ACCESE™

The Matrix Exponential Distribution
— A Tool for Wireless System
Performance Analysis

( An extract based on arXiv preprint arXiv:1612.06809, 2016 )

Peter Larsson,

(Lars K. Rasmussen, Mikael Skoglund)

INRS, Montreal, 2017-01-17



The Matrix Exponential Distribution — A Tool for Wireless System Performance Analysis

Objectives

Introduce the matrix exponential (ME)-distribution
as a new fading channel model.

Present a unified, tractable, and powerful
performance evaluation framework for wireless
system with fading channels.

Exemplify the ME-distribution (and its
generalizations) in related areas.
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Preliminaries: Matrix Exponential

e ME-series definition ox ey XS

e ME-limit definition X — i (1+ti{>k.
e Derivative

* Integral [ eat=x X -1,

[33] C. Moler and C. V. Loan, “Nineteen dubious ways to compute the M atr|x expone nt|a| fu NncC. |n M atla b: expm(_)
exponential of a matrix, twenty-five years later.” SIAM Review, vol. 45,
no. 1, pp. 349, 2003. H H . ( )

[34] N.J. Higham, Functions of matrices — Theory and computation. SIAM, EX po ne ntla I fu nc. In M at I d b ° exp °

2008.
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Preliminaries:

Matrix Exponential Distribution (1)

cdf

pdf

Moments

Laplace transform
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Fr(t)=1+xeYY 'z,t >0,
The ME-distribution is dense on t>=0

fr(t) =xe'¥z,t >0,
Sum of products of Exp., Trig., and Poly.

E{TF} = (—1)*1klxYy b+l g,

F(s)=x(sI-Y) 'z
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Preliminaries:
Matrix Exponential Distribution (2)
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Preliminaries:
Matrix Exponential Distribution (3)

ACCESE™

o ' Proposition 2.1: (Convolution of two ME-distributed r.v.s.
ConVOIUtlon [37, Prop081t10n 3.1]) Let the r.v.s. Tj,5 = {1,2} have pdfs

(J)( t) = x;e'Yiz;. Then, T = T + T» has the pdf

fr(t) = xe'Yz, (16)
where
x=[x; 0], (17)
Y zixe
Y = 0 Y, ] ; (18)
K
7 = _ZJ : (19)
Proof:

xletY1 Zq % XgetYZZQ

:,Ct_l {Xl(SI—Yl) Zq - XQ(SI—YQ Zg}

—1
,C_l [ 0 Y1 — sl Z1X9 0
t 0 Yg — sl Z9
[37] 1. E. Ruiz—Casn-'(), “Matrix-exponential distributions: Closure properties,” Y 71X
International Journal of Advanced Statistics and Probability, vol. 1, t 1 142
no. 2, pp. 44-52, 2013. 0 Y 0
[38] M. F. Neuts, Matrix-geometric solutions in stochastic models : An — |:X]_ 0] e 2 .
algorithmic approach, ser. Johns Hopkins series in the mathematical Zo
sciences. Baltimore: Johns Hopkins University Press, 1981.
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Matrix Exponential Distribution (4)

e Maximum * Minimum

Proposition 2.2: (Maximum of two ME-distributed r.v.s. Proposition 2.3: (Minimum of two ME-distributed r.v.s
[37, Proposition 3.5], [29]). Consider the ME-distributions [37, Proposition 3.6], [29]). Consider the ME-distributions
F(0) = 14 xe™Y Mzt > 0, € {1,2). Then, F() = 14 %™ Y 'zt > 0,5 € {1,2}. Then,
T = max{T1, 7>} has the ME-distribution T = min{T}, T5} has the ME-distribution

Fr(t) =1+xeYY 'z, (20) Fr(t) =1+xe!YY 1z, (24)
where where
X = [Xl® X9 X3 XQ] s (21) x = X1® Xo, (25)
Y@Y, 0 0 Y-YeoY 26
Y — 0 Y]_ 0 ’ (22) 1@_125 » 7 ( )
0 0 Y, z=—(Y &Y, )(z1 ®2z2). (27)
(Y, ' 0 Y, ) (212 22)
zZ = Z1 . (23)
. Z2

[37] 1. E. Ruiz-Castro, “Matrix-exponential distributions: Closure properties,”
International Journal of Advanced Statistics and Probability, vol. 1,
no. 2, pp. 44-52, 2013.

