CR compactification for asymptotically locally complex hyperbolic almost Hermitian manifolds [arXiv:2307.04062]

Alan Pinoy

KTH Royal Institute of Technology Stockholm Sweden

Introduction

Conformally compact manifolds Asymptotically hyperbolic manifolds

Complex hyperbolic geometry

Definition CR geometry Asymptotically complex hyperbolic manifolds

Main result

Statement Outline of the proof: Kähler case Outline of the proof: non-Kähler case

 $(S^{n}, [\hat{g}])$ the conformal round sphere (\mathbb{H}^{n+1}, g) the hyperbolic space $(\overline{B^{n+1}(0; 1)}, \overline{g})$ the unit ball $\rho(x) = \frac{1-|x|^{2}}{2}$ is such that $\overline{g} = \rho^{2}g$ restricts as \hat{g} on S^{n}

 $\operatorname{Isom}(\mathbb{H}^{n+1}) = \operatorname{Conf}(S^n)$

 $(N, [\hat{g}])$ conformal manifold

 $(N, [\hat{g}])$ conformal manifold (M, g) Riemannian manifold

 $(N, [\hat{g}])$ conformal manifold (M, g) Riemannian manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$ $\rho: \overline{M} \to [0, \infty)$ defining function for N

$$m{g} = rac{m{d}
ho\otimesm{d}
ho+\hat{m{g}}+m{o}(
ho)}{
ho^2}$$

(equivalently, $\overline{g} = \rho^2 g$ restricts to \hat{g} on **N**)

 $(N, [\hat{g}])$ conformal manifold (M, g) Riemannian manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$ $\rho: \overline{M} \to [0, \infty)$ defining function for N

 $m{g} = rac{d
ho \otimes d
ho + m{\hat{g}} + o(
ho)}{
ho^2}$

(equivalently, $\overline{g} = \rho^2 g$ restricts to \hat{g} on **N**)

 $(\overline{M}, \overline{g})$ is a conformal compactification $(N, [\hat{g}])$ is the conformal boundary

 $(N, [\hat{g}])$ conformal manifold (M, g) Riemannian manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$ $\rho \colon \overline{M} \to [0, \infty)$ defining function for N

 $m{g} = rac{d
ho \otimes d
ho + \hat{m{g}} + o(
ho)}{
ho^2}$

(equivalently, $\overline{g} = \rho^2 g$ restricts to \hat{g} on *N*)

 $(\overline{M}, \overline{g})$ is a conformal compactification $(N, [\hat{g}])$ is the conformal boundary

Riemannian invariants \implies conformal invariants

$$\operatorname{sec}(\boldsymbol{g}) = -|d\rho|_{\overline{\boldsymbol{g}}}^2 + o(1)$$

$$\sec(\boldsymbol{g}) = -|\boldsymbol{d}\rho|^2_{\boldsymbol{\overline{g}}} + o(1)$$

(M^{n+1}, g) is called

- asymptotically hyperbolic if $|d\rho|_{\overline{g}}^2 = 1$ on N
- Poincaré-Einstein if moreover $\operatorname{Ric}(g) = -ng$

$$\sec(\boldsymbol{g}) = -|\boldsymbol{d}\rho|^2_{\boldsymbol{\overline{g}}} + o(1)$$

- (M^{n+1}, g) is called
- asymptotically hyperbolic if $|d\rho|_{\overline{g}}^2 = 1$ on N
- Poincaré-Einstein if moreover $\operatorname{Ric}(g) = -ng$

Graham-Lee '91, Biquard '00, Lee '06: perturbation of Poincaré-Einstein metrics → new examples of Einstein metrics

$$\sec(\boldsymbol{g}) = -|\boldsymbol{d}\rho|^2_{\boldsymbol{g}} + o(1)$$

- (M^{n+1}, g) is called
- asymptotically hyperbolic if $|d\rho|^2_{\overline{g}} = 1$ on N
- Poincaré-Einstein if moreover $\operatorname{Ric}(g) = -ng$

Graham-Lee '91, Biquard '00, Lee '06: perturbation of Poincaré-Einstein metrics → new examples of Einstein metrics

Question: Is the notion of asymptotically hyperbolic manifold intrinsic?

Answer Bahuaud-Gicquaud-Lee-Marsh 10's: yes if

Answer

Bahuaud-Gicquaud-Lee-Marsh 10's: yes if

existence of a convex core

Answer

Bahuaud-Gicquaud-Lee-Marsh 10's: yes if

existence of a convex core

$$|R - R^0|_g, |\nabla^j R|_g = O(e^{-ar})$$

$$R^0(X, Y)Z = g(Y, Z)X - g(X, Z)Y$$

$$r = d_g(\cdot, o)$$

 $(\mathbb{CH}^{n+1}, g, J)$

Curvatures

$$\boldsymbol{R}^{0}(\boldsymbol{X},\boldsymbol{Y})\boldsymbol{Z} = \frac{1}{4} \big(\boldsymbol{g}(\boldsymbol{Y},\boldsymbol{Z})\boldsymbol{X} - \boldsymbol{g}(\boldsymbol{X},\boldsymbol{Z})\boldsymbol{Y} + \boldsymbol{g}(\boldsymbol{J}\boldsymbol{Y},\boldsymbol{Z})\boldsymbol{J}\boldsymbol{X} - \boldsymbol{g}(\boldsymbol{J}\boldsymbol{X},\boldsymbol{Z})\boldsymbol{J}\boldsymbol{Y} + 2\boldsymbol{g}(\boldsymbol{X},\boldsymbol{J}\boldsymbol{Y})\boldsymbol{J}\boldsymbol{Z} \big)$$

