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5.1 Hamiltonian system HIV
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for y = y(t) is expressed as a Hamiltonian system

(HVI)
dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
(5.2)

with Hamiltonian H = H(q, p; t) defined by

t(t− 1)H = p2q(q − 1)(q − t)− p
{
(α0 − 1)q(q − 1) + α3q(q − t) + α4(q − 1)(q − t)

}
+ α2(α1 + α2)(q − t),

(5.3)

or explicitly,

t(t− 1)
dq

dt
= 2pq(q − 1)(q − t)− (α0 − 1)q(q − 1)− α3q(q − t)− α4(q − 1)(q − t),

t(t− 1)
dp

dt
= −p2

(
(q − 1)(q − t) + q(q − t) + q(q − 1)

)
+ p

{
(α0 − 1)(2q − 1) + α3(2q − t) + α4(2q − 1− t)

}
− α2(α1 + α2).

(5.4)

Here α0, α1, α2, α3, α4 are complex parameters subject to α0 + α1 + 2α2 + α3 + α4 = 1. One can
directly verify that the Hamiltonian system (HVI) is equivalent to the sixth Painlevé equation (PVI)
for y(t) = q(t) with parameters

α = 1
2α

2
1, β = −1

2α
2
4, γ = 1

2α
2
3, δ = 1

2(1− α2
0). (5.5)
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5.2 PVI as the compatibility condition of a linear equation (Lax pair)

The Hamiltonian system (HVI) arises from the monodromy preserving deformation(
∂2
z + a1(z; t)∂z + a2(z; t)

)
u(z; t) = 0, ∂tu(z; t) = (b1(z; t)∂z + b2(z; t))u(z; t) (5.6)

of a second order Fuchsian differential equation for u = u(z; t) on P1 with four regular singular
points and an apparent singularity, where ∂z = ∂/∂z and ∂t = ∂/∂t. The first equation is assumed
to be Fuchsian with Riemann scheme

z = 0 z = 1 z = t z = q z = ∞
0 0 0 0 α2

α4 α3 α0 2 α1 + α2

 , α0 + α1 + 2α2 + α3 + α4 = 1, (5.7)

and the singularity z = q with characteristic exponents 0, 2, which may depend on t, is assumed to
be non-logarithmic. Under these assumptions, the coefficients a1(z; t) and a2(z; t) are determined
uniquely by p = Resz=q(a2(z; t)dz) as

a1(z; t) =
1− α4

z
+

1− α3

z − 1
+

1− α0

z − t
− 1

z − q
,

a2(z; t) =
1

z(z − 1)

(
− t(t− 1)H

z − t
+

q(q − 1)p

z − q
+ α2(α1 + α2)

)
,

(5.8)

In particular the Hamiltonian is obtained as H = −Resz=t(a2(z; t)dz).

5.3 Affine Weyl group symmetry

We introduce parameters ε1, ε2, ε3, ε4 such that

α0 = 1− ε1 − ε2, α1 = ε1 − ε2, α2 = ε2 − ε3, α3 = ε3 − ε4, α4 = ε3 + ε4 (5.9)

and regard ε = (ε1, ε2, ε3, ε4) as the coordinates of the four dimensional affine space V = C4. We
identify this parameter space V with the Cartan subalgebra of the simple Lie algebra so(8) of type

D4, and regard the parameters αj (j = 0, 1, 2, 3, 4) as the simple affine roots of type D
(1)
4 identifying

the null root δ = α0 + α1 + 2α2 + α3 + α4 with the constant function 1 on V .e
e

e
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α4 (5.10)

It has been known since the pioneering work of Kazuo Okamoto in 1980’s (Studies on the Painlev’e
equations) that the Hamiltonian system (HVI) admits a group of Bäcklund transformations which

is isomorphic to the extended affine Weyl group W̃ (D
(1)
4 ) of type D4. This group W̃ (D