[38] M. F. Neuts, Matrix-geometric solutions in stochastic models : An
algorithmic approach, ser. Johns Hopkins series in the mathematical
sciences. Baltimore: Johns Hopkins University Press, 1981.



ol

off T
FKTHS

VETENSKAP
& OCH KONST 9%

o™

The Matrix Exponential Distribution — A Tool for Wireless System Performance Analysis

PERFORMANCE ANALYSIS FRAMEWORK
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ME-distributed fading (1) |

Bivariate pdf Amplitude pdf SNR pdf LT of SNR pdf SNR cdf
fn(h) = fin(hl) = felg) = F(s) = Falg) =
Bivariate Gaussian distr. Rayleigh distr. Exponentially distr. 1 —g/8
1 —(RZ+R2)/Q 2|h] —|n|?/Q 1o—g/S T+s8 l—e
za© o © S
Nakagami-m distr. Gamma distr. 1 m . s
— o TTT 2m—1 2 o m—1 —_— —_—
| bt e | graigtenos | (wim) | wtonmsls)
(Unnamed distr.) (Unnamed distr.) ME-distr. p(s) _
5 1 9QQ—1
%p‘hle(h?ﬂuh?)qu 2!h|p|h|e‘h'|2Qer pefQr a(s) +pe?~Q7'r

COMPARISON OF PDFS (AND CDFS) FOR UNPROCESSED FADING WIRELESS CHANNELS SNRS. THE FOLLOWING NOTION IS USED: THE INSTANTANEOUS
SNR 18 g £ |h|2P/0?, WHERE |h| 1S THE CHANNEL AMPLITUDE GAIN, P IS THE RECEIVED POWER, o2 IS THE RECEIVER NOISE POWER. THE MEAN
SNR 1s S = E{g}. THE COMPLEX AMPLITUDE GAIN IS h = hy + ih;, AND = E{|h]|}.

e Gamma- and exponential-distributions are special cases of the
ME-distribution class.

ME-distribution is dense on positive g.
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ME-distributed fading (2)

e Examples of ME-pdfs

— Gamma pdf
fale) = Frhgme "/
F(s) =1/(1 + sS/mN)™

— Oscillating pdf

fr(t)=(14+7"2)(1 —cos(7t)) e
F(s) = 50/(s® 4+ 3s2 + 52s + 50)



ME-distributed fading (3)

e pdfs can also be approximated with ME-pdfs

— In general a hard problem [35]

e Suggestions of approximation methods
— Least squares in pdf domain [1]
— Truncated continued fraction in LT domain [1]
— Pade’ approximation in the LT domain [1]

e ME-distribution (or ME-pdf) may be directly
fitted to measured fading channel gains [2]

[1]7 P. Larsson, L. K. Ras dM'SkldTl h; nalysis

Il)b dARQ A l p enti Id ributio pp l " IEEE
Tran. n Communicati l 64,1 l p] 416—428 Jan 2016.

[2] P.Lar JC HAl7b dHKR and M. Skoglu d m]MWFkn “Char uti()n »f matrix-expon tldtb
“Effe t capac ty t smission thcmcb: A recurrence 1el Ph.D. dissertation. The U sity IAd laide, Faculty of Eng
appro: h IEEE Tra ium' on Communications, vol. 64, no. 11, pp Computer d M thematic ] 5 s, 2003.

4817—48% Nov 2016



The Matrix Exponential Distribution — A Tool for Wireless System Performance Analysis

OACLESS’QQ

Effective SNR Processing (1)