Curvatures

$$R^{0}(X,Y)Z = \frac{1}{4} \left(g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY + 2g(X,JY)JZ \right)$$

Quarter-pinched

 $-1 \leqslant \sec(P) \leqslant -\frac{1}{4}$ $\blacktriangleright \sec(P) = -1 \iff P = JP$ $\blacktriangleright \sec(P) = -\frac{1}{4} \iff P \perp JP$

Curvatures

$$R^{0}(X,Y)Z = \frac{1}{4} \left(g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY + 2g(X,JY)JZ \right)$$

Quarter-pinched $-1 \leq \sec(P) \leq -\frac{1}{4}$ $\blacktriangleright \sec(P) = -1 \iff P = JP$ $\blacktriangleright \sec(P) = -\frac{1}{4} \iff P \perp JP$

Einstein
$$\operatorname{Ric}(\boldsymbol{g}) = -\left(rac{n}{2} + 1
ight) \boldsymbol{g}$$

 (N, H, J_H) with

- ► *H* hyperplane distribution
- J_H formally integrable almost complex structure on H

Strictly pseudoconvex if

- ► H contact
- $\exists \theta$ calibrating *H* with $d\theta|_{\ker \theta}(\cdot, J_H \cdot) > 0$

 (N, H, J_H) with

- ► *H* hyperplane distribution
- J_H formally integrable almost complex structure on H

Strictly pseudoconvex if

- ► H contact
- $\exists \theta$ calibrating *H* with $d\theta|_{\ker \theta}(\cdot, J_H \cdot) > 0$

$$g_{\mathbb{CH}^{n+1}} = dr^2 + 4\sinh^2(r)\theta_{S^{2n+1}} \otimes \theta_{S^{2n+1}} + 4\sinh^2(r/2)d\theta_{S^{2n+1}}(\cdot,i\cdot)$$
$$= dr^2 + e^{2r}\theta_{S^{2n+1}} \otimes \theta_{S^{2n+1}} + e^rd\theta_{S^{2n+1}}(\cdot,i\cdot) + \dots$$

 (N, H, J_H) with

- ► *H* hyperplane distribution
- J_H formally integrable almost complex structure on H

Strictly pseudoconvex if

- ► H contact
- $\exists \theta$ calibrating *H* with $d\theta|_{\ker \theta}(\cdot, J_H \cdot) > 0$

$$g_{\mathbb{CH}^{n+1}} = dr^2 + 4\sinh^2(r)\theta_{S^{2n+1}} \otimes \theta_{S^{2n+1}} + 4\sinh^2(r/2)d\theta_{S^{2n+1}}(\cdot,i\cdot)$$
$$= dr^2 + e^{2r}\theta_{S^{2n+1}} \otimes \theta_{S^{2n+1}} + e^r d\theta_{S^{2n+1}}(\cdot,i\cdot) + \dots$$

 $\operatorname{Isom}(\mathbb{CH}^{n+1}) = \operatorname{Aut}_{CR}(S^{2n+1})$

 (N, H, J_H) with

- ► *H* hyperplane distribution
- J_H formally integrable almost complex structure on H

Strictly pseudoconvex if

- ► H contact
- $\exists \theta$ calibrating *H* with $d\theta|_{\ker \theta}(\cdot, J_H \cdot) > 0$

$$g_{\mathbb{CH}^{n+1}} = dr^2 + 4\sinh^2(r)\theta_{S^{2n+1}} \otimes \theta_{S^{2n+1}} + 4\sinh^2(r/2)d\theta_{S^{2n+1}}(\cdot,i\cdot)$$
$$= dr^2 + e^{2r}\theta_{S^{2n+1}} \otimes \theta_{S^{2n+1}} + e^r d\theta_{S^{2n+1}}(\cdot,i\cdot) + \dots$$

$$\operatorname{Isom}(\mathbb{CH}^{n+1}) = \operatorname{Aut}_{CR}(S^{2n+1})$$

Intrinsic geometry of $(\mathbb{CH}^{n+1}, g, J) \implies \mathsf{CR}$ geometry of S^{2n+1}

(N, H, J_H) CR manifold (M, g, J) (almost) Hermitian / Kähler manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$ $\rho \colon \overline{M} \to [0, \infty)$ defining function for N

