



# The Matrix Exponential Distribution – A Tool for Wireless System Performance Analysis

( An extract based on arXiv preprint arXiv:1612.06809, 2016 )

Peter Larsson,

(Lars K. Rasmussen, Mikael Skoglund)

INRS, Montreal, 2017-01-17



# Objectives

- Introduce the matrix exponential (ME)-distribution as a new fading channel model.
- Present a unified, tractable, and powerful performance evaluation framework for wireless system with fading channels.
- Exemplify the ME-distribution (and its generalizations) in related areas.



# Evolution



ARQ schemes in Gaussian block fading channels," *IEEE Transactions* on *Communications*, vol. 62, no. 7, pp. 2569–2588, July 2014.



# Outline

- Preliminaries
- Performance Analysis Framework
- New ME-distr. Properties
- Applications
- Other Uses of ME-distr.
  - (ME-distributed discrete-time signals)
  - (ME-distribution generalizations)





### PRELIMINARIES



# Preliminaries: Matrix Exponential

• ME-series definition

$$e^{t\mathbf{X}} \triangleq \sum_{k=0}^{\infty} \frac{(t\mathbf{X})^k}{k!},$$

• ME-limit definition

$$e^{t\mathbf{X}} = \lim_{k \to \infty} \left( 1 + \frac{t\mathbf{X}}{k} \right)^k.$$

• Derivative

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{e}^{t\mathbf{X}} = \mathbf{X}\mathrm{e}^{t\mathbf{X}}$$

 $\int_{a}^{b} \mathrm{e}^{t\mathbf{X}} \, \mathrm{d}t = \mathbf{X}^{-1} \left( \mathrm{e}^{t\mathbf{X}} - \mathbf{I} \right) |_{a}^{b},$ 

- [33] C. Moler and C. V. Loan, "Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later," *SIAM Review*, vol. 45, no. 1, pp. 3–49, 2003.
- [34] N. J. Higham, Functions of matrices Theory and computation. SIAM, 2008.

Matrix exponential func. in Matlab: *expm(.)* Exponential func. in Matlab: *exp(.)* 





# Preliminaries: Matrix Exponential Distribution (1)

• cdf

 $F_T(t) = 1 + \mathbf{x} e^{t\mathbf{Y}} \mathbf{Y}^{-1} \mathbf{z}, t \ge 0,$ 

The ME-distribution is dense on t>=0

• pdf

Moments

 $f_T(t) = \mathbf{x} e^{t\mathbf{Y}} \mathbf{z}, t \ge 0,$ Sum of products of Exp., Trig., and Poly.

$$\mathbb{E}\{T^k\} = (-1)^{k+1} k! \mathbf{x} \mathbf{Y}^{-(k+1)} \mathbf{z}.$$

- Laplace transform
  - [35] M. W. Fackrell, "Characterization of matrix-exponential distributions," Ph.D. dissertation, The University of Adelaide, Faculty of Engineering, Computer and Mathematical Sciences, 2003.
  - [36] S. Asmussen and C. A. Ocinneide, *Matrix-Exponential Distributions*. John Wiley & Sons, Inc., 2004. [Online]. Available: http://dx.doi.org/10.1002/0471667196.ess1092.pub2

$$F(s) = \mathbf{x}(s\mathbf{I} - \mathbf{Y})^{-1}\mathbf{z}.$$

- [37] J. E. Ruiz-Castro, "Matrix-exponential distributions: Closure properties," *International Journal of Advanced Statistics and Probability*, vol. 1, no. 2, pp. 44–52, 2013.
- [38] M. F. Neuts, *Matrix-geometric solutions in stochastic models : An algorithmic approach*, ser. Johns Hopkins series in the mathematical sciences. Baltimore: Johns Hopkins University Press, 1981.