SNR processing examples Effective (SNR) channel model
I) Block fading channels .
Trall,
) | T YV RX
fa(g) = pe’Sr
" -
TX Y T » v | RX
(n) — Q. Block fading channels
o (9) = pae?=rry MRC, SDC X
n e {1.2) el
iii) v - - - TX Y N ~~Z RX
—~-::::»z fz(z) = pe*F
X |[VY--"77 RX
(n) "
TX Diversity, Y G (g) - p“egQ r
Coherent BF, SDC n € {1,2}
iv) Translate unprocessed SNR(s) and “complex”
Y TRIIIIEET Y systems to an equivalent (but simpler) system
™X]|Y~~------>YV |RX which is charachterized by an effective SNR.
OSTBC
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Effective SNR Processing (2)
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Example 5.1: (MRC of two non-identical independent ME- Example 5.3: (Effective channel of SDC and Rayleigh
distributed r.v.s) Consider two ME-distributed r.v.s z,, with  fading) The pdf of the SDC effective channel with (unit-mean)
pdfs fgl)(g) = pne?Qrr,, n € {1,2}. Then, the effective  exponentially distributed fading SNRs has, as given by Ex. 3.5,
SNR, Z = G + Gy, is also ME-distributed with pdf fz(z) = LT F(s) = N!/ Hf:;l(n + s), which gives
pe”QF, and parameters - .

-1 1 - 0
~ Q. Pz} :
= , 55 ~ 0 -2 . 0
Q lo Q 42 Qu={" 2 T (58)
p=[p1 0], (56) oo
N T 0 0 -+ =N]
r=1[0 ri], (57) - _ 0 o ol A1
Pum = | ... O] N, (59)
where Ql =S- riqi, Q2 =S—- r2q2, and Pg = I1p=2. The F . [0 0 l]T (60)
= )

above follows from Corollary 4.1.
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Effective Channel Algebra |

e SDC between branch e MRC of the two
2+3 and then MRC with strongest branches
branch 1 Z = Gy + Gyt Gy —
/Z = G+ IIlaX(GQ,Gg) min(GlaGQaGS)

=max(G,+G,, G,+G,, G,+G;)
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Perf.-evaluation and —metrics

Communication system model examples Performance metric examples
I) Block fading channels
| v-- %_ a * Outage probability
X f(z) = peQF RX e PEP/BER/SER (fast fading)
ii)
™ LY Y  Ergodic capacity
— 52QF RX
(ame)[  fz(2) = PeE e Effective capacity
A CSl .
iii)
™ LY, , . - _Q_:Z e Throughput
= pe? RX
(ARQ) z(2) = Pt » Effective capacity

1 ACK .
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Performance Analysis Framework

0 Perf. metric

Performance metric-
and evaluation-model
Effective_~CD>
channel fz(z) = pe*Qr

System model for
performance evaluation

fa(g) = pe?Sr
Unprocessed SNR
channel model(s)

ﬂACQ
Performance Analysis Framework
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New Integral of ME-pdf

Theorem 4.1: (Integration of ME-function on ME-pdf form).

The integral of f(t) = xe'Yz, with intervals (0,b) can be

expressed as

/b xe'Yzdt = Eq g, (41)

0

where
E2cY, (42)
d'=d+1, (43)
Y = {g ;‘,] | (44)

Proof: Integration corresponds to convolution with a step
function that has LT 1/s. Using Proposition 2.1 gives

b [ x(s) a1 Jlz(s) ) Y
'/0'gtl{ﬁ}dt—gbl{gm}_e"{ebYed'_El,d"

b
Note: The standard integration approach, / ' dt =X (e"* —1) |2, requires a non-singular matrix!
a
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Maximum of Two ME-distr. r.v.s

Theorem 4.2: (Maximum of two ME-distributed rv S) Let

,j € {1,2} be ME-distributed r.v.s with pdf fT (t) = ¢ Alternative fOrmS
for max and min

T;

xje!Yiz;, and degree d;. Then, the CDF of the ME-
distribution r.v. T = max(Tl,Tg) can be expressed as

Er(t) =Eya rays (45) FImax(4) = E% EgQL)zI
where
min o () w2
E 2 o(Y19Y2) (46) Fr(t) =1 (1 B, 1) (1 By d')
| (3) & otY;
yi= [0 %] (47) BT = e,
! 0 Y, 0 x;
Yl = i
Proof: J [0 Yj]

PR (t) = By () F (1)

T T
- (/ x1e“ Y1z, du) (/ x0e" Y2z, du)
0 0
(a) ((e(ll))tetYlleé}l)) ((e?))[etYl 5112))
T I I
D (el o) et(¥a9¥2) (ol o))

I 1
=E g .a, E=e (YieY3)