 (N, H, J_H) CR manifold (M, g, J) (almost) Hermitian / Kähler manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$ $\rho: \overline{M} \to [0, \infty)$ defining function for N

$$g = rac{d
ho \otimes d
ho + heta \otimes heta +
ho \gamma + o(
ho)}{
ho^2}$$

g is **asymptotically complex hyperbolic** and **asymptotic to the CR structure**

 (N, H, J_H) CR manifold (M, g, J) (almost) Hermitian / Kähler manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$ $\rho \colon \overline{M} \to [0, \infty)$ defining function for N

$$oldsymbol{g} = rac{d
ho\otimes d
ho + oldsymbol{ heta}\otimes oldsymbol{ heta} +
ho\gamma + o(
ho)}{
ho^2}$$

g is **asymptotically complex hyperbolic** and **asymptotic to the CR structure**

(almost) Hermitian / Kähler invariants \implies CR invariants

Asymptotically complex hyperbolic manifolds

- $\sec^h(g) = -1 + o(1)$
- ► $\sec^{\perp}(g) = -\frac{1}{4} + o(1)$
- ▶ $\operatorname{Ric}(g) = -(\frac{n}{2}+1)g + o(1)$

Asymptotically complex hyperbolic manifolds

- $\operatorname{sec}^{h}(g) = -1 + o(1)$
- ► $\sec^{\perp}(g) = -\frac{1}{4} + o(1)$
- ▶ $\operatorname{Ric}(\boldsymbol{g}) = -\left(\frac{n}{2} + 1\right)\boldsymbol{g} + \boldsymbol{o}(1)$

Examples: Cheng-Yau metric, Bergman metric

- $\sec^h(g) = -1 + o(1)$
- ► $\sec^{\perp}(g) = -\frac{1}{4} + o(1)$
- ▶ $\operatorname{Ric}(g) = -(\frac{n}{2}+1)g + o(1)$

Examples: Cheng-Yau metric, Bergman metric

Roth '99, Biquard '00, Matsumoto '20: perturbation of Kähler-Einstein metrics \implies new examples of Einstein metrics (CR structure not necessarily integrable here)

- $\sec^h(g) = -1 + o(1)$
- ► $\sec^{\perp}(g) = -\frac{1}{4} + o(1)$
- ► $\operatorname{Ric}(\boldsymbol{g}) = -\left(\frac{n}{2} + 1\right)\boldsymbol{g} + \boldsymbol{o}(1)$

Examples: Cheng-Yau metric, Bergman metric

Roth '99, Biquard '00, Matsumoto '20: perturbation of Kähler-Einstein metrics \implies new examples of Einstein metrics (CR structure not necessarily integrable here)

Question: Is the notion of asymptotically complex hyperbolic manifold intrinsic?

Let (M, g, J) be a complete, non-compact, Kähler manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^0|_g,$ $|\nabla R|_g = O(e^{-ar}), a > 3/2$

Let (M, g, J) be a complete, non-compact, Kähler manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^0|_g, \qquad |\nabla R|_g = O(e^{-ar}), \quad a > 3/2$

Then (M, J) is the interior of a compact complex manifold $(\overline{M}, \overline{J})$ with boundary such that

Let (M, g, J) be a complete, non-compact, Kähler manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^0|_g,$ $|\nabla R|_g = O(e^{-ar}), a > 3/2$

Then (M, J) is the interior of a compact complex manifold $(\overline{M}, \overline{J})$ with boundary such that

 \blacktriangleright \overline{J} is continuous up to the boundary

Let (M, g, J) be a complete, non-compact, Kähler manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^0|_g, \qquad |\nabla R|_g = O(e^{-ar}), \quad a > 3/2$

Then (M, J) is the interior of a compact complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \blacktriangleright \overline{J} is continuous up to the boundary
- ► $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

Let (M, g, J) be a complete, non-compact, Kähler manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^0|_g,$ $|\nabla R|_g = O(e^{-ar}), a > 3/2$

Then (M, J) is the interior of a compact complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \blacktriangleright **J** is continuous up to the boundary
- ► $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

• $J_0 = \overline{J}|_{H_0}$ is of class C^1 , formally integrable

Let (M, g, J) be a complete, non-compact, Kähler manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^0|_g,$ $|\nabla R|_g = O(e^{-ar}), a > 3/2$

Then (M, J) is the interior of a compact complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \blacktriangleright **J** is continuous up to the boundary
- ► $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

- $J_0 = \overline{J}|_{H_0}$ is of class C^1 , formally integrable
- $(\partial \overline{M}, H_0, J_0)$ is CR strictly pseudoconvex

Let (M, g, J) be a complete, non-compact, Kähler manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^0|_g,$ $|\nabla R|_g = O(e^{-ar}), a > 3/2$

Then (M, J) is the interior of a compact complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \blacktriangleright **J** is continuous up to the boundary
- ► $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