### Preliminaries: Matrix Exponential Distribution (2)

• Companion form

$$\mathbf{Y} \triangleq \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \ddots & 0 & 0 \\ 0 & 0 & 1 & \ddots & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -y_1 & -y_2 & -y_3 & \cdots & -y_{d-1} & -y_d \end{bmatrix}, \quad (9)$$

$$\mathbf{x} \triangleq [x_1 \ x_2 \ \dots \ x_{d-1} \ x_d] \in \mathbb{R}^{1 \times d}, \tag{10}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \ y_2 \ \dots \ y_{d-1} \ y_d \end{bmatrix} \in \mathbb{R} \quad , \tag{11}$$
$$\mathbf{z} \triangleq \begin{bmatrix} 0 \ 0 \ \dots \ 0 \ 1 \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{d \times 1}, \tag{12}$$

• Rational LT

$$F(s) = \frac{x(s)}{y(s)},\tag{13}$$

$$x(s) \triangleq x_d s^{d-1} + x_{d-1} s^{d-2} + \ldots + x_2 s^1 + x_1, \tag{14}$$

$$y(s) \triangleq s^d + y_d s^{d-1} + y_{d-1} s^{d-2} + \ldots + y_2 s^1 + y_1.$$
 (15)

- [29] N. G. Bean, M. Fackrell, and P. Taylor, "Characterization of matrix-exponential distributions," *Stochastic Models*, vol. 24, no. 3, pp. 339–363, 2008. [Online]. Available: http://dx.doi.org/10.1080/15326340802232186
- [30] S. Asmussen and M. Bladt, *Renewal theory and queueing algorithms for matrix-exponential distributions*. Marcel Dekker Incorporated, 1996, pp. 313–341.

[36] S. Asmussen and C. A. Ocinneide, Matrix-Exponential Distributions. John Wiley & Sons, Inc., 2004. [Online]. Available: http://dx.doi.org/10.1002/0471667196.ess1092.pub2



### Preliminaries: Matrix Exponential Distribution (3)

Convolution

Proposition 2.1: (Convolution of two ME-distributed r.v.s. [37, Proposition 3.1]) Let the r.v.s.  $T_j, j = \{1, 2\}$  have pdfs  $f_T^{(j)}(t) = \mathbf{x}_j e^{t\mathbf{Y}_j} \mathbf{z}_j$ . Then,  $T = T_1 + T_2$  has the pdf

$$f_T(t) = \mathbf{x} \mathrm{e}^{t\mathbf{Y}} \mathbf{z},\tag{16}$$

where

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{0} \end{bmatrix}, \tag{17}$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 & \mathbf{z}_1 \mathbf{x}_2 \\ \mathbf{0} & \mathbf{Y}_2 \end{bmatrix},\tag{18}$$

$$\mathbf{z} = \begin{bmatrix} \mathbf{0} \\ \mathbf{z}_2 \end{bmatrix}. \tag{19}$$

Proof:  

$$\mathbf{x}_{1}e^{t\mathbf{Y}_{1}}\mathbf{z}_{1} * \mathbf{x}_{2}e^{t\mathbf{Y}_{2}}\mathbf{z}_{2}$$

$$= \mathcal{L}_{t}^{-1} \left\{ \mathbf{x}_{1}(s\mathbf{I} - \mathbf{Y}_{1})^{-1}\mathbf{z}_{1} \cdot \mathbf{x}_{2}(s\mathbf{I} - \mathbf{Y}_{2})^{-1}\mathbf{z}_{2} \right\}$$

$$= \mathcal{L}_{t}^{-1} \left\{ \begin{bmatrix} \mathbf{x}_{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{1} - s\mathbf{I} & \mathbf{z}_{1}\mathbf{x}_{2} \\ \mathbf{0} & \mathbf{Y}_{2} - s\mathbf{I} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{0} \\ \mathbf{z}_{2} \end{bmatrix} \right\}$$

$$= \begin{bmatrix} \mathbf{x}_{1} & \mathbf{0} \end{bmatrix} e^{t \begin{bmatrix} \mathbf{Y}_{1} & \mathbf{z}_{1}\mathbf{x}_{2} \\ \mathbf{0} & \mathbf{Y}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{z}_{2} \end{bmatrix}.$$

