formally, one can introduce an infinite number of time variables ¢ = (¢1,t2,...).



Taking another n x n matrix A(z) of the form

Az) = diag(a,)A(z)", (4.17)
r=0

we consider the system of linear partial differential equations
x0,u = A(x)u, Oy, u = Bi(z)u (k=1,...,m) (4.18)

in (z,t) = (x,t1,...,ty), regarding a, as functions in t as well, In this system, we also need
to assume the compatibility condition [z, — A(z),d;, — Bi(z)] = 0 (k = 1,...,m) besides the
Zakharov-Shabat equations (4.16):

0, A(x) — 20, Bi(z) + [A(z), Be(z)] =0 (k=1,...,m). (4.19)

These compatibility conditions (4.16) and (4.19) together can be thought of as defining a nonlinear
system of partial differential equations of “Painlevé type”. We remark that, in the previous setting
of the Lax pair for the symmetric form Sy, we considered the case where n = 3 and m = 2 and

ap = —(e1,€2,€3), a1 =—(f1, fo, fo), az=—(1,1,1). (4.20)

In the context of modified KP hierarchy, this procedure of adding the linear equation x0,u = A(z)u
in x is interpreted as the similarity reduction as we will see below.

In the theory of modified KP hierarchy, we usually assume that the linear problem (4.15) has
a system of fundamental formal solutions of the form

U(z) = W(z) eXim 52D W(z) =1+ diag(w,)A(x) ™" € GL(n; Cllz™1])) (4.21)

r=1

The system of equations to be satisfied by the wave operator W (z),
Oy W(x) = Br(x)W(x) — W(x)A(a:)k (k=1,2,...), (4.22)

is sometimes called the Sato equation. We define the Lax operator L(z) by
L(z) = W(x)A(z)W(z)"!, L(z) = Alz) + Zdiag(uT)A(az)l_T (4.23)
r=1

Then, L(z) is characterized by the Laz equation
O L() = [Bu(@), L@)],  Bu@) = (L))s0 (k=1,2,...). (4.24)

We also remark that, if W (z) is obtained through the Riemann-Hilbert-Birkhoff decomposition

S A O(z) = W(2) ' Z(2), Z(x) = > diag(z,)A(z)", (4.25)
r=0

for a given a matrix C'(z) € GL(n; C((z~1))) which does not depend on ¢, then W (t) gives rises to
a solution to (4.22) with By(z) = (L(z)¥)s0 (k= 1,2,...).



Note that A(z) satisfies the commutation relation

[nzd, + diag(p), A(z)] = A(z), p=(n—-1,n-2,...,0). (4.26)
In view of
L(x) = W(z)A(x)W (x)™t = U(2)A(z)¥(2z) 7, (4.27)
we define the M -operator M (x) by
M(z) = ¥(z)(nzd, + diag(p)) ¥(z) ! (4.28)
Then we have
[M(z),L(z)] = L(z), 0y, M(z)= [Bi(z),M(z)] (k=1,2,...). (4.29)

Furthermore, the matrix
®(x) = U(z)a WP/ = W (g)en thh @)y~ diag(o/m) (4.30)
satisfies the system of differential equations
M(z)®(z) =0, 0, ®(z) = Bi(x)®(z) (k=1,...,m). (4.31)

By (4.21), (4.28), we see that the M-operator is decomposed as M (z) = M(x)>o + M(z)<o,
where

M (z)>0 = nwdy + p — Yty ktrBr(z),  Bi(z) = (L(2)")>0,
M (2)<o = = [nz0, + diag(p), W (x)|W (z) ™" + 3Ly ktxBj(z), Bi(e) = —(L(z)")<o.

From this expression, we see that the negative part M (z)< vanishes if and only if the coefficients
of the wave operator W (z) satisfy the similarity condition

S ktedh, (wy) = —rw,  (r=1,2,...) (4.33)

(4.32)

(the homogeneity condition in ¢ = (¢1,...,t,) with respect to the degrees degty =k (k =1,2,...).
We define the matrix A(z) by

A(z) = —diag(2) + Y1, By, (4.34)
so that M(z)>o = n(2z8, — A(z)). Then under the similarity codition (4.33), the matrix
D(z) = U(z)zd080/n) = V7 (g)eXr kb y—diag(p/n) (4.35)
satisfies the system of linear equations
20, ®(z) = A(z)®(x), 0 P(z) = Bp(x)®(z) (k=1,...,m). (4.36)
This means that the system of nonlinear equations
(20, — A(x), 8y, — Br(z)] =0, [0y, — Bi(2),0, — Bi(z)] =0 (k,l=1,...,m) (4.37)

of “Painlevé type” can be solved (has solutions obtained) by the similarity reduction of the n-
reduced modified KP hierarchy.

In fact, the three cases of Painlevé equations P, Py, Py are interpreted as similarity reduction
of the n-reduced modified KP hierarchy (= modified Drinfeld-Sokolov hierarchy of type Aill_)l) for
n = 2, 3,4 respectively. It is also known that Pyy can be interpreted by a version of the Drinfeld-

Sokolov hierarchy of type Dfll).