•
$$J_0 = \overline{J}|_{H_0}$$
 is of class C^1 , formally integrable

•
$$(\partial \overline{M}, H_0, J_0)$$
 is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η^0 a C^1 contact form on $\partial \overline{M}$, and a C^1 Carnot metric $\gamma = d\eta^0|_{H_0 \times H_0}(\cdot, J_0 \cdot)$ such that

$$g = rac{d
ho \otimes d
ho + \eta^0 \otimes \eta^0 +
ho \gamma + o(
ho^{3/2})}{
ho^2}$$

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^0|_g,$ $|\nabla R|_g = O(e^{-ar}), a > 3/2$

Then (M, J) is the interior of a compact complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \blacktriangleright **J** is continuous up to the boundary
- ► $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

•
$$J_0 = \overline{J}|_{H_0}$$
 is of class C^1 , formally integrable

•
$$(\partial \overline{M}, H_0, J_0)$$
 is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η^0 a C^1 contact form on $\partial \overline{M}$, and a C^1 Carnot metric $\gamma = d\eta^0|_{H_0 \times H_0}(\cdot, J_0 \cdot)$ such that

$$g = \frac{d\rho \otimes d\rho + \eta^{\mathsf{0}} \otimes \eta^{\mathsf{0}} + \rho\gamma + o(\rho^{3/2})}{\rho^2}$$

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^{0}|_{g}, \quad |\nabla J|_{g}, \quad |\nabla R|_{g}, \quad |\nabla^{2} J|_{g} = O(e^{-ar}), \quad a > 3/2$

Then (M, J) is the interior of a compact complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \blacktriangleright **J** is continuous up to the boundary
- ► $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

- $J_0 = \overline{J}|_{H_0}$ is of class C^1 , formally integrable
- $(\partial \overline{M}, H_0, J_0)$ is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η^0 a C^1 contact form on $\partial \overline{M}$, and a C^1 Carnot metric $\gamma = d\eta^0|_{H_0 \times H_0}(\cdot, J_0 \cdot)$ such that

$$g = rac{d
ho \otimes d
ho + \eta^{0} \otimes \eta^{0} +
ho \gamma + o(
ho^{3/2})}{
ho^{2}}$$

Alan Pinoy | CR compactification for asymptotically locally complex hyperbolic almost Hermitian manifolds

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

$$|\boldsymbol{R}-\boldsymbol{R}^0|_g, \quad |\nabla \boldsymbol{J}|_g, \quad |\nabla \boldsymbol{R}|_g, \quad |\nabla^2 \boldsymbol{J}|_g = O(e^{-ar}), \quad a > 1$$

Then (M, J) is the interior of a compact complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \blacktriangleright **J** is continuous up to the boundary
- ► $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

•
$$J_0 = \overline{J}|_{H_0}$$
 is of class C^1 , formally integrable

•
$$(\partial \overline{M}, H_0, J_0)$$
 is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η^0 a C^1 contact form on $\partial \overline{M}$, and a C^1 Carnot metric $\gamma = d\eta^0|_{H_0 \times H_0}(\cdot, J_0 \cdot)$ such that

$$g = \frac{d\rho \otimes d\rho + \eta^{\mathsf{0}} \otimes \eta^{\mathsf{0}} + \rho\gamma + o(\rho^{3/2})}{\rho^2}$$

Alan Pinoy | CR compactification for asymptotically locally complex hyperbolic almost Hermitian manifolds

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

$$|\boldsymbol{R}-\boldsymbol{R}^0|_g, \quad |\nabla \boldsymbol{J}|_g, \quad |\nabla \boldsymbol{R}|_g, \quad |\nabla^2 \boldsymbol{J}|_g = O(e^{-ar}), \quad a > 1$$

Then (M, J) is the interior of a compact almost complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \blacktriangleright **J** is continuous up to the boundary
- ► $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

- $J_0 = \overline{J}|_{H_0}$ is of class C^1 , formally integrable
- $(\partial \overline{M}, H_0, J_0)$ is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η^0 a C^1 contact form on $\partial \overline{M}$, and a C^1 Carnot metric $\gamma = d\eta^0|_{H_0 \times H_0}(\cdot, J_0 \cdot)$ such that

$$g = rac{d
ho \otimes d
ho + \eta^{0} \otimes \eta^{0} +
ho \gamma + o(
ho^{3/2})}{
ho^{2}}$$

Bland 80's:

Compactification for some open Kähler manifolds

- ► assumptions not totally geometric
- ► $|\mathbf{R} \mathbf{R}^0|_g = O(e^{-4r})$ a posteriori
- dim M = 4, g Einstein: only applies to spherical boundaries (consequence of Biquard-Herzlich '05)

Bland 80's:

Compactification for some open Kähler manifolds

- ► assumptions not totally geometric
- ► $|\mathbf{R} \mathbf{R}^0|_g = O(e^{-4r})$ a posteriori
- dim M = 4, g Einstein: only applies to spherical boundaries (consequence of Biquard-Herzlich '05)