)
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Expectation of Function

Theorem 4.3: (Integral of ME-density- and Function- Proof: The expectation is
product). Let g(¢) be a function for which an integral rep- oo
resentation ¢(t) = fab gr(u)e 192w dy exist. Then, the E{g(?)} :/ g(t)xe¥ z dt
expectation of g(t) is 0

o0 b
- = w)e 192 dy | xet¥z dt
Blg) = [ gxeadi J (/ i
0
b, oC
b'fj. w '
- -Y)™ = g1(u (/ Xet(Y_gz(“)I)zdt> du
_/a gr(u)x (g2(u)I =Y) " zdu (52) -/au (u) i
u b
b" u .
=G+ / G XY (T =Ygo(u) ) 'zdu, (53 / g(w)x (g2(w)I —Y) ' zdu
a u bu

g1 (w)xY ! (T — g (u)Y_l)il z du

where Gy 2 [ g (u) du.

Ay

bu
= — gr(u)xyY ! (I —(I- Ygz(u)_l)_l z) du
by

by _1
—/ gl(u)du—|—/ g(u)xY ' (I-Yg(u)™")  zdu

a"ll, aﬂ.
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Applications

 We have a new cdf (pdf), the ME-distr.!

e Question: Where can we apply it?
01 e o oGS M e
We look in the B O RS SN < Al I
bookshelf and in *
the litterature!

[8] T. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.
[9] P. M. Shankar, Fading and Shadowing in Wireless Systems. Springer-
[4] 1. G. Proakis and D. G. Manolakis, Digital Signal Processing (3rd Ed.): Verlag New York, 2012,
Principles, Algorithms, and Applications.  Upper Saddle River, NI,
USA: Prentice-Hall, Inc., 1996.

[3] S. G. Wilson, Digital Modulation and Coding, 1st ed. Delhi: Pearson
Education, 1996.

[19] D. Tse and P. Viswanath, Fundamentals of Wireless Communications.
New York, NY, USA: Cambridge Univ. Press, 2004.

[23] M. K. Simon and M.-S. Alouini, Digital communication over

[25] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: Information- ) : i : T seee
theoretic and communications aspects,” IEEE Transactions on Informa- f ‘,ldmg ‘Im”".(’[s‘ ser. Wiley series IEIe.Commumcanom ,and
tion Theory, vol. 44, no. 6, pp. 2619-2692, Oct 1998. signal processing. Hoboken, N.J. Wiley-Interscience, 2005. [Online].

. ’ ’ ’ Available: http://opac.inria.fr/record=b1102756

[27] Y.-C. Ko, M. S. Alouini, and M. K. Simon, “Outage probability of [24] A. Molisch, Wireless Communications. Wiley-IEEE Press, 2005.
diversity systems over generalized fading channels,” IEEE Transactions
on Communications, vol. 48, no. 11, pp. 1783-1787, Nov 2000.
[28] M. Jabi, L. Szczecinski, and M. Benjillali, “Accurate outage approxi-
mation of MRC receivers in arbitrarily fading channels,” IEEE Commu-
nications Letters, vol. 16, no. 6, pp. 789-792, June 2012.
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Outage Probability

Theorem 5.4: (Outage probability for the ME-distributed
effective channel) Let the effective channel pdf be fz(z) =
pe’QF, p e R4, Q e R™ §F=1[0...0 1]T € R, Then,
the outage probability, with decoding threshold O, is

Qo = Eq g1, (72)
where
E =99 (73)
d'=d+1, (74)
0O p
I — ~
Q = {0 Q] : (75)

Proof: From Theorem 4.1, the outage probability can be
dlrectly computed as Qo = P{Z < O} = [7 pe*QUdz =
eleOQ en = Ey 4. |
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Adaptive Modulation and Codin‘“écc
(Rate-Adaptive Transmission)

Block fading channels

% * Transmission rate selected

(AMC) *: equal to the channel capacity
|
|
|
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Effective Capacity (1)

"The EC identifies the maximum constant arrival rate that a
given service process can support in orter to guarantee a
desired statistical QoS specfied with the QoS exponent 6”

Definition (when the service rate varies independently)

Car = —g I (E{e™"})

[26] D. Wu and R. Negi, “Effective capacity: A wireless link model for
support of quality of service,” IEEE Transactions on Wireless Commu-
nications, vol. 2, no. 4, pp. 630-643, July 2003.
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Effective Capacity (2)

