

Throughput Analysis of ARQ in Interference with Nakagami-m Block Fading Channels

Peter Larsson, Lars K. Rasmussen, Mikael Skoglund

ACCESS Linnaeus Centre, KTH Royal Institute of technology, Stockholm, Sweden

A Simplified Motivating Example

Scenario (for the motivating example)

- ARQ in interference.
- Block Rayleigh fading.

Main problem

- Optimize ARQ throughput in interference!
- Closed-form opt. rate point: $R^* = f_R(\Gamma_0, \Gamma_1)$
- Closed-form opt. throughput: $T^* = f_T(\Gamma_0, \Gamma_1)$
- Various usage of the results: See paper!

Solution (for the motivating example)

• Decoding probability:

$$P = \frac{\mathrm{e}^{-\Theta}}{1 + \Theta \Gamma_1}, \quad \Theta \triangleq \frac{\mathrm{e}^R - 1}{\Gamma_0}$$

• ARQ Throughput:

 $T = R \cdot P$

 Optimality condition: Try to solve for the optimal rate!

$$\begin{split} &\frac{d\ln\left(T\right)}{dR}=0 \Rightarrow \\ &\frac{1}{R^*}-\frac{\mathrm{e}^{R^*}}{\Gamma_0}-\frac{\Gamma_1\mathrm{e}^{R^*}}{\Gamma_0+\Gamma_1(\mathrm{e}^{R^*}-1)}=0 \end{split}$$

- **Conclusion (for the motivating example)**
- Opt. rate unsolvable in a closed-form!
- But, we want to find closed-form opt. solutions for even more general cases!

2(10)

In the Paper We....

Solve the "unsolvable" problem!

- Propose a parametric closed-form optimization framework.
- Find closed-form expressions for
 - Outage (decoding) probability.
 - Throughput.
 - Optimal rate point.
 - Optimal throughput value.

Generalize the problem!

- Include arbitrary # of interferers.
- Use per-user Nakagami-m fading.

Consider also other ARQ problems!

- Scaled-power case. See paper!
- Interf.-limited case. See paper!

The main contribution is:

A parametric optimization framework (2 methods!) giving closed-form expressions for the optimal throughput value and the optimal rate point for ARQ operating in interference.

System Model

Communication Scenario

• ARQ in interference.

- Assumptions:
 - AWGN & Capacity achieving codes.
 - Inter- and intra-user *i.i.d.* block fading.
 - Error-free ACK & No overhead.
 - Always a packet to send.

Nakagami-m block fading channel:

- Motivations:
 - Wide range of fading conditions.
 - *m*=1 is Rayleigh fading.
 - *m*=2 is 2-branch MRC/ TX div.
 - Converge to a non-fading ch.
 - Good fit to measurements.

4(10)

Decoding Probabilities

$\begin{array}{l} \hline \mathbf{Generic channel fading - Decoding prob.} \\ \bullet \\ P = \mathbb{P}\left\{\ln\left(1 + \frac{g_0\Gamma_0}{1 + \sum_{k=1}^{K}g_k\Gamma_k}\right) > R\right\} \\ \hline \mathbf{Own ch. Rayleigh, other ch. Nakagami-m} \\ \bullet \\ m_0 = 1 \\ P_1 = \frac{e^{-\Theta}}{\prod_{k=1}^{K}(1 + \Theta\tilde{\Gamma}_k)^{m_k}} \\ \hline \Phi \triangleq \frac{e^R - 1}{\tilde{\Gamma}_0} \\ \hline \tilde{\Gamma}_k \triangleq \Gamma_k/m_k \\ \hline \mathbf{Own ch. Rayleigh+MRC, other ch. Nakagami-m} \end{array}$

• $m_0 = 2$

$$P_2 = P_1 \left(1 + \Theta + \sum_{k=1}^K \frac{m_k \Theta \tilde{\Gamma}_k}{1 + \Theta \tilde{\Gamma}_k} \right)$$

All fading channels are Nakagami-m

• See paper!

Analytical and simulation results

 A check against Monte Carlo simulation results. Ok!

The Key Idea: Parametric Optimization

Parameterization method (1) in R

- Throughput expressed as $T = R \cdot P$, $P = f(R, \tilde{\Gamma}_0, \tilde{\Gamma}_1, ..., \tilde{\Gamma}_K)$
- Optimality condition

 $\frac{d\ln\left(T\right)}{dR} = 0$

$$\Rightarrow \frac{1}{R} + \frac{P_R'}{P} = 0$$

- Idea: Parameterize in R^* . Solve for Γ_0 . (if at all possible). Insert in T .
- Solution

$$\Gamma_0 = f_{\Gamma}(R^*, \tilde{\Gamma}_1, ..., \tilde{\Gamma}_K)$$
$$T^* = f_T(R^*, \tilde{\Gamma}_1, ..., \tilde{\Gamma}_K)$$
$$R^*$$

• Insight: It is hard to solve for R^* vs. Γ_0 , but generally easy to solve Γ_0 vs. R^* .