Bracci-Gaussier-Zimmer '18:

$$\begin{split} \Omega \subset \mathbb{C}^n \text{ bounded domain, } \partial \Omega \text{ of class } \mathcal{C}^{2,\alpha} \\ \partial \Omega \text{ strictly pseudoconvex if and only if} \\ \Omega \text{ carries a complete Kähler metric with} \end{split}$$

$$-1-\varepsilon \leqslant \sec^h \leqslant -1+\varepsilon$$

near $\partial \Omega$

Bland 80's:

Compactification for some open Kähler manifolds

- assumptions not totally geometric
- ► $|\mathbf{R} \mathbf{R}^0|_g = O(e^{-4r})$ a posteriori
- dim M = 4, g Einstein: only applies to spherical boundaries (consequence of Biquard-Herzlich '05)

P. '22-'23

- $a > 3/2 \implies C^1$ everywhere
- ▶ g K\u00e4hler ⇒ assumptions on J are superfluous

Bracci-Gaussier-Zimmer '18:

 $\label{eq:Gamma-state-$

$$-1-\varepsilon \leqslant \sec^h \leqslant -1+\varepsilon$$

near $\partial \Omega$

- ► K compact, convex, codim = 0
- $\blacktriangleright \partial K$ smooth, orientable
- $\sec(M \setminus K) < 0$

Normal exponential map

 $\mathcal{E} \colon (\mathbf{0},\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- ► Radial vector field ∂_r
- ► J∂_r

$$\blacktriangleright \{\partial_r, \boldsymbol{J}\partial_r\}^{\perp}$$

- ► K compact, convex, codim = 0
- $\blacktriangleright \partial K$ smooth, orientable
- $\sec(M \setminus K) < 0$

Normal exponential map

 $\mathcal{E} \colon (\mathbf{0},\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- ► Radial vector field ∂_r
- ► J∂_r

$$\blacktriangleright \ \{\partial_r, \boldsymbol{J}\partial_r\}^{\perp}$$

- ► K compact, convex, codim = 0
- $\blacktriangleright \partial K$ smooth, orientable
- $\sec(M \setminus K) < 0$

Normal exponential map

 $\mathcal{E} \colon (\mathbf{0},\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- ► Radial vector field ∂_r
- ► J∂_r

$$\blacktriangleright \{\partial_r, \boldsymbol{J}\partial_r\}^{\perp}$$

- ► K compact, convex, codim = 0
- $\blacktriangleright \partial K$ smooth, orientable
- $\sec(M \setminus K) < 0$

Normal exponential map

 $\mathcal{E} \colon (\mathbf{0},\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- ► Radial vector field ∂_r
- ► J∂_r

$$\blacktriangleright \{\partial_r, \boldsymbol{J}\partial_r\}^{\perp}$$

- ► K compact, convex, codim = 0
- $\blacktriangleright \partial K$ smooth, orientable
- $\sec(M \setminus K) < 0$

Normal exponential map

 $\mathcal{E} \colon (\mathbf{0},\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- ► Radial vector field ∂_r
- ► J∂_r

$$\blacktriangleright \{\partial_r, \boldsymbol{J}\partial_r\}^{\perp}$$

- ► K compact, convex, codim = 0
- $\blacktriangleright \partial K$ smooth, orientable
- $\sec(M \setminus K) < 0$

Normal exponential map

 $\mathcal{E} \colon (\mathbf{0}, \infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- ► Radial vector field ∂_r
- ► J∂_r

$$\blacktriangleright \{\partial_r, \boldsymbol{J}\partial_r\}^{\perp}$$

- ► K compact, convex, codim = 0
- $\blacktriangleright \partial K$ smooth, orientable
- $\sec(M \setminus K) < 0$

Normal exponential map

 $\mathcal{E} \colon (\mathbf{0},\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- ► Radial vector field ∂_r
- ► J∂_r

$$\blacktriangleright \{\partial_r, \boldsymbol{J}\partial_r\}^{\perp}$$

- K compact, convex, codim = 0
- $\blacktriangleright \partial K$ smooth, orientable
- $\sec(M \setminus K) < 0$

Normal exponential map

 $\mathcal{E} : (\mathbf{0}, \infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- ► Radial vector field ∂_r
- ► J∂_r

$$\blacktriangleright \{\partial_r, \boldsymbol{J}\partial_r\}^{\perp}$$

 $\nabla J = 0 \implies \nabla_{\partial_r} J \partial_r = 0$

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_j = 0$

$$abla J = 0 \implies \nabla_{\partial_r} J \partial_r = 0$$

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_j = 0$ Associated coframes

> $\eta_r^0 = e^{-r} \mathcal{E}_r^* g(\cdot, J\partial_r)$ $\eta_r^j = e^{-r/2} \mathcal{E}_r^* g(\cdot, E_j)$

$$abla J = 0 \implies \nabla_{\partial_r} J \partial_r = 0$$

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_j = 0$ **Associated coframes**

> $\eta_r^0 = e^{-r} \mathcal{E}_r^* g(\cdot, J\partial_r)$ $\eta_r^j = e^{-r/2} \mathcal{E}_r^* g(\cdot, E_j)$