(1)
4 ) =〈

s0, s1, s2, s3, s4; r1, r3, r4
〉
is generated by simple reflections si (i = 0, 1, . . . , 4) attached to the

simple affine roots αi and the Dynkin diagram automorphisms r1, r3 and r4 = r1r3 corresponding
to the permutations σ1 = (01)(34), σ3 = (03)(14), σ4 = (04)(13) of {0, 1, 3, 4}: these generators are
subject to the fundamental relations

s2i = 1 (i = 0, 1, . . . , 4); sisj = sjsi (i, j = 0, 1, 3, 4); sis2si = s2sis2 (i = 0, 1, 3, 4) (5.11)
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Table 1: Fundamental Bäcklund transformations of (HVI)

α0 α1 α2 α3 α4 q p

s0 −α0 α1 α2 + α0 α3 α4 q p− α0

q − t

s1 α0 −α1 α2 + α1 α3 α4 q p

s2 α0 + α2 α1 + α2 −α2 α3 + α2 α4 + α2 q +
α2

p
p

s3 α0 α1 α2 + α3 −α3 α4 q p− α3

q − 1

s4 α0 −α1 α2 + α4 α3 −α4 q p− α4

q

r1 α1 α0 α2 α4 α3
t(q − 1)

q − t
−(q − t)((q − t)p+ α2)

t(t− 1)

r3 α3 α4 α2 α0 α1
t

q
−q(qp+ α2)

t

r4 α4 α3 α2 α1 α0
q − t

q − 1

(q − 1)((q − 1)p+ α2)

t− 1

and
r2i = 1 (i = 1, 3); r1r3 = r3r1; rksi = sσk(i)rk (k = 1, 3 : i = 0, 1, 3, 4). (5.12)

The Hamiltonian system (HVI) has eight fundamental Bäcklund transformations s0, s1, s2, s3, s4
and r1, r3, r4 as specified in Table 1 in terms of the action on the generators of the differential field
K = C(α; q, p, t) attached to (HVI). Note also that these transformations preserve the Poisson
bracket such that {p, q} = 1.

We remark that, besides this transformation group W̃ = W̃ (D
(1)
4 ) ⊂ Aut(K, ∂t), the Hamil-

tonian system (HVI) has birational canonical transformations corresponding to the permutation
group S{0,1,3,4} of the indexing set {0, 1, 3, 4}. We describe in Table 2 the birational canonical
transformations σij corresponding to the transpositions (ij) ∈ S{0,1,3,4}. The Bäcklund transfor-
mations r1, r3, r4 are obtained from these birational canonical transformations as compositions
r1 = σ01σ34, r3 = σ03σ14, r4 = σ04σ13. If we include these birational canonical transformations
that represent S{0,1,3,4} as well, the symmetry group of (HVI) extends to an affine Weyl group

W (F
(1)
4 ) of type F4.

In the context of monodromy preserving deformation, the Bäcklund transformations s0, s1, s3, s4
except s2 arise from gauge transformations u(z; t) → g(z; t)u(z; t) by power functions in z branching
only at z = 0, 1, t,∞. Also, the birational canonical transformations of Table 2 are obtained from
the coordinate changes in z by fractional linear transformations that permutes the singular points
{0, 1, t,∞}. As fo s2, Okamoto found this Bäcklund transformation by analyzing the diffrential
equation to be satisfied by the τ function τ = τ(t) defined by

H =
d

dt
log τ =

1

τ

dτ

dt
; (5.13)

s2 is called the Okamoto transformation.
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Table 2: Birational canonical transformations that realize S{0,1,3,4}

α0 α1 α2 α3 α4 t ∂t q p

σ01 α1 α0 α2 α3 α4 1− t −∂t
(1− t)q

q − t

(q − t)((q − t)p+ α2)

t((t− 1)

σ03 α3 α1 α2 α0 α4
1

t
−t2∂t

q

t
tp

σ04 α4 α1 α2 α3 α0
t

t− 1
−(t− 1)2∂t

q − t

1− t
(1− t)p

σ13 α0 α3 α2 α1 α4
t

t− 1
−(t− 1)2∂t

q

q − 1
−(q − 1)((q − 1)p+ α2)

