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Hyperbolic space

(Sn, [ĝ]) the conformal round sphere

(Hn+1, g) the hyperbolic space

(Bn+1(0; 1), g) the unit ball

ρ(x) = 1−|x|2
2 is such that g = ρ2g restricts as ĝ on Sn

Isom(Hn+1) = Conf(Sn)
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Conformally compact manifolds

(N, [ĝ])

(M, g)

(N, [ĝ]) conformal manifold

(M, g ) Riemannian manifold
M = M ∪ N compact manifold with boundary
∂M = N
ρ : M → [0,∞) defining function for N

g =
dρ⊗ dρ+ ĝ + o(ρ)

ρ2

(equivalently, g = ρ2g restricts to ĝ on N)

(M, g ) is a conformal compactification
(N, [ĝ]) is the conformal boundary

Riemannian invariants =⇒ conformal invariants
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Conformally compact manifolds
Asymptotically hyperbolic manifolds

(N, [ĝ])(M, g)

Sectional curvature

sec(g) = −|dρ|2g + o(1)

(Mn+1, g) is called
I asymptotically hyperbolic if |dρ|2g = 1 on N
I Poincaré-Einstein if moreover Ric(g) = −ng

Graham-Lee ’91, Biquard ’00, Lee ’06: perturbation
of Poincaré-Einstein metrics
=⇒ new examples of Einstein metrics

Question: Is the notion of asymptotically hyperbolic manifold intrinsic?
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Conformally compact manifolds
Asymptotically hyperbolic manifolds

(N, [ĝ])(M, g)

Answer

Bahuaud-Gicquaud-Lee-Marsh 10’s: yes if
I existence of a convex core
I |R − R0|g , |∇jR|g = O(e−ar )

R0(X ,Y )Z = g(Y ,Z )X − g(X ,Z )Y
r = dg(·, o)
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(N, [ĝ])(M, g)

Answer
Bahuaud-Gicquaud-Lee-Marsh 10’s: yes if
I existence of a convex core

I |R − R0|g , |∇jR|g = O(e−ar )

R0(X ,Y )Z = g(Y ,Z )X − g(X ,Z )Y
r = dg(·, o)

Alan Pinoy | CR compactification for asymptotically locally complex hyperbolic almost Hermitian manifolds 5



Conformally compact manifolds
Asymptotically hyperbolic manifolds
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Complex hyperbolic geometry

(CHn+1, g, J)

Unique complete, simply connected, Kähler manifold whose holomorphic sectional curvature is constant
equal to −1

Curvatures

R0(X ,Y )Z =
1
4
(
g(Y ,Z )X − g(X ,Z )Y + g(JY ,Z )JX − g(JX ,Z )JY + 2g(X , JY )JZ

)
Quarter-pinched
−1 6 sec(P) 6 − 1

4

I sec(P) = −1 ⇐⇒ P = JP
I sec(P) = − 1

4 ⇐⇒ P ⊥ JP

Einstein
Ric(g) = −

( n
2 + 1

)
g
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Complex hyperbolic geometry
and CR geometry

CR manifold
(N,H, JH) with
I H hyperplane distribution
I JH formally integrable almost complex structure

on H

Strictly pseudoconvex if
I H contact
I ∃θ calibrating H with dθ|ker θ(·, JH ·) > 0

gCHn+1 = dr 2 + 4 sinh2(r)θS2n+1 ⊗ θS2n+1 + 4 sinh2(r/2)dθS2n+1(·, i·)

= dr 2 + e2rθS2n+1 ⊗ θS2n+1 + er dθS2n+1(·, i·) + . . .

Isom(CHn+1) = AutCR(S
2n+1)

Intrinsic geometry of (CHn+1,g, J) =⇒ CR geometry of S2n+1
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Asymptotically complex hyperbolic manifolds

(N,H, JH)(M, g, J)

(N,H, JH) CR manifold
(M, g, J) (almost) Hermitian / Kähler manifold
M = M ∪ N compact manifold with boundary
∂M = N
ρ : M → [0,∞) defining function for N

g =
dρ⊗ dρ+ θ ⊗ θ + ργ + o(ρ)

ρ2

g is asymptotically complex hyperbolic and
asymptotic to the CR structure

(almost) Hermitian / Kähler invariants =⇒ CR invariants
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Asymptotically complex hyperbolic manifolds

(N,H, JH)(M, g, J)

I sech(g) = −1 + o(1)
I sec⊥(g) = − 1

4 + o(1)
I Ric(g) = −

( n
2 + 1

)
g + o(1)

Examples:
Cheng-Yau metric, Bergman metric

Roth ’99, Biquard ’00, Matsumoto ’20:
perturbation of Kähler-Einstein metrics
=⇒ new examples of Einstein metrics

(CR structure not necessarily integrable here)

Question: Is the notion of asymptotically complex hyperbolic manifold intrinsic?
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Main result
in the Kähler case

Theorem [P. ’22]
Let (M, g, J) be a complete, non-compact, Kähler manifold of real dimension > 4, with a convex core.
Assume that

|R − R0|g ,

|∇J|g ,

|∇R|g

, |∇2J|g

= O(e−ar ), a > 3/2

Then (M, J) is the interior of a compact complex manifold (M, J) with boundary such that

I J is continuous up to the boundary

I H0 =
(

T∂M
)
∩
(

JT∂M
)

is a contact

distribution of class C1

I J0 = J|H0 is of class C1, formally integrable
I (∂M,H0, J0) is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η0 a C1 contact form on
∂M, and a C1 Carnot metric γ = dη0|H0×H0(·, J0·) such that

g =
dρ⊗ dρ+ η0 ⊗ η0 + ργ + o(ρ3/2)