Theorem 5.1: (Effective capacity with ME-distributed ser-
vice rate) Let the service rate ¢ be iid, and have pdf f(¢) =

peCQF, p e R4, Q € R¥*4, F=1[0...0 1]T € R?*L, Then,
the effective capacity for rate-adaptive transmission 1s

Ceff = _élﬂ( (01 Q) )

SR o

where 6 is the effective capacity quality-of-service exponent.
Proof: When ( is iid, the effective capacity is CRf =
—sIn(Ef{e ?}) = —5n (fo e ¢Yp eCQrdC) and we

have [~ e~ pecQEd( = B(OT — Q) 'F = 5(0)/4(0).  m

/ﬁg
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Effective Capacity (3)
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Theorem 5.2: (Effective capacity with the effective chan- Proof: We have Cﬁf‘ = —% In (E {e_mn(““z)}), where
nel ME-distributed and the service rate equals the AWGN the expectation is
Shannon-capacity) Let the effective channel pdf be fz(z) = " {e*‘g In(1 +z)}
perQF, pe R4, Q e R¥*4, £ =10...01]T € R¥*!. Then,
. . . . o > —91n 1+z) ezQi'; dz
the effective capacity, with CSI known at the transmitter and - 0 p
perfect rate adaptation, is (@) [
1 oo : = ] (14 2) peer dz
CRME2 _“n / e~ 0In+2) 5e*QF 4. 0
0 0 > >’ —(142)u 2Q
1 00 f0-1ag—u N —1 F(G)e du | pe*~rdz
_ = - _ = 0 0
_ 9111(]0 O p(uI Q) rdu) 62) W e s
1 oo 0—1 —u = : / (u - ) rau.
~ - ( / W) du) . (63) O
0 o T(0) qu)

Corollary 5.1: When Q is diagonalizable, \hfﬁ\h/rl = Q
V is a non- singular Vandermonde matrix, and all eigenvalues
Aj, 7 €{1,2,...J}, are real negative, then

= = diag{fla 627 s 5]}7 (67) I
&= (=2)" e NI(1 -6, -)\)). (68) |
CRY = —Eln (pTET i), o 1
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Basic Retransmission-Schemes

IIA RQII

RR-HARQ

IR-HARQ

Block fading channels

|ARQ| Y -7 7 | ARQ|
TX RX | |
ACK |

JRR- [V ===~ *Y | RR- [
X RX i
ACK |

Retransmit: Repeat packet
Combine packets: No

Retransmit: Repeat packet
Combine packets: Yes

Retransmit: Incremental blocks
Combine blocks: Yes
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ARQ Throughput

Theorem 5.5: (Outage probability and ARQ throughput for
the ME-distributed effective channel) Let the effective channel
pdf be f(z) = pe*QF. Then, the throughput of ARQ is

T = R(1 — Ey q), (78)

with E; 4 given by Theorem 5.4.
Proof: The throughput is simply 7282 = R(1 — Quu).
and we then use the outage probability in Theorem 5.4. N



e

Theorem 5.6: (Truncated-HARQ throughput for the ME-
distributed effective channel) Let the effective channel density
be fz(z) = pe*Qr. Then, the throughput of truncated-HARQ,
with a maximum of K transmissions and decoding threshold
O, is

THARQ _ R(1 —Eq (ax+1))

KT Zﬁi_ll El,(korl)’ (80)
where
E = ¢%Que, 81)
and the ME-parameters are
phe = [p 0] € RV (82)
Lo = |0 Qo | R, (83)

The Matrix Exponential Distribution — A Tool for Wireless System Performance Analysis

[
rlf{(@ — edl S Rd Xl,

d'=dK +1,

PK@ _ [f) 0] c RIX(ZK’

Q P o

0 Q P

0 0 Q

Qo= 2 9

0 0 O

0 0 0

RJKXI

(We know that THRC — R (1 - £5'{s~1F(s)K}) / (1 Loy s—lp(s)k}) )

o

OQOI"‘
v

S O O

= RdKXdK,

L=

Truncated-HARQ Throughput Analysis

(84)
(85)
(86)

(87)

(88)
(89)
(90)
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Persistent-HARQ Throughput Analysis