σ14 α0 α4 α2 α3 α1
1

t
−t2∂t

1

q
−q(qp+ α2)

σ34 α0 α1 α2 α4 α3 1− t −∂t 1− q −p

5.4 Typical classical solutions

When α2 = 0, the specialization p = 0 implies the Riccati equation

t(t− 1)q′ = −(α0 − 1)q(q − 1)− α3q(q − t)− α4(q − 1)(q − t), ′ = d/dt. (5.14)

Then, by the change of variables

q =
t(1− t)

α1

v′

v
, v = (1− t)α4u, (5.15)

we obtain the Gauss hypergeometric differential equation

t(1− t)u′′ +
(
γ − (α+ β + 1)t

)
u′ − αβu = 0 (5.16)

with α = 1 − α3, β = α4, γ = α0 + α4. In this case of (HVI), we have five fundamental invariant
divisors p = 0 along α2 = 0 and q = 0, 1, t,∞ along αj = 0 (j = 4, 3, 1, 0), respectively. From
each of those, we obtain a one-parameter family of Riccati solutions which are expressible in terms
of the Gauss hypergeometric function. By the Bäckund transformations, we see that, along each
reflection hyperplane of the affine Weyl group, (HVI) has a one-paramter family of solutions which
are expressed as rational functions of Gauss hypergeometric functions and their derivatives. (See
Forrester-Witte (2004, Nagoya Math. J.) for the relation to the random matrix theory.)

At the fixed point of each diagram automorphism rj (j = 1, 3, 4), there arise algebraic solutions
with two continuous parameters. From the data of Table 1, the condition of a fixed point of r3 is
given by

α0 = α3, α1 = α4, t/q = q, −q(qp+ α2)/t = p. (5.17)

Solving these equations, we see that, for the parameter values

α = (α0, α1, α2, α3, α4) = (a+ 1
2 , b,−a− b, a+ 1

2 , b) (a, b ∈ C), (5.18)
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there exist simple algebraic solutions

(q(t), p(t)) = (t
1
2 , 12(a+ b)t−

1
2 ). (5.19)

As we will see below, the class of algebraic solutions obtained from this seed solutions by Bäcklund
transformations show a remarkable combinatorial property; the corresponding special polynomials
(ϕ factors) are called the Umemura polynomials. Typical algebraic solutions are obtained in this
way by Bäcklund transformations from those at the fixed points of diagram automorphisms. In
fact, (HVI) has many other algebraic solutions; the classification of agebraic solutions of (HVI) has
been completed by the work of Lisovyy-Tykhyy (2014).

5.5 Umemura polynomials

We now consider the Bäcklund transformation obtained by the translation T = s0s2s1s4s2s0r3 ∈
W̃ (D

(1)
4 ) such that

(Tn(α0), T
n(α1), T

n(α2), T
n(α3), T

n(α4)) = (α0 + n, α1, α2, α3 − n, α4) (n ∈ Z). (5.20)

Applying Tn (n ∈ Z) to the seed solution (5.17), we obtain a sequence of algebraic solutions (qn, pn)
with parameters

(α0, α1, α2, α3, α4) = (a+ 1
2 + n, b,−a− b, a+ 1

2 − n, b). (n ∈ Z) (5.21)

The corresponding τ functions τn (n ∈ Z) can be written in the form

τn = const.xλn(x+ 1)νn(x− 1)νnUn(x), x = t
1
2 , (5.22)

where Un(x) are polynomials in x = t
1
2 determined by the Toda equation

Un+1Un−1 = (x2 − 1)2
(
xU ′′

nUn + U ′
nUn − x(U ′

n)
2
)

−
(
a2(x+ 1)2 − b2(x− 1)2 − (2n− 1)2x

)
U2
n (n ∈ Z),

(5.23)

with initial values U0(x) = U1(x) = 1. In spite of the rational nature of this recurrence formula,
it turns out that Un(x) are in fact polynomials in x; Un(x) are called the Umemura polynomials
attached to the seed solution (5.17). We demonstrate below some computations of these Umemura
polynomials.