Associated Carnot metrics

$$\gamma_r = \sum_{j=1}^{2n} \eta_r^j \otimes \eta_r^j$$

$$\nabla J = 0 \implies \nabla_{\partial_r} J \partial_r = 0$$

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_i = 0$ Associated coframes

> $\eta_r^0 = e^{-r} \mathcal{E}_r^* q(\cdot, J \partial_r)$ $\eta_r^j = e^{-r/2} \mathcal{E}_r^* g(\cdot, E_i)$

Associated Carnot metrics

$$\gamma_r = \sum_{j=1}^{2n} \eta_r^j \otimes \eta_r^j$$

Almost contact tensors

$$\boldsymbol{\varphi}_{\boldsymbol{r}} = \mathcal{E}_{\boldsymbol{r}}^* (\boldsymbol{\pi}^{\perp} \circ \boldsymbol{J} \circ \boldsymbol{\pi}^{\perp})$$

where $\pi^{\perp} : T\overline{M \setminus K} \to \{\partial_r, J\partial_r\}^{\perp}$ orthogonal projection

$$abla J = 0 \implies \nabla_{\partial_r} J \partial_r = 0$$

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_i = 0$ Associated coframes

> $\eta_r^0 = e^{-r} \mathcal{E}_r^* q(\cdot, J \partial_r)$ $\eta_r^j = e^{-r/2} \mathcal{E}_r^* g(\cdot, E_i)$

Associated Carnot metrics

$$\gamma_r = \sum_{j=1}^{2n} \eta_r^j \otimes \eta_r^j$$

The metric reads

Almost contact tensors

$$\boldsymbol{\varphi}_{\boldsymbol{r}} = \mathcal{E}_{\boldsymbol{r}}^* (\boldsymbol{\pi}^{\perp} \circ \boldsymbol{J} \circ \boldsymbol{\pi}^{\perp})$$

where $\pi^{\perp} : T\overline{M \setminus K} \to \{\partial_r, J\partial_r\}^{\perp}$ orthogonal projection

$$g = dr \otimes dr + e^{2r} \eta_r^0 \otimes \eta_r^0 + e^r \gamma_r$$

$$g = dr \otimes dr + e^{2r} \eta_r^0 \otimes \eta_r^0 + e^r \gamma_r$$

$$g=dr\otimes dr+e^{2r}\eta^0_r\otimes \eta^0_r+e^r\gamma_r$$

• $\{\eta_r^0, \ldots, \eta_r^{2n}\}$ locally converges in C^1 topology

$$g=dr\otimes dr+e^{2r}\eta^0_r\otimes \eta^0_r+e^r\gamma_r$$

- ► { $\eta_r^0, \ldots, \eta_r^{2n}$ } locally converges in C^1 topology
- The limit $\{\eta^0, \ldots, \eta^{2n}\}$ is a coframe

$$g=dr\otimes dr+e^{2r}\eta^0_r\otimes \eta^0_r+e^r\gamma_r$$

- $\{\eta_r^0, \ldots, \eta_r^{2n}\}$ locally converges in C^1 topology
- The limit $\{\eta^0, \ldots, \eta^{2n}\}$ is a coframe
- $\blacktriangleright \eta^0$ is contact

$$g=dr\otimes dr+e^{2r}\eta^0_r\otimes \eta^0_r+e^r\gamma_r$$

- $\{\eta_r^0, \ldots, \eta_r^{2n}\}$ locally converges in C^1 topology
- The limit $\{\eta^0, \ldots, \eta^{2n}\}$ is a coframe
- $\blacktriangleright \eta^0$ is contact

• φ_r converges in C^1 topology

$$g = dr \otimes dr + e^{2r} \eta^0_r \otimes \eta^0_r + e^r \gamma_r$$

- $\{\eta_r^0, \ldots, \eta_r^{2n}\}$ locally converges in C^1 topology
- The limit $\{\eta^0, \ldots, \eta^{2n}\}$ is a coframe
- $\blacktriangleright \eta^0$ is contact

- φ_r converges in C^1 topology
- The limit φ induces an almost complex structure ₀ on ker η⁰

$$g = dr \otimes dr + e^{2r} \eta^0_r \otimes \eta^0_r + e^r \gamma_r$$

- $\{\eta_r^0, \ldots, \eta_r^{2n}\}$ locally converges in C^1 topology
- The limit $\{\eta^0, \ldots, \eta^{2n}\}$ is a coframe
- ▶ η^0 is contact

- φ_r converges in C^1 topology
- The limit φ induces an almost complex structure ₀ on ker η⁰
- J_0 is formally integrable and $d\eta^0|_{\ker \eta^0}(\cdot, J_0 \cdot) = \gamma$

$$g = dr \otimes dr + e^{2r} \eta_r^0 \otimes \eta_r^0 + e^r \gamma_r$$

- $\{\eta_r^0, \ldots, \eta_r^{2n}\}$ locally converges in C^1 topology
- The limit $\{\eta^0, \ldots, \eta^{2n}\}$ is a coframe
- $\blacktriangleright \eta^0$ is contact