Theorem 5.7: (Persistent-HARQ throughput for the ME-
distributed effective channel) Let the effective channel pdf
fz(z) = pe*QF have LT F(s) = p(s)/d(s). Then, the
throughput, with decoding threshold ©, is

R
THARY — — — 91
oo 1+ Eljdl b
where
E =99, (92)
1 |0 P ]
— . 93
Q [0 S —r(q—p) ©3)

Proof: The mean number of transmissions is

cg' {E%F()} = %! {1 i —p"(i)/q(s)}

-1+ 55w )

—14e;Te®Vey =1+ E; g, E 299,




ol

st The Matrix Exponential Distribution — A Tool for Wireless System Performance Analysis p
rdmdy (2
i KTH : m —

e

=

Persistent-HARQ with diversity order 2

Corollary 5.3: (Persistent-HARQ throughput for the ME- Example 5.13: (Persistent-HARQ with diversity order 2)
distributed wireless channel and N-fold diversity) Let the Consider Theorem 5.7 with N = 2. Then,
effective channel pdf fz(z) = pe*QF have LT F(s) = 0 p 0
p(s)/d(s) = (p(s)/q(s))N,N € NT. Then, the throughput, I =10 S—r(q—p) rp ’ (106)
with decoding threshold ©, is ® 0 0 S —r(q+p)

piaRe _ % (94) since
]- + El_]d[

h Sy

where @ Ls1—(p(s)/a(s))?

E = ¢9Qe (95) C e {1 p(s) p(s) }



e

Theorem 5.8: Consider the 3-phase NCBR model with
nodes vy, vy, /3, in Fig. 3. Let each link between a node pair
{vi, v}, {ig} = {13,32,23,31}, be characterized by the ef-
fective channel SNR r.v. Z;; with pdf fJ7(z) = pye” it
Py € R, Qe RUxd §; = [0...0 1]T € Rbix1,
and the decoding threshold ©5 = ei12 — 1, @y, = eff21 — 1.
Then, the ETE sum-throughput is

TNCBR _ Ris(1 — Qi2) + Roy (1 — Qa1)

115
: (115)
where
13 37
Qi =1-(1 _Eg,dzw)(l_Eg’;;), (116)
Ei) & eeileij’ (117)
0 13..]
0= = | (118)
Y lO Qij

Proof: The ETE outage probability is

Qi; =1 —P{In(1 + min(Z;3, Z3;)) > R;;}
=1—P{min(Z;3, Z3;) > O;;}
=1-P{Zi3 > 0}P{Z3; > Oy}
=1-(1-P{Ziz <O;}(1 —P{Z3; <Oy}

13 37
=1- (=B )0 -B%)),

with E) given by (117). ]
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Relay

QACCE-Sg%
3-phase NC Bidirectional Relaying

féfm(Z) = Pge™WFyn B

A®B

Feedback

(23 3l
Iz }(3) = p%("q—’-‘rg;;
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System Model:
ARQ with Independent Interference

e Sighal ME-pdf
fz(2) = pe*Qr
e Sum-interference
Zy = Zg:l Ly
— Individual ME-pdfs
() ~ puerai,
— Sum-interference pdfs
fz(21) = pre*Qry
e QOutage probability
PAR = Pn(1+2Z/(1+2)) >R} = P{Z < O(1 + )}
where ® = e — 1
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ACCESE™
ARQ with Independent Interference

Theorem 5.9: (ARQ throughput for iid ME-distributed sig-
nal and interferers) Let the signal and sum-interferer be given
by the system model. Then, the throughput is

TR — R (pr@p) (Q e 0Q)I® Qe ©9)) ' (n®r).
(120)
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ACCESE™
ARQ with Independent Interference

Proof: The throughput is ﬂﬁ? Q — RPMQ where

Int

PR —P{Z > O(1 + Z)} is determined via the integral

Int

oo oo
Plf]‘tRQ f f pre Urpe*Qr dz dz
0 O(1+2z)

o0
—/ pIeZIQ‘rIpQ_leeQeZIGQr dz (121)
0

2 (pr o (pPQ %)) (Q e 0Q) ! (r®r)
' (prep) 1©Q ) (Qe0Q) ! (o)
Y pep) (10Qe 0 (QeeQ) " mar)
' (prep) (Qo0Q)I® Qe ) (rneor),

where Lemma 5.1 is used in step (a), and the identities (X; ®
Y1) (Xe®Ys2) = (X1X2)®(Y1Y2), X@Y) ™' =(X"'®
Y1), and X7'Y~! = (YX)™!, are used in step (b)-(d),
respectively. u
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Signal and Interference