U0 = 1, U1 = 1, U2 = −(a− b)(a+ b) + (1− 2a2 − 2b2)x− (a− b)(a+ b)x2

U3 = −(−1 + a− b)(a− b)(1 + a− b)(−1 + a+ b)(a+ b)(1 + a+ b)

− 3(a− b)2(a+ b)2(−5 + 2a2 + 2b2)x

− 3(a− b)(a+ b)(6− 14a2 + 5a4 − 14b2 + 6a2b2 + 5b4)x2

+ (9− 38a2 + 58a4 − 20a6 − 38b2 + 60a2b2 − 12a4b2 + 58b4 − 12a2b4 − 20b6)x3

− 3(a− b)(a+ b)(6− 14a2 + 5a4 − 14b2 + 6a2b2 + 5b4)x4

− 3(a− b)2(a+ b)2(−5 + 2a2 + 2b2)x5

− (−1 + a− b)(a− b)(1 + a− b)(−1 + a+ b)(a+ b)(1 + a+ b)x6

(5.24)
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Note that, if f(x) is a polynomial in x of degree ≤ d, it can be written as f(x) = F (x+1, x− 1) by
a unique homogenous polynomial F (u, v) in (u, v) of degree d. If we rewrite Un as a homogenous
polynomial of u = x + 1 and v = x − 1 of degree n(n − 1), we see that Un can be expressed in a
concise form, and that something more interesting is happening.

U2 = −1
4(2a− 1)(2a+ 1)(x+ 1)2 + 1

4(2b− 1)(2b+ 1)(x− 1)2

= 1
22

(
− (c− 1)(c+ 1)u2 + (d− 1)(d+ 1)v2

)
,

(5.25)

where we have set 2a = c and 2b = d. Similarly, we have

26 U3

= −(c− 3)(c− 1)2(c+ 1)2(c+ 3)u6 + 3(c− 3)(c− 1)(c+ 1)(c+ 3)(d− 1)(d+ 1)u4v2

− 3(c− 1)(c+ 1)(d− 3)(d− 1)(d+ 1)(d+ 3)u2v4 + (d− 3)(d− 1)2(d+ 1)2(d+ 3)v6.

(5.26)

We now introduce bilateral shifted factorials

ck =
k−1∏
i=0

(c− k + 1 + 2i), dk =
k−1∏
i=0

(d− k + 1 + 2i) (k = 0, 1, 2, . . .), (5.27)

so that

c0 = 1, c1 = c, c2 = (c− 1)(c+ 1), c3 = (c− 2)c(c+ 2),

c4 = (c− 3)(c− 1)(c+ 1)(c+ 3), . . . .
(5.28)

Then we have

22U2 = −c2u
2 + d2v

2

26U3 = −c4c2u
6 + 3c4d2u

4v2 − 3c2d4u
2v4 + d4d2v

6.
(5.29)

The coefficients 1, 3, 3, 1 are binomial coefficients. If we proceed to the next step,

212U4 = c6c4c2u
12 − 6c6c4d2u

10v2 + 15c6c2d4u
8v4 − 10c6d4d2u

6v6

− 10c4c2d6u
6v6 + 15c4d6d2u

4v8 − 6c2d6d4u
2v10 + d6d4d2v

12,
(5.30)

where the binomial coefficient
(
6
3

)
= 20 has split into two factorized terms with the same monomial

u6v6. Let’s check one more:

220U5 = c8c6c4c2u
20 − 10c8c6c4d2u

18v2 + 45c8c6c2d4u
16v4 − 50c8c6d4d2u

14v6

− 70c8c4c2d6u
14v6 + 175c8c4d6d2u

12v8 + 35c6c4c2d8u
12v8 − 126c8c2d6d4u

10v10

− 126c6c4d8d2u
10v10 + 35c8d6d4d2u

8v12 + 175c6c2d8d4u
8v12 − 70c6d8d4d2u

6v14

− 50c4c2d8d6u
6v14 + 45c4d8d6d2u

4v16 − 10c2d8d6d4u
2v18 + d8d6d4d2v

20.