- [37] J. E. Ruiz-Castro, "Matrix-exponential distributions: Closure properties," *International Journal of Advanced Statistics and Probability*, vol. 1, no. 2, pp. 44–52, 2013.
- [38] M. F. Neuts, Matrix-geometric solutions in stochastic models : An algorithmic approach, ser. Johns Hopkins series in the mathematical sciences. Baltimore: Johns Hopkins University Press, 1981.



# Preliminaries: Matrix Exponential Distribution (4)

Maximum

Proposition 2.2: (Maximum of two ME-distributed r.v.s. [37, Proposition 3.5], [29]). Consider the ME-distributions  $F_T^{(j)}(t) = 1 + \mathbf{x}_j e^{t\mathbf{Y}_j} \mathbf{Y}_j^{-1} \mathbf{z}_j, t \ge 0, j \in \{1, 2\}$ . Then,  $T = \max\{T_1, T_2\}$  has the ME-distribution

$$F_T(t) = 1 + \mathbf{x} e^{t\mathbf{Y}} \mathbf{Y}^{-1} \mathbf{z},$$
(20)

where

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \otimes \mathbf{x}_2 & \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix}, \qquad (21)$$

$$\mathbf{Y} = \begin{vmatrix} \mathbf{Y}_1 \oplus \mathbf{Y}_2 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{Y}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{Y}_2 \end{vmatrix}, \qquad (22)$$

$$\mathbf{z} = \begin{bmatrix} (\mathbf{Y}_1^{-1} \oplus \mathbf{Y}_2^{-1})(\mathbf{z}_1 \otimes \mathbf{z}_2) \\ \mathbf{z}_1 \\ \mathbf{z}_2 \end{bmatrix}.$$
(23)

#### • Minimum

Proposition 2.3: (Minimum of two ME-distributed r.v.s [37, Proposition 3.6], [29]). Consider the ME-distributions  $F_T^{(j)}(t) = 1 + \mathbf{x}_j e^{t\mathbf{Y}_j} \mathbf{Y}_j^{-1} \mathbf{z}_j, t \ge 0, j \in \{1, 2\}$ . Then,  $T = \min\{T_1, T_2\}$  has the ME-distribution

$$F_T(t) = 1 + \mathbf{x} e^{t\mathbf{Y}} \mathbf{Y}^{-1} \mathbf{z},$$
(24)

where

$$\mathbf{x} = \mathbf{x}_1 \otimes \mathbf{x}_2, \tag{25}$$

$$\mathbf{Y} = \mathbf{Y}_1 \oplus \mathbf{Y}_2, \tag{26}$$

$$\mathbf{z} = -(\mathbf{Y}_1^{-1} \oplus \mathbf{Y}_2^{-1})(\mathbf{z}_1 \otimes \mathbf{z}_2).$$
(27)

- [37] J. E. Ruiz-Castro, "Matrix-exponential distributions: Closure properties," *International Journal of Advanced Statistics and Probability*, vol. 1, no. 2, pp. 44–52, 2013.
- [38] M. F. Neuts, *Matrix-geometric solutions in stochastic models : An algorithmic approach*, ser. Johns Hopkins series in the mathematical sciences. Baltimore: Johns Hopkins University Press, 1981.