Definition 5.1: (Bivariate ME-distribution) We define the
joint ME-density of the wireless channel SNR r.v.s (27, Z>), as
fZl,Zz (211,2’2) = plelelPlge”Q?rg, z1 2 0, zo > 0, where
p1 € Rlxdl’ Ql c Rdl xdl, ]_:)12 c Rdl ><dg, QQ c Rdzxdg’
ry € R9*1 The parameters defining the joint density are,
in a similar manner as for the univariate-ME-distribution,
assumed selected to have a corresponding bivariate CDF ful-
filling necessary characteristics, e.g. 0 < Fz, z,(z1,22) < 1,

Theorem 5.10: (ARQ throughput solution with Sylvester’s
equation) Let the signal of interest, and the sum-interference,
SNRs have joint density fz, z (21, z) = pie” QP 12e*Qr. Then,
the throughput is

TAR = RpXr, (130)
where X is given by the solution X to the Sylvester equation
QX +X0Q; = —Piz, (131)

with
Py £ —P;,Q e (132)

and © = et — 1.

Proof: The throughput is TIﬁtRQ = RPIﬁFQ, where, analo-

gously to Theorem 5.9, the decoding probability is
00 00
PI/:FQ = / / plele‘Plgeer dzydz
o0

_ / plelePlQQ—le@(l+ZI)Qr dz
0

o>
:/ pie” VP59 dz, Py 2 -P1oQ e,
0

oo
= pIXI‘, X = / eZ[Q'PmeZ]@Q dZI.
0

Based on Lemma 5.2, we then solve for X in the Sylvester
equation (131). [ |
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Modulation and Detection

Theorem 5.11: (Differential binary PSK (DBPSK) and FSK
BER with non-coherent detection). Let the conditional error
probability have the generic form P(z) = e~ “*/2, where z
is the instantaneous SNR, and a is constant for the specific
modulation and detection method (DBPSK: a = 1, FSK: a =
1/2), [3], [4], [24]. Then, the BER can be written as

o0 1 -
P, = f —e “peRidz
0 2

plal — Q) 'f = %— (153)

Theorem 5.12: (Binary PSK (BPSK) and FSK BER with
coherent detection). Let the conditional error probability have
the generic form P(z) = Q(v/2az), where z is the instanta-
neous SNR, and a is constant for the specific modulation and
detection method (BPSK: a = 1, FSK: a = 1/2) [3], [4], [24].
Then, the BER is

B, = f h Q(v2az)pe* QW dz
0

1 - ) ,.
=3 (1 +pQ 1- Qa*l)*l/%) L (154)

Theorem 5.13: (Pairwise error probability). Let the condi-
tional pairwise error probability have the generic form P(c —

.ZN) = Q( 222[:1 anzn), see e.g. [3, (6.6.9)],

[19, (3.84)], or [23, Chap. 13], where a,,,n € {1,2,... N}, are
constants, and z,, are ME-distributed r.v.s. Then, the average
PEP is

( 1 ’T/Qﬁ a,
PEPc—>e——] [3,”( i
) ; :

2
T i sin“(t)

elzq, ..

-1
I-— Qn) £, di.
(157)
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OTHER USES OF THE ME-DISTR.
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ACCESE™
ME-distributed Time-discrete Signals

e Lloyd-Max Quantization * Panter-Dite formula

1 MSE ~ — / T (xe¥) 3
lg =5 (Gg-1 +1q), ¢={1,2,... M — 1}, 12M2 \ J, '
Sl e po() dt xT '=x2x®X,
iy = Lq=1{0,1,...M —1}, e o«
S fr(t) dt TYT '=YaYeY,

— with ME-distr. ]“ (xewz)’lﬁ at

lg+1 tY .
txe' Yz dt 20 . 1/3
Uy = fl‘; - 2/ (xT*IetTYT Tz) dt
T xet Yz dt 0
flq N t(YaYaY) v o 5 o ¥ 1/3
xetY (Y1 - Y~ )z| a1 = i ((x@x@x)c (z@z@z)) dt
e ()
0

