W1-signal from the KL11 imaging spectroscopy: comparison to KT3

Petter Ström Department of Fusion Plasma Physics, School of Electrical Engineering, KTH Stockholm, Association VR

JET Task Force E1/E2 meeting, 2014-10-07

- Overview of KL11 and KT3 diagnostics
- How can the signals be compared?
- Data processing
- Results

Petter Ström 2 (18) JET Task Force E1/E2 meeting 2014-10-07

KL11 imaging spectroscopy

4 Pike cameras from AVT*:
 E1DC-E1DF (cam 1 - cam 4)

- Same view: Light distributed by beamsplitters**
- Wavelength filters to select spectral lines of interest

* Allied Vision Technologies

** See A. Huber: Rev. Sci. Instrum. 83(10), 2012: 10D511

Petter Ström 3 (18)

JET Task Force E1/E2 meeting

Available W1 filters

Shots	80876 - 81417	81418 – 82419	Since 82420
E1DC	503.5 (1.5)	None	None
E1DD	522.5 (1.0)	522.5 (1.0)	None
E1DE	400.8 (1.0) 505.3 (1.5)	400.8 (1.0) 505.3 (1.5)	400.96 (0.97)
E1DF	400.8 (1.5)	400.8 (1.5)	400.8 (1.5)

Central wavelength (FWHM) Unit: nm

1000

Corresponding neutral tungsten spectral linesWavelength400.88505.33522.47KL11-E1DERelativeKL11-E1DF

Source: National Institute of Standards and Technology, physics.nist.gov

90

Petter Ström 4 (18)

intensity

JET Task Force E1/E2 meeting

90

T.

×.

Filter functions

L.O.T.-Oriel Ltd.

Petter Ström 5 (18)

JET Task Force E1/E2 meeting

т

KT3, overview

Diffraction gratings (different for KT3a, b, c) in Czerny-Turner set up

→ Different wavelengths end up on different pixels of light gathering chip Output: Intensity as function of wavelength, track number and time

Petter Ström 6 (18)

JET Task Force E1/E2 meeting

Method for comparison

OBS! Different toroidal positions. Toroidal symmetry must be assumed.

Petter Ström 7 (18)

JET Task Force E1/E2 meeting

ROI selection

KL11: All wavelength filters distort the image (magnification + shift)
Define ROIs individually for each filter by identifying structures!

Petter Ström 8 (18) JET Task Force E1/E2 meeting 2014-10-07

Data processing: KL11

- a) Subtract camera 0-signal (frame 1)
- b) Integrate over ROI (sum pixel values)

Petter Ström 9 (18) JET Task Force E1/E2 meeting 2014-10-07

3 KT3b signals for comparison with KL11:

Baseline subtracted, integrated over selected W1-peak (400.88nm)
 Weighted by filter function, integrated from 399nm to 403nm
 Pure background

Data processing KT3b

2)

Filter function central wavelength shifted by theoretical minus experimental peak position to compensate for calibration offset!

Petter Ström 11 (18)

JET Task Force E1/E2 meeting

W divertor erosion, low density

Correlation coefficients W-line: 0.93

Weighted: 0.94

Background: 0.52

Petter Ström 12 (18)

W source control

Petter Ström 13 (18)

JET Task Force E1/E2 meeting

W melting by ELMS

Petter Ström 14 (18)

JET Task Force E1/E2 meeting

Correlation coefficients

E1DE W-line: 0.72

Weighted (E1DE): 0.97

Background: 0.97

E1DF W-line: 0.65

Weighted (E1DF): 0.96

Background: 0.96

Petter Ström 15 (18) JET Task Force E1/E2 meeting 2014-10-07

- KL11 pixel value integral correlates well to filter function weighted KT3b data for the W1-line at 400.88nm.
- When background is weak, high correlation to background subtracted, integrated W1-peak is seen.
- When background is strong, there is a high correlation to that background.

- Study additional shots to verify result, possibly for other lines besides W1, 400.88nm
- Create several smaller ROI:s and compare to individual KT3 tracks or a few tracks at a time
- Attempt a background subtraction for KL11 by comparing the signals with broad and narrow filter
- All code (and this presentation) can be found under jac in /work/pstrom

Questions per e-mail: pestro@kth.se

Petter Ström 17 (18) JET Task Force E1/E2 meeting 2014-10-07

Mike Stamp,

Andy Meigs

&

Alexander Huber

Petter Ström 18 (18) JET Task Force E1/E2 meeting 2014-10-07