### **PERFORMANCE ANALYSIS FRAMEWORK**





# ME-distributed fading (1)

| Bivariate pdf                                                                                                 | Amplitude pdf                                                        | SNR pdf                                        | LT of SNR pdf                       | SNR cdf                                                               |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|
| $f_h(h) =$                                                                                                    | $f_{ h }( h ) =$                                                     | $f_G(g) =$                                     | F(s) =                              | $F_G(g) =$                                                            |
| Bivariate Gaussian distr.                                                                                     | Rayleigh distr.                                                      | Exponentially distr.                           | 1                                   | 1 - a/S                                                               |
| $rac{1}{\pi\Omega}\mathrm{e}^{-(h_\mathrm{r}^2+h_\mathrm{i}^2)/\Omega}$                                      | $\frac{2 h }{\Omega}\mathrm{e}^{- h ^2/\Omega}$                      | $\frac{1}{S}e^{-g/S}$                          | $\overline{1+sS}$                   | $1 - e^{-g/2}$                                                        |
|                                                                                                               | Nakagami- $m$ distr.                                                 | Gamma distr.                                   | $\begin{pmatrix} 1 \end{pmatrix}^m$ | 1 ( ( ( )                                                             |
| -                                                                                                             | $rac{2m^m h ^{2m-1}}{\Gamma(m)\Omega^m}\mathrm{e}^{-m h ^2/\Omega}$ | $\frac{m^m g^{m-1}}{\Gamma(m)S^m} e^{-mg/S}$   | $\left(\frac{1}{1+sS/m}\right)$     | $\frac{1}{\Gamma(m)}\gamma(m,mg/S)$                                   |
| (Unnamed distr.)                                                                                              | (Unnamed distr.)                                                     | ME-distr.                                      | p(s)                                | 1 + a <b>0 0</b> - 1                                                  |
| $\frac{1}{\pi}\mathbf{p}_{ h }\mathrm{e}^{(h_{\mathrm{r}}^{2}+h_{\mathrm{i}}^{2})\mathbf{Q}_{ h }}\mathbf{r}$ | $2 h \mathbf{p}_{ h }\mathrm{e}^{ h ^2\mathbf{Q}_{ h }}\mathbf{r}$   | $\mathbf{p}\mathrm{e}^{g\mathbf{Q}}\mathbf{r}$ | $\overline{q(s)}$                   | $1 + \mathbf{p} \mathbf{e}^{g} \mathbf{v} \mathbf{Q}^{-1} \mathbf{r}$ |

Comparison of PDFs (and CDFs) for unprocessed fading wireless channels SNRs. The following notion is used: The instantaneous SNR is  $g \triangleq |h|^2 P/\sigma^2$ , where |h| is the channel amplitude gain, P is the received power,  $\sigma^2$  is the receiver noise power. The mean SNR is  $S \triangleq \mathbb{E}\{g\}$ . The complex amplitude gain is  $h \triangleq h_{\mathbb{R}} + ih_{\mathbb{I}}$ , and  $\Omega \triangleq \mathbb{E}\{|h|\}$ .

- Gamma- and exponential-distributions are special cases of the ME-distribution class.
- ME-distribution is dense on positive g.





# ME-distributed fading (2)

Examples of ME-pdfs
 – Gamma pdf

$$f_G(g) = \frac{m^m g^{m-1}}{\Gamma(m)S^m} e^{-mg/S}$$
$$F(s) = 1/(1 + sS/m^N)^{m^N}$$

Oscillating pdf

$$f_T(t) = (1 + 7^{-2}) (1 - \cos(7t)) e^{-t}$$
  
$$F(s) = \frac{50}{(s^3 + 3s^2 + 52s + 50)}$$



# ME-distributed fading (3)

- pdfs can also be approximated with ME-pdfs
   In general a hard problem [35]
- Suggestions of approximation methods
  - Least squares in pdf domain [1]
  - Truncated continued fraction in LT domain [1]
  - Pade' approximation in the LT domain [1]
- ME-distribution (or ME-pdf) may be directly fitted to measured fading channel gains [2]
  - P. Larsson, L. K. Rasmussen, and M. Skoglund, "Throughput analysis of hybrid-ARQ – A matrix exponential distribution approach," *IEEE Transactions on Communications*, vol. 64, no. 1, pp. 416–428, Jan 2016.