Relations

- $\varphi_r^2 = -\mathrm{Id} + \eta_r^0 \otimes \xi_0^r$ with $\xi_0^r = \mathcal{E}_r^*(e^r J \partial_r)$
- $\blacktriangleright \eta_r^0 \circ \varphi_r = 0$
- $\blacktriangleright \gamma_r(\varphi_r \cdot, \varphi_r \cdot) = \gamma_r$
- $\blacktriangleright d\eta_r^0(\cdot,\varphi_r\cdot) = \gamma_r + O(e^{(1-a)r})$

- φ_r converges in C^1 topology
- The limit φ induces an almost complex structure *J*₀ on ker η⁰
- J_0 is formally integrable and $d\eta^0|_{\ker \eta^0}(\cdot, J_0 \cdot) = \gamma$

Convergence of the coframes

► In C⁰ topology

$$\begin{cases} \partial_r^2 \eta_r^0 + 2\partial_r \eta_r^0 &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \\ \\ \partial_r^2 \eta_r^j + &\partial_r \eta_r^j &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \end{cases}$$

Convergence of the coframes

► In C⁰ topology

$$\begin{cases} \partial_r^2 \eta_r^0 + 2 \partial_r \eta_r^0 &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \\ \\ \partial_r^2 \eta_r^j + &\partial_r \eta_r^j &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \end{cases}$$

► In C^1 topology

$$\begin{cases} \partial_r^2 \left(e^r \mathcal{L}_u(\eta_r^0(v)) \right) - e^r \mathcal{L}_u \left(\eta_r^0(v) \right) &= O\left(e^{(2-a)r} \right) \\ \\ \partial_r^2 \left(e^{r/2} \mathcal{L}_u(\eta_r^j(v)) \right) - e^{r/2} \mathcal{L}_u \left(\eta_r^j(v) \right) &= O\left(e^{(3/2-a)r} \right) \end{cases}$$

Alan Pinoy | CR compactification for asymptotically locally complex hyperbolic almost Hermitian manifolds

Convergence of φ_r

► In C⁰ topology

$$\partial_r \varphi_r = \varphi_r \circ S_r - S_r \circ \varphi_r = O\left(e^{(3/2-a)}\right)$$

where $S_r = \mathcal{E}_r^*(S)$, $S = \nabla \partial_r$

Convergence of φ_r

► In C⁰ topology

$$\partial_r \varphi_r = \varphi_r \circ S_r - S_r \circ \varphi_r = O\left(e^{(3/2-a)}\right)$$

where $S_r = \mathcal{E}_r^*(S)$, $S = \nabla \partial_r$

► In C¹ topology: a suitable choice of admissible frame yields

$$\varphi_r = \sum_{j=1}^n \eta_r^{2j-1} \otimes \xi_r^{2j} - \eta_r^{2j} \otimes \xi_{2j-1}^r$$

where $\{\xi_0^r, \ldots, \xi_{2n}^r\}$ is dual to $\{\eta_r^0, \ldots, \eta_r^{2n}\}$

Consequence: $\varphi_r^2 = -\mathrm{Id} + \eta_r^0 \otimes \xi_0^r \implies J_0 = \varphi|_{\ker \eta^0}$ is an almost complex structure

Convergence of φ_r

► In C⁰ topology

$$\partial_r \varphi_r = \varphi_r \circ S_r - S_r \circ \varphi_r = O\left(e^{(3/2-a)}\right)$$

where $S_r = \mathcal{E}_r^*(S)$, $S = \nabla \partial_r$

► In C¹ topology: a suitable choice of admissible frame yields

$$\varphi_r = \sum_{j=1}^n \eta_r^{2j-1} \otimes \xi_r^{2j} - \eta_r^{2j} \otimes \xi_{2j-1}^r$$

where $\{\xi_0^r, \ldots, \xi_{2n}^r\}$ is dual to $\{\eta_r^0, \ldots, \eta_r^{2n}\}$

Consequence: $\varphi_r^2 = -\mathrm{Id} + \eta_r^0 \otimes \xi_0^r \implies J_0 = \varphi|_{\ker \eta^0}$ is an almost complex structure The integrability of J_0 is more complicated

Alan Pinoy | CR compactification for asymptotically locally complex hyperbolic almost Hermitian manifolds

$$abla J \neq 0$$

But $|\nabla J|_g = O(e^{-ar}) \implies \nabla_{\partial_r} J \partial_r = O(e^{-ar})$

Alan Pinoy | CR compactification for asymptotically locally complex hyperbolic almost Hermitian manifolds

$$abla J \neq 0$$

But $|\nabla J|_g = O(e^{-ar}) \implies \nabla_{\partial_r} J \partial_r = O(e^{-ar})$