(5.31)

Seeing these formulas, one would expect that the general formula could be

2(n+1)nUn+1 =
∑

I⊔J={2,4,...,2n}

(−1)
1
2

∑
i∈I i nI,J

∏
i∈I

ciu
i
∏
j∈J

djv
j

(5.32)

with some positive integers nI,J , where the summation is taken over all divisions of the set
{2, 4, . . . , 2n} into the disjoint union of two subsets.
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A remarkable fact about these Umemura polynomials Un+1 is that each coefficient nI,J in (5.32)
represents the dimension of an irreducible polynomial representation of GL(n+1). Recall that the
irreducible polynomial representations of the general linear group GL(n + 1) are parametrized by
the partitions λ with l(λ) ≤ n+ 1, i.e. non-increasing sequences of nonnegative integers

λ = (λ1, λ2, . . . , λn+1), λ1 ≥ λ2 ≥ · · · ≥ λn+1 ≥ 0. (5.33)

For each partition λ, we denote by LGL(n+1)(λ) the irreducible representation of highest weight λ.
Then the dimension of LGL(n+1)(λ) is given by the hook-length formula

dimC LGL(n+1)(λ) =
∏
s∈λ

n+ 1 + cλ(s)

hλ(s)
, (5.34)

where for each box s = (i, j) in the Young diagram λ, cλ(s) = j − i and hλ(s) = λi − i+ λ′
j − j +1

denote the content and the hook-length of s respectively.
Returning to the formula (5.32), let (I, J) be a pair of subsets of {2, 4, . . . , 2n} such that

I ⊔ J = {2, 4, . . . , 2n}. We express the subsets I and J in the form I = {2i1, 2i2, . . . , 2ir}, J =
{2j1, 2j2, . . . , 2js} by two strict partitions i1 > · · · > ir and j1 > · · · > js such that {i1, . . . , ir} ⊔
{j1, . . . , js} = {1, . . . , n}. Then, to the strict partition i1 > i2 > · · · > ir we attach a partition

λI = (i1 − 1, . . . , ir − 1|i1, i2, . . . , ir) (5.35)

in terms of the Frobenius symbol. The Frobenius symbol λ = (a1, . . . , ar|b1, . . . , br) with a1 >
· · · > ar ≥ 0, b1 > · · · > br ≥ 0, represents the partition λ = (λ1, λ2, . . .) such that λi − i = ai for
i = 1, . . . , r, and λ′

j − j = bj for j = 1, . . . , r. The observation made by Noumi-Okada-Okamoto-
Umemura (1998) was that

nI,J = dimC LGL(n+1)(λI) = dimC LGL(n+1)(λJ). (5.36)

As an example, let’s look at the coefficient of c8c4d6d2u
12v8 in (5.31) for 220U5. In this case,

n = 4, I = {8, 4}, r = 2. Since (i1, i2) = (4, 2), the corresponding partition is λI = (3, 1|4, 2) =
(4, 3, 2, 2, 1).

3

1

4

2

λI = (3, 1|4, 2) = (4, 3, 2, 2, 1)

4

3

2

2

1
(5.37)

Then the dimension of LGL(5)(λI) is computed by the hook-length formula (5.34) as

dimC LGL(5)((3, 1|4, 2)) =










= 5 · 5 · 7 = 175.

5 6 7 8

4 5 6

3 4

2 3

1

8 6 3 1

6 4 1

4 2

3 1

1 (5.38)
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The conjecture (5.32), (5.36) was proved by Taneda (2001). On the basis of this work, Kirillov-
Taneda (2002) also investigated a generalization of Umemura polynomials from the combinatorial
point of view. In view of the work of Masuda (2003) on algebraic solutions of PVI and the combina-
torial viewpoint of Kirillov-Taneda, one can formulate a precise conjecture concerning combinatorial
formula for Umemura polynomials Um,n(x) with two discrete parameters associated with a larger
class of algebraic solutions of PVI.
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