

ROYAL INSTITUTE OF TECHNOLOGY

Elastic Recoil Detection Analysis of Fusion Reactor Wall Materials: Detector design and Applications

Petter Ström

Per Petersson, Marek Rubel

Department of Fusion Plasma Physics, School of Electrical Engineering, Royal Institute of Technology (KTH), Association VR, Stockholm, Sweden.

OUTLINE

- Background: Plasma Wall Interaction
- Focus method: ToF-HIERDA
- Detector design

Background

TEXTOR tokamak (1982-2013), Forschungszentrum Jülich

New plasma facing components, 2003

Typical condition after Experimental campaign

Images: Forschungszentrum Jülich

Plasma-wall interactions

Images: Harry Reimer, Forschungszentrum Jülich

Transport of particles and energy

- From plasma to wall
- From wall to plasma

Material selection for PFCs affects plasma performance!

Assess material migration and fuel inventory! In-situ/<u>Ex-situ</u> analysis

ToF-HIERDA

Time-of-Flight Heavy Ion Elastic Recoil Detection Analysis

- Detection of recoil ions' velocity and energy
- Excellent resolution for light isotopes deposited on smooth surfaces
- Probing depth $\approx 1 \mu m$
- Problem: Forward scattered primary ions

Experiment set-up

Illustration of the problem

HIERDA on carbon and tungsten plates from TEXTOR

Very good resolution for light elements, BUT High iodine influx → Deterioration of solid state semiconductor detector **Solution?**

Detector: Gas Ionization Chamber

Design parameters

- Entry window
- Gas and pressure
- Detector geometry
- Voltages

Image: Our simple detector model in COMSOL Multiphysics

Window

10 µm Al

100 nm Si₃N₄

Image: Silson Ltd, membrane manufacturer http://www.silson.com

Working gas and pressure

Aim: stop all incoming particles in detector volume

- **Preference:** high pressure
- **Drawback:** need thicker window

Compromise!

- Electronic stopping dominates
- Lots of electrons → advantage

Isobutane at 200 mbar!

Geometry

- Choose cylindrical detector (no unneccesary volume)
- Size: Large enough to stop all particles. Radius 5cm, length 20cm

Trim calculation for 100 nm Si₃N₄ window and 200 mbar isobutane

Conclusion \rightarrow Outlook

- GIC feasible for HIERDA
- Design parameters fixed
- Detector tests underway
- Study Be limiters and W divertor from JET-ILW
- Test limiters from TEXTOR

Applications

Tracer experiment with WF₆ and ¹⁵N: Deposits on a test limiter from TEXTOR, Species: W, He, C, ¹⁴N, ¹⁵N, O, F

First Mirror Test at JET for ITER: Analysis of deposit on a test mirror

Acknowledgements

Tandem Accelerator Laboratory, Uppsala University

Göran Possnert, Professor - Manager Rogério Zorro, Senior Research Engineer

Software

COMSOL Multiphysics

J.F. Ziegler, J.P. Biersack: Stopping and Range of Ions in Matter (SRIM)