There exists a unique vector field E_0 on $\overline{M \setminus K}$ such that

- $\blacktriangleright |E_0 J\partial_r|_g = o(1)$
- $\blacktriangleright \nabla_{\partial_r} E_0 = 0$

$$abla J \neq 0$$

But $|\nabla J|_g = O(e^{-ar}) \implies \nabla_{\partial_r} J \partial_r = O(e^{-ar})$

There exists a unique vector field E_0 on $\overline{M \setminus K}$ such that

- $\blacktriangleright |E_0 J\partial_r|_g = o(1)$
- $\blacktriangleright \nabla_{\partial_r} E_0 = 0$

Proof of existence

Define $\beta_r(v) = g(v^{\parallel}, J\partial_r), v \in T\partial K$

$$\nabla J \neq 0$$

But $|\nabla J|_g = O(e^{-ar}) \implies \nabla_{\partial r} J \partial r = O(e^{-ar})$

There exists a unique vector field E_0 on $\overline{M \setminus K}$ such that

- $\blacktriangleright |E_0 J\partial_r|_g = o(1)$
- $\blacktriangleright \nabla_{\partial_r} E_0 = 0$

Proof of existence

Define $\beta_r(v) = g(v^{\parallel}, J\partial_r), v \in T\partial K$ • $\beta_r(v) - \beta_0(v) = \int_0^r g(v^{\parallel}, \nabla_{\partial_r} J\partial_r) = \int_0^r O(|v|_g |\nabla J|_g)$, hence $\implies \beta_r(v) \to \beta(v)$

$$\nabla J \neq 0$$

But $|\nabla J|_g = O(e^{-ar}) \implies \nabla_{\partial r} J \partial r = O(e^{-ar})$

There exists a unique vector field E_0 on $\overline{M \setminus K}$ such that

- $\blacktriangleright |E_0 J\partial_r|_g = o(1)$
- $\blacktriangleright \nabla_{\partial_r} E_0 = 0$

Proof of existence

Define $\beta_r(v) = g(v^{\parallel}, J\partial_r), v \in T\partial K$

- $\blacktriangleright \ \beta_r(v) \beta_0(v) = \int_0^r g(v^{\parallel}, \nabla_{\partial_r} J \partial_r) = \int_0^r O(|v|_g |\nabla J|_g), \text{ hence } \implies \beta_r(v) \to \beta(v)$
- ► $|\beta \beta_r|_{g|_{\partial K}} \leq \int_r^\infty |\nabla J|_g$, hence β is continuous, nowhere zero

$$\nabla J \neq 0$$

But $|\nabla J|_g = O(e^{-ar}) \implies \nabla_{\partial r} J \partial r = O(e^{-ar})$

There exists a unique vector field E_0 on $\overline{M \setminus K}$ such that

- $\blacktriangleright |E_0 J\partial_r|_g = o(1)$
- $\blacktriangleright \nabla_{\partial_r} E_0 = 0$

Proof of existence

Define $\beta_r(v) = g(v^{\parallel}, J\partial_r), v \in T\partial K$

 $\blacktriangleright \ \beta_r(v) - \beta_0(v) = \int_0^r g(v^{\parallel}, \nabla_{\partial_r} J \partial_r) = \int_0^r O(|v|_g |\nabla J|_g), \text{ hence } \implies \beta_r(v) \to \beta(v)$

► $|\beta - \beta_r|_{g|_{\partial K}} \leq \int_r^\infty |\nabla J|_g$, hence β is continuous, nowhere zero

Define e_0 the unique vector field with $\beta(e_0) = 1$, $e_0 \perp \ker \beta$

$$\nabla J \neq 0$$

But $|\nabla J|_g = O(e^{-ar}) \implies \nabla_{\partial r} J \partial r = O(e^{-ar})$

There exists a unique vector field E_0 on $\overline{M \setminus K}$ such that

- $\blacktriangleright |E_0 J\partial_r|_g = o(1)$
- $\blacktriangleright \nabla_{\partial_r} E_0 = 0$

Proof of existence

Define $\beta_r(v) = g(v^{\parallel}, J\partial_r), v \in T\partial K$

 $\blacktriangleright \ \beta_r(v) - \beta_0(v) = \int_0^r g(v^{\parallel}, \nabla_{\partial_r} J \partial_r) = \int_0^r O(|v|_g | \nabla J|_g), \text{ hence } \implies \beta_r(v) \to \beta(v)$

► $|\beta - \beta_r|_{g|_{\partial K}} \leq \int_r^\infty |\nabla J|_g$, hence β is continuous, nowhere zero

Define e_0 the unique vector field with $\beta(e_0) = 1$, $e_0 \perp \ker \beta$ and E_0 its radial parallel transport on $\overline{M \setminus K}$

One can now initiate the same strategy as in the Kähler case, but

- ► substitute $J\partial_r$ by E_0 "almost everywhere" caution: the resulting admissible frame $\{\partial_r, E_0, \ldots, E_{2n}\}$ is not smooth
- large amount of extra estimates
- extra error terms in all equations must be understood