<sup>[2]</sup> P. Larsson, J. Gross, H. Al-Zubaidy, L. K. Rasmussen, and M. Skoglund, "Effective capacity of retransmission schemes: A recurrence relation approach," *IEEE Transactions on Communications*, vol. 64, no. 11, pp. 4817–4835, Nov 2016.

<sup>[35]</sup> M. W. Fackrell, "Characterization of matrix-exponential distributions," Ph.D. dissertation, The University of Adelaide, Faculty of Engineering, Computer and Mathematical Sciences, 2003.



OSTBC



# Effective SNR Processing (1)

#### SNR processing examples Effective (SNR) channel model Block fading channels i) TΧ RX ii) TX RX $= \mathbf{p}_n \mathrm{e}^{g \mathbf{Q}_n} \mathbf{r}_n$ Block fading channels iii) TΧ RX RX TX $= \mathbf{p}_n \mathrm{e}^{g \mathbf{Q}_n} \mathbf{r}_n$ TX Diversity $n \in \{1, 2\}$ Coherent BF, SDC Translate unprocessed SNR(s) and "complex" iv) systems to an equivalent (but simpler) system RX TΧ which is charachterized by an effective SNR.



# Effective SNR Processing (2)

*Example 5.1:* (MRC of two non-identical independent MEdistributed r.v.s) Consider two ME-distributed r.v.s  $z_u$ , with pdfs  $f_G^{(n)}(g) = \mathbf{p}_n e^{g\mathbf{Q}_n} \mathbf{r}_n$ ,  $n \in \{1, 2\}$ . Then, the effective SNR,  $Z = G_1 + G_2$ , is also ME-distributed with pdf  $f_Z(z) = \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}}\tilde{\mathbf{r}}$ , and parameters

$$\tilde{\mathbf{Q}} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{P}_2 \\ 0 & \mathbf{Q}_2 \end{bmatrix},\tag{55}$$

$$\tilde{\mathbf{p}} = \begin{bmatrix} \mathbf{p}_1 & \mathbf{0} \end{bmatrix}, \tag{56}$$

$$\tilde{\mathbf{r}} = \begin{bmatrix} \mathbf{0} & \mathbf{r}_2^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}, \qquad (57)$$

where  $\mathbf{Q}_1 = \mathbf{S} - \mathbf{r}_1 \mathbf{q}_1$ ,  $\mathbf{Q}_2 = \mathbf{S} - \mathbf{r}_2 \mathbf{q}_2$ , and  $\mathbf{P}_2 = \mathbf{r}_1 \mathbf{p}_2$ . The above follows from Corollary 4.1.

*Example 5.3:* (Effective channel of SDC and Rayleigh fading) The pdf of the SDC effective channel with (unit-mean) exponentially distributed fading SNRs has, as given by Ex. 3.5, LT  $F(s) = N! / \prod_{n=1}^{N} (n+s)$ , which gives

$$\tilde{\mathbf{Q}}_{\rm um} = \begin{bmatrix} -1 & 1 & \cdots & 0 \\ 0 & -2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -N \end{bmatrix},$$
(58)

$$\tilde{\mathbf{p}}_{um} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} N!, \tag{59}$$

$$\tilde{\mathbf{r}}_{um} = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix}^{T}.$$
(60)

$$\mathbf{p}\mathrm{e}^{z\mathbf{Q}}\mathbf{r}\,=\,S^{-1}\mathbf{p}_{\mathrm{um}}\mathrm{e}^{zS^{-1}\mathbf{Q}_{\mathrm{um}}}\mathbf{r}_{\mathrm{um}}$$



# Effective Channel Algebra

 SDC between branch 2+3 and then MRC with branch 1

 $Z = G_1 + \max(G_2, G_3)$ 

- MRC of the two strongest branches
  - $$\begin{split} Z &= G_1 + G_2 + G_3 \\ \min(G_1, G_2, G_3) \\ &= \max(G_1 + G_2, G_1 + G_3, G_2 + G_3) \end{split}$$





# Perf.-evaluation and –metrics

#### Communication system model examples







#### Performance metric examples

- Outage probability
- PEP/BER/SER (fast fading)
- ...