ρ2
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Main result
in the non-Kähler case

Theorem [P. ’23]
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Main result
Comments

Bland 80’s:
Compactification for some open Kähler manifolds
I assumptions not totally geometric
I |R − R0|g = O(e−4r ) a posteriori
I dimM = 4, g Einstein: only applies to spherical

boundaries (consequence of Biquard-Herzlich
’05)

P. ’22-’23
I a > 3/2 =⇒ C1 everywhere
I g Kähler =⇒ assumptions on J are

superfluous

Bracci-Gaussier-Zimmer ’18:
Ω ⊂ Cn bounded domain, ∂Ω of class C2,α

∂Ω strictly pseudoconvex if and only if
Ω carries a complete Kähler metric with

−1 − ε 6 sech 6 −1 + ε

near ∂Ω
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Outline of the proof

∂r

J∂r

∂r

J∂r

∂r

J∂r

∂r

J∂r

∂r

J∂r

∂r

J∂r

∂r

J∂r

K

∂K

Convex core
I K compact, convex, codim = 0
I ∂K smooth, orientable
I sec(M \ K ) < 0

Normal exponential map

E : (0,∞)× ∂K ∼→ M \ K

E(r , p) = Er (p) := expp(rν(p))

Intrinsic data
I Radial vector field ∂r

I J∂r

I {∂r , J∂r}⊥
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Outline of the proof
in the Kähler case

∇J = 0 =⇒ ∇∂r J∂r = 0

Admissible frame: {∂r , J∂r ,E1, . . . ,E2n} orthonormal frame with ∇∂r Ej = 0

Associated coframes

η0
r = e−rE∗

r g(·, J∂r )

ηj
r = e−r/2E∗

r g(·,Ej)

Associated Carnot metrics

γr =
2n∑

j=1

ηj
r ⊗ ηj

r

Almost contact tensors

ϕr = E∗
r (π

⊥ ◦ J ◦ π⊥)

where π⊥ : TM \ K → {∂r , J∂r}⊥ orthogonal
projection

The metric reads
g = dr ⊗ dr + e2rη0

r ⊗ η0
r + erγr
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Outline of the proof
in the Kähler case

g = dr ⊗ dr + e2rη0
r ⊗ η0

r + erγr

Strategy

I {η0
r , . . . , η

2n
r } locally converges in C1 topology

I The limit {η0, . . . , η2n} is a coframe
I η0 is contact

I ϕr converges in C1 topology
I The limit ϕ induces an almost complex structure

J0 on ker η0

I J0 is formally integrable and dη0|ker η0(·, J0·) = γ
Relations
I ϕr

2 = −Id + η0
r ⊗ ξr

0 with ξr
0 = E∗

r (er J∂r )

I η0
r ◦ ϕr = 0

I γr (ϕr ·, ϕr ·) = γr

I dη0
r (·, ϕr ·) = γr + O(e(1−a)r )
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Outline of the proof
in the Kähler case

Convergence of the coframes
I In C0 topology 

∂2
r η

0
r + 2∂rη

0
r =

2n∑
k=0

O
(

e(1/2−a)r
)
ηk

r

∂2
r η

j
r + ∂rη

j
r =

2n∑
k=0

O
(

e(1/2−a)r
)
ηk

r

I In C1 topology 
∂2

r
(
erLu(η

0
r (v))

)
− erLu

(
η0

r (v)
)

= O
(

e(2−a)r
)

∂2
r

(
er/2Lu(η

j
r (v))

)
− er/2Lu

(
ηj

r (v)
)

= O
(

e(3/2−a)r
)
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Outline of the proof
in the Kähler case

Convergence of ϕr

I In C0 topology
∂rϕr = ϕr ◦ Sr − Sr ◦ ϕr = O

(
e(3/2−a)

)
where Sr = E∗

r (S), S = ∇∂r

I In C1 topology: a suitable choice of admissible frame yields

ϕr =
n∑

j=1

η2j−1
r ⊗ ξ2j

r − η2j
r ⊗ ξr

2j−1

where {ξr
0, . . . , ξ

r
2n} is dual to {η0

r , . . . , η
2n
r }

Consequence: ϕr
2 = −Id + η0

r ⊗ ξr
0 =⇒ J0 = ϕ|ker η0 is an almost complex structure

The integrability of J0 is more complicated
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Outline of the proof
in the non-Kähler case

∇J 6= 0
But |∇J|g = O(e−ar ) =⇒ ∇∂r J∂r = O(e−ar )

Key fact
There exists a unique vector field E0 on M \ K such that
I |E0 − J∂r |g = o(1)
I ∇∂r E0 = 0

Proof of existence
Define βr (v) = g(v‖, J∂r ), v ∈ T∂K
I βr (v)− β0(v) =

∫ r
0 g(v‖,∇∂r J∂r ) =

∫ r
0 O(|v |g |∇J|g), hence =⇒ βr (v) → β(v)

I |β − βr |g|∂K 6
∫∞

r |∇J|g , hence β is continuous, nowhere zero

Define e0 the unique vector field with β(e0) = 1, e0 ⊥ ker β
and E0 its radial parallel transport on M \ K
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Outline of the proof
in the non-Kähler case

One can now initiate the same strategy as in the Kähler case, but
I substitute J∂r by E0 "almost everywhere"

caution: the resulting admissible frame {∂r ,E0, . . . ,E2n} is not smooth
I large amount of extra estimates
I extra error terms in all equations must be understood

Alan Pinoy | CR compactification for asymptotically locally complex hyperbolic almost Hermitian manifolds 18



Tack så mycket!
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