— xv 'z (167)
— Alternativ Integral repr

13 4
fooo (XCtYZ) fo fo u3+xesz dt du.
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ACCESE™
ME-distributed Time-discrete Signals

* Entropy  Mutual Information

— The signal and noise are
assumed ME-distributed

Not yet solved in closed-form ! y=x+w, x>0, w>0,

o
h= —j xe'YzIn (xe*Yz) dt.
0

I =h(y) — h(ylz) = h(y) — h(w)
=In (5¢/Sw) = (h(Yum) — "(wum)) -

> xe'Yz (xe'Yz —
h = dt du, (159)

1+u(xetYz —1)

h= hm m( [ fr(t)t= "dt) (160)

0
00
/ (xeth)l bt

0
(a) sin ( f f xetYy dt du
1 9) 0o Jo uT7 +xel¥g

}: [ / Y 4 zx z dt du,
0o Jo

(161)
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Type-| pdf:
[ ]

Matrix Gaussian-like

Definition 7.1: Let fr(t) = cxethz, t € [—o0,00], with
¢ = (yrx (=Y)""?z)~1, denote the type I pdf.

3

1.2
e 2 1+ fr(t) =xe Yz |
E{T"} = c/ t"xe! Yz dt, n = {0,2,4,...},
—o0 08t a)
o0 2
= 2c] t"xet Yz dt o5t
0
OO 04t Vil N
_ C/ Y =D/ 25e8¥ 5 4y ) .
/ “b) |
0 027 / N\
2C o> >0 5 //// \\\\
= _/ / yTL/Qe—yiE xeyYZdyda: oLz _2/\/\ . : A/\é -
VT Jo Jo

Figure 4. Example of type I distribution for a) x = [50 0 0], y = [50 52 3],
— (n+1)X(—Y)_(n+l)/2 7. (168) 2=[001T, andb) x = [1 0,y = [1 2, z=[01]T, with Q = S — rp.
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Type-Il pdf:
Bivariate Matrix Gaussian-like

ACCESE™

Definition 7.2: Let fyy(u,v) = %xe(“2+”2)YZ, u €
[—00, 0], v € [—00, 0], denote the type II pdf.

1 oo oo
E{U"V™} = ;/ ] w v xe Y 7 dy do,
— 00 — 0

n=1{0,2,4,...}, m={0,2,4,...},

_4 /OO a2 m =123 (@Y 5 g, db
0

™

4
:_F(n+1)F(m+l)
T 2 2

X X (_Y)—(n+l)/2 (_Y)_(Trb+1)/2 7. (169) Figure 5. Example of type II distribution for x = [50 0 0], y = [50 52 3],
z=[001T,and Y =S — zx.

xe" Y (—Y)_l/2 Z. (170)



e
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{503 JACCESE
Type-Ill pdf:
[}

Matrix Rayleigh-like

Definition 7.3: Let fp(t) = 2txet2Yz, t € (0,00], denote 18

the type III pdf. 15t frfy) = e,
E{T"} = / 2" xe! Yz dtn = {0,1,...} i
OOC 08
:/ u"?xe"Y z.du 05

0 04F .
2 —(n 02t e
=T (”; )x(—Y) (n2)/2 (171) 0 /\ \ e

Figure 6. Example of type III distribution for a) x = [50 0 0], y = [50 52 3]
z=[001T andb) x=[10],y=[12,2=[01T, with Y =S —zx
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Summary

e structured, refined and extended the ME-distribution approach for perf.
analysis of wireless comm. systems with ME-distributed fading SNR.

e New tools derived, new communication cases analyzed, new channel
fading models introduced.
e Analyzed:
— Effective capacity of AMC
— Throughput of persistent/truncated-(H)ARQ
— Throughput of 3-phase NCBR
— SER/BER of Modulation and detection, etc.
— Throughput of ARQ w (in)dependent Interference
e Widened the use of the ME-distribution to discrete-time r.v. signals: Max-
Lloyd Quantization, Panter-Dite formula, Entropy, Mutual information...

e Generalized the ME-distribution to new Matrix distributions.
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Conclusion

* The ME-distribution approach can be helpful
for wireless system performance analysis in
communication theory, information theory,
and related areas.
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