- Ergodic capacity
- Effective capacity
- ..

- Throughput
- Effective capacity
  - ..





# Performance Analysis Framework



## NEW ME-DISTRIBUTION PROPERTIES



The Matrix Exponential Distribution – A Tool for Wireless System Performance Analysis







# New Integral of ME-pdf

Theorem 4.1: (Integration of ME-function on ME-pdf form). The integral of  $f(t) = \mathbf{x}e^{t\mathbf{Y}}\mathbf{z}$ , with intervals (0, b) can be expressed as

$$\int_0^b \mathbf{x} \mathrm{e}^{t\mathbf{Y}} \mathbf{z} \, \mathrm{d}t = \mathbf{E}_{1,d^{\mathrm{I}}},\tag{41}$$

where

$$\mathbf{E} \triangleq \mathrm{e}^{b\mathbf{Y}^{\mathrm{I}}},\tag{42}$$

$$d^{\mathrm{I}} = d + 1, \tag{43}$$

$$\mathbf{Y}^{\mathrm{I}} = \begin{bmatrix} 0 & \mathbf{x} \\ \mathbf{0} & \mathbf{Y} \end{bmatrix}.$$
 (44)

*Proof:* Integration corresponds to convolution with a step function that has LT 1/s. Using Proposition 2.1 gives

$$\int_0^b \mathfrak{L}_t^{-1} \left\{ \frac{x(s)}{y(s)} \right\} \mathrm{d}t = \mathfrak{L}_b^{-1} \left\{ \frac{1}{s} \frac{x(s)}{y(s)} \right\} = \mathbf{e}_1^{\mathrm{T}} \mathrm{e}^{b\mathbf{Y}^{\mathrm{I}}} \mathbf{e}_{d^{\mathrm{I}}} = \mathbf{E}_{1,d^{\mathrm{I}}}.$$

Note: The standard integration approach,  $\int_a^b e^{t\mathbf{X}} dt = \mathbf{X}^{-1} (e^{t\mathbf{X}} - \mathbf{I}) |_a^b$ , requires a non-singular matrix!



# Maximum of Two ME-distr. r.v.s

Theorem 4.2: (Maximum of two ME-distributed r.v.s). Let  $T_j, j \in \{1, 2\}$  be ME-distributed r.v.s with pdf  $f_T^{(j)}(t) = \mathbf{x}_j e^{t\mathbf{Y}_j} \mathbf{z}_j$ , and degree  $d_j$ . Then, the CDF of the ME-distribution r.v.  $T = \max(T_1, T_2)$  can be expressed as

$$F_T^{\max}(t) = \mathbf{E}_{1,d_1^{\mathrm{I}} + d_2^{\mathrm{I}}},\tag{45}$$

where

$$\mathbf{E} \triangleq e^{t \left(\mathbf{Y}_{1}^{\mathrm{I}} \oplus \mathbf{Y}_{2}^{\mathrm{I}}\right)}, \qquad (46)$$
$$\mathbf{Y}_{j}^{\mathrm{I}} = \begin{bmatrix} 0 & \mathbf{x}_{j} \\ \mathbf{0} & \mathbf{Y}_{j} \end{bmatrix}. \qquad (47)$$

