

KTH ROYAL INSTITUTE OF TECHNOLOGY

Material characterization for magnetically confined fusion: Surface analysis and method development

Petter Ström

School of Electrical Engineering and Computer Science

Division of Fusion Plasma Physics

Total CO₂ Released after 1960

Long Term Carbon-Neutral Energy Mix

PETTER STRÖM, PHD THESIS DEFENCE

$D + T \rightarrow {}^{4}He + n + 17.6 \text{ MeV}$

Present machines operate mainly with deuterium plasma.

PETTER STRÖM, PHD THESIS DEFENCE

PETTER STRÖM, PHD THESIS DEFENCE

General objectives

- Improve our knowledge about plasma-material interaction in fusion devices: Erosion, transport and deposition.
- Investigate methods and possible development to this end.

Specific: Papers I and VI

- Determine rate/direction of material transport in two tokamaks
 - \rightarrow Differences between different elements.
 - \rightarrow Relevance of geometry, component position.
- Obtain information about thickness and composition of deposits.
- Quantify retention of fuel atoms.

Studied Tokamak Devices

TEXTOR

JET

PETTER STRÖM, PHD THESIS DEFENCE

2019-<u>02-13</u>

Size Scales

Erosion, Transport and Deposition Studies

<u>Methods</u>: a) Monitoring of fusion plasma during machine operation.

b) Ex-situ surface analysis of plasma-exposed components.

Techniques used in this work

- Rutherford Backscattering Spectrometry
- Medium-Energy Ion Scattering
- Nuclear Reaction Analysis
- Elastic Recoil Detection Analysis
- Optical Surface Profiling
- Optical Microscopy
- Atomic Force Microscopy
- Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy

Every technique has specific pros & cons

PETTER STRÖM, PHD THESIS DEFENCE

Ion Beam Analysis Techniques

Elastic Recoil Detection Analysis

Mesurement of recoil ions' velocity and energy

 \rightarrow Depth resolved quantification of all elements and isotopes present in sample

PETTER STRÖM, PHD THESIS DEFENCE

Uppsala University Tandem Laboratory

ERDA Detection System Performance

PETTER STRÖM, PHD THESIS DEFENCE

Some Measurements and Results

PETTER STRÖM, PHD THESIS DEFENCE

Paper I: Material Analysis After TEXTOR Shutdown

PETTER STRÖM, PHD THESIS DEFENCE

Paper I: ERDA Measurements

Paper I: Summary

A lot of molybdenum deposited rather close to injection point
 → Prompt deposition, erosion, prompt re-deposition.

Note: Properties of deposits radically different from original material.

- Larger fraction of fluorine found on opposite side of machine
 → Verified: prompt deposition less effective for light elements.
- ¹⁵N found with molybdenum despite different injection location
 → Deposition locally enhanced by MoF₆ injection.

Paper VI: Deposits In JET Divertor Corners

PETTER STRÖM, PHD THESIS DEFENCE

Wall Probes on Divertor Carrier

Photo credit: A. Widdowson K. Heinola

PETTER STRÖM, PHD THESIS DEFENCE

Paper VI: Summary

- Typical layer thickness in divertor corners: a few hundred nanometers
 → Reduction of one order of magnitude compared to JET-C.
- Carbon/deuterium co-deposition indicated on blocks.
- Carbon not present on instrument covers
 → Carbon from divertor carrier ribs only moved a few centimeters.
- High deuterium fraction in beryllium/oxygen layers.
- ¹⁸O detected, tracer for oxidation studies.
- ¹⁵N not detected in divertor corners.

Papers III-V: The role of reduced activation steel

Structural material for Fusion Reactors

- Reproduce mechanical properties of Cr-Mo ferritic steels
- Avoid neutron activation (cannot use Nb, Ni, Mo)

Possible side effect

- Tungsten and tantalum \rightarrow Erosion resistance

		EUROFER97
Element (weight %)	Fe	89
	Cr	8.9
	W	1.1
	Mn	0.47
	V	0.20
	Та	0.14
	С	0.11
	Si	< 0.10

EUROFER97

Mechanism for Increased Erosion Resistance

Mechanism for Increased Erosion Resistance

"Armor" layer enriched with erosion resistant component

Easily eroded (Fe, Cr)

Erosion resistant (W, Ta)

Aims: Paper III-V

- EUROFER97 exposed to 600 eV D₃⁺ ions; measure
 - Layer thickness
 - Atomic composition
- Correlate with changes in surface morphology.

Papers III-V: Summary

- 600 eV D_3^+ bombardment \rightarrow Surface enrichment with tungsten and tantalum.
- Fluence of $\sim 10^{23}$ D/m² or higher required to yield measurable effect.
- Surface tungsten fraction increases with increasing eroding ion fluence \rightarrow Increase by factor up to 25 for 10²⁴ D/m².
- Layer thickness after 10^{23} D/m²: ~ 5 nm.
- Significant roughening of surface occurs at higher fluences
 → Depth profiling with ion beams becomes difficult.
- Characteristic height of roughness after 10²⁴ D/m²: ~ 20 nm

General Summary

Material characterization

ERDA detector: Applications

Presently 28 citations on Google Scholar.

- Hf-C and Ta-C hard coatings •
- Multilayered coatings Electrochromic films • •
- Stopping of ions in matter •
- Metal nitride coatings Photochromic films •

PETTER STRÖM, PHD THESIS DEFENCE

Thank you for your attention!

PETTER STRÖM, PHD THESIS DEFENCE