Parameterization method (2) in Θ

- Throughput expressed as $T = \ln(1 + \tilde{\Gamma}_0 \Theta) P, P = f(\Theta, \tilde{\Gamma}_1, ..., \tilde{\Gamma}_K)$
- Optimality condition $\Theta \frac{d \ln (T)}{d\Theta} = 0$ $\Rightarrow (1 + \Theta \tilde{\Gamma}_0) \ln(1 + \Theta \tilde{\Gamma}_0) / \Theta \tilde{\Gamma}_0 = t$ $t(\Theta, \tilde{\Gamma}_1, ..., \tilde{\Gamma}_K) \triangleq -\Theta P'_{\Theta} / P$
- Idea: Parameterize in Θ . Solve for Γ_0 . Insert in R and T.
- Solution $\Gamma_{0}(\Theta) = m_{0} \frac{\frac{-t}{W_{0}(-te^{-t})} - 1}{\Theta}$ Lambert's $T^{*}(\Theta) = R^{*} \cdot P$ $R^{*}(\Theta) = (t + W_{0}(-te^{-t}))$
- Insight: It is easier to solve for Γ_0 if only R, but not P, is expressed in Γ_0 .

Example: Parametric Optimization

Parameterization method (1): Own ch. Rayleigh, 1 Rayleigh Interf.

- Decoding probability $m_0 = 1$ $P = \frac{e^{-\Theta}}{1 + \Theta \Gamma_1}, \quad \Theta \triangleq \frac{e^R - 1}{\Gamma_0}$
- Optimality condition

$$\frac{1}{R^*} - \frac{e^{R^*}}{\Gamma_0} - \frac{\Gamma_1 e^{R^*}}{\Gamma_0 + \Gamma_1 (e^{R^*} - 1)} = 0$$

can be rewritten as
 $r \triangleq \Gamma_0 / \Gamma_1 (e^{R^*})$

$$\frac{a}{1+x} + \frac{b}{x} = 1 \quad \text{where} \quad \begin{array}{l} x \triangleq \Gamma_0/\Gamma_1(e^{R^*} - 1) \\ a \triangleq R^*/(1 - e^{-R^*}) \\ b \triangleq a/\Gamma_1 \end{array}$$

• Solving for a positive *x*

$$x_{+} = \frac{a+b-1+\sqrt{(a+b-1)^{2}+4b}}{2}$$

• Back substitution yields

$$T^* = \frac{R^* e^{-\frac{1}{\Gamma_1 x_+}}}{1 + x_+^{-1}}$$
 Parcel of the second s

Parametric losed-form or optimal hroughput!

Parameterization method (2): Own ch. Rayleigh, K Nakagami-m Interf.

- Decoding probability $m_0 = 1$ $P = \frac{e^{-\Theta}}{\prod_{k=1}^{K} (1 + \Theta \tilde{\Gamma}_k)^{m_k}},$
- Optimality condition

$$(1 + \Theta \tilde{\Gamma}_0) \ln(1 + \Theta \tilde{\Gamma}_0) / \Theta \tilde{\Gamma}_0 = t,$$

where $t(\Theta) \triangleq \frac{1}{\Theta + \sum_{k=1}^{K} \frac{m_k \Theta \tilde{\Gamma}_k}{1 + \Theta \tilde{\Gamma}_k}}$

Insert in $\Gamma_0(\Theta) = m_0 \frac{\frac{-t}{W_0(-te^{-t})} - 1}{\Theta}$ $T^*(\Theta) = R^* \cdot P$ $R^*(\Theta) = t + W_0(-te^{-t})$

Parametric closed-form for optimal throughput!

Note that method 2 handles any arbitrary interferences case!

7(10)

Selected Results

Optimal throughput and optimal rate vs. SNR

Optimal throughput vs. optimal rate

Apart from plotting curves, we can e.g. also study asymptotes parametrically. See paper!

Summary and Conclusions

<u>Summary</u>

- Studied ARQ in interference.
- Proposed parameterized optimization for closed-form results.
 - Method 1: Parameterized in R.
 Handles some interference cases.
 - Method 2: Parameterized in⊖.
 Handles any interference case.
- Derived some closed-form expressions.
- Studied other problems in the paper
 - Scaled-power case
 - Interf.-limited case

Conclusions

- Solved an "unsolvable" opt. problem.
- Noted large losses with interference.
- Use as reference cases for benchmarking new ARQ+MCS schemes.

The material was adapted for the interactive presentation format. Please see the paper for more general assumptions and analysis, as well as other studied problems.

Related papers

- Please also consider the following related papers:
 - P. Larsson, L.K. Rasmussen, M. Skoglund,
 "Throughput Analysis of ARQ Schemes in Gaussian Block Fading Channels," *IEEE Trans. Commun.*, vol.62, no.6, pp. 2569-2588, Jul. 2014.
 - P. Larsson, L. K. Rasmussen, M. Skoglund,
 "Multi-layer Network Coded ARQ for multiple unicast flows," in *Proc. of SWE-CTW*, Lund, Oct. 2012.