Proof:

$$F_T^{\max}(t) = F_T^{(1)}(t)F_T^{(2)}(t)$$

$$= \left(\int_0^{\mathsf{T}} \mathbf{x}_1 e^{u\mathbf{Y}_1} \mathbf{z}_1 \, \mathrm{d}u\right) \left(\int_0^{\mathsf{T}} \mathbf{x}_2 e^{u\mathbf{Y}_2} \mathbf{z}_2 \, \mathrm{d}u\right)$$

$$\stackrel{(a)}{=} \left((\mathbf{e}_1^{(1)})^{\mathsf{t}} e^{t\mathbf{Y}_1^{\mathsf{I}}} \mathbf{e}_{d_1^{\mathsf{I}}}^{(1)}\right) \left((\mathbf{e}_1^{(2)})^{\mathsf{t}} e^{t\mathbf{Y}_2^{\mathsf{I}}} \mathbf{e}_{d_2^{\mathsf{I}}}^{(2)}\right)$$

$$\stackrel{(b)}{=} \left(\mathbf{e}_1^{(1)} \otimes \mathbf{e}_1^{(2)}\right)^{\mathsf{T}} e^{t\left(\mathbf{Y}_1^{\mathsf{I}} \oplus \mathbf{Y}_2^{\mathsf{I}}\right)} \left(\mathbf{e}_{d_1^{\mathsf{I}}}^{(1)} \otimes \mathbf{e}_{d_2^{\mathsf{I}}}^{(2)}\right)$$

$$= \mathbf{E}_{1,d_1^{\mathsf{I}}+d_2^{\mathsf{I}}}, \ \mathbf{E} \triangleq e^{t\left(\mathbf{Y}_1^{\mathsf{I}} \oplus \mathbf{Y}_2^{\mathsf{I}}\right)},$$

• Alternative forms for max and min

$$\begin{split} F_T^{\max}(t) &= \mathbf{E}_{1,d_1^{\mathrm{I}}}^{(1)} \mathbf{E}_{1,d_2^{\mathrm{I}}}^{(2)}, \\ F_T^{\min}(t) &= 1 - \left(1 - \mathbf{E}_{1,d_1^{\mathrm{I}}}^{(1)}\right) \left(1 - \mathbf{E}_{1,d_2^{\mathrm{I}}}^{(2)}\right) \\ \mathbf{E}^{(j)} &\triangleq \mathrm{e}^{t\mathbf{Y}_j^{\mathrm{I}}}, \\ \mathbf{Y}_j^{\mathrm{I}} &= \begin{bmatrix} 0 & \mathbf{x}_j \\ \mathbf{0} & \mathbf{Y}_j \end{bmatrix}. \end{split}$$





### **Expectation of Function**

*Theorem 4.3:* (Integral of ME-density- and Functionproduct). Let g(t) be a function for which an integral representation  $g(t) = \int_{a_u}^{b_u} g_1(u) e^{-tg_2(u)} du$  exist. Then, the expectation of g(t) is

$$\mathbb{E}\{g(t)\} = \int_0^\infty g(t) \mathbf{x} e^{t\mathbf{Y}} \mathbf{z} \, \mathrm{d}t$$
$$= \int_{a_u}^{b_u} g_1(u) \mathbf{x} \left(g_2(u) \mathbf{I} - \mathbf{Y}\right)^{-1} \mathbf{z} \, \mathrm{d}u \tag{52}$$

$$= G_1 + \int_{a_u}^{b_u} g_1(u) \mathbf{x} \mathbf{Y}^{-1} \left( \mathbf{I} - \mathbf{Y} g_2(u)^{-1} \right)^{-1} \mathbf{z} \, \mathrm{d}u, \quad (53)$$

where  $G_1 \triangleq \int_{a_u}^{b_u} g_1(u) \, \mathrm{d}u$ .

Proof: The expectation is

$$\begin{split} \mathbb{E}\{g(t)\} &= \int_{0}^{\infty} g(t) \mathbf{x} e^{t\mathbf{Y}} \mathbf{z} \, \mathrm{d}t \\ &= \int_{0}^{\infty} \left( \int_{a_{u}}^{b_{u}} g_{1}(u) e^{-tg_{2}(u)} \, \mathrm{d}u \right) \mathbf{x} e^{t\mathbf{Y}} \mathbf{z} \, \mathrm{d}t \\ &= \int_{a_{u}}^{b_{u}} g_{1}(u) \left( \int_{0}^{\infty} \mathbf{x} e^{t(\mathbf{Y} - g_{2}(u)\mathbf{I})} \mathbf{z} \, \mathrm{d}t \right) \, \mathrm{d}u \\ &= \int_{a_{u}}^{b_{u}} g_{1}(u) \mathbf{x} \left( g_{2}(u) \mathbf{I} - \mathbf{Y} \right)^{-1} \mathbf{z} \, \mathrm{d}u \\ &= -\int_{a_{u}}^{b_{u}} g_{1}(u) \mathbf{x} \mathbf{Y}^{-1} \left( \mathbf{I} - g_{2}(u) \mathbf{Y}^{-1} \right)^{-1} \mathbf{z} \, \mathrm{d}u \\ &= -\int_{a_{u}}^{b_{u}} g_{1}(u) \mathbf{x} \mathbf{Y}^{-1} \left( \mathbf{I} - \left( \mathbf{I} - \mathbf{Y} g_{2}(u)^{-1} \right)^{-1} \mathbf{z} \right) \, \mathrm{d}u \\ &= \int_{a_{u}}^{b_{u}} g_{1}(u) \, \mathrm{d}u + \int_{a_{u}}^{b_{u}} g_{1}(u) \mathbf{x} \mathbf{Y}^{-1} \left( \mathbf{I} - \mathbf{Y} g_{2}(u)^{-1} \right)^{-1} \mathbf{z} \, \mathrm{d}u \end{split}$$





### APPLICATIONS



# Applications

- We have a new cdf (pdf), the ME-distr.!
- Question: Where can we apply it?

We look in the bookshelf and in the litterature!



[3] S. G. Wilson, *Digital Modulation and Coding*, 1st ed. Delhi: Pearson Education, 1996.

- [8] T. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.
- [9] P. M. Shankar, Fading and Shadowing in Wireless Systems. Springer-Verlag New York, 2012.
- [4] J. G. Proakis and D. G. Manolakis, *Digital Signal Processing (3rd Ed.): Principles, Algorithms, and Applications.* Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.
  - [19] D. Tse and P. Viswanath, Fundamentals of Wireless Communications. New York, NY, USA: Cambridge Univ. Press, 2004.
- [25] E. Biglieri, J. Proakis, and S. Shamai, "Fading channels: Informationtheoretic and communications aspects," *IEEE Transactions on Information Theory*, vol. 44, no. 6, pp. 2619–2692, Oct 1998.
  - [27] Y.-C. Ko, M. S. Alouini, and M. K. Simon, "Outage probability of diversity systems over generalized fading channels," *IEEE Transactions* on Communications, vol. 48, no. 11, pp. 1783–1787, Nov 2000.
  - [28] M. Jabi, L. Szczecinski, and M. Benjillali, "Accurate outage approximation of MRC receivers in arbitrarily fading channels," *IEEE Communications Letters*, vol. 16, no. 6, pp. 789–792, June 2012.
- [23] M. K. Simon and M.-S. Alouini, *Digital communication over fading channels*, ser. Wiley series in telecommunications and signal processing. Hoboken, N.J. Wiley-Interscience, 2005. [Online]. Available: http://opac.inria.fr/record=b1102756
- [24] A. Molisch, Wireless Communications. Wiley-IEEE Press, 2005.

## Outage Probability

Theorem 5.4: (Outage probability for the ME-distributed effective channel) Let the effective channel pdf be  $f_Z(z) = \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}\tilde{\mathbf{r}}}$ ,  $\tilde{\mathbf{p}} \in \mathbb{R}^{1 \times \tilde{d}}$ ,  $\tilde{\mathbf{Q}} \in \mathbb{R}^{\tilde{d} \times \tilde{d}}$ ,  $\tilde{\mathbf{r}} = [0 \dots 0 \ 1]^{\mathrm{T}} \in \mathbb{R}^{\tilde{d} \times 1}$ . Then, the outage probability, with decoding threshold  $\Theta$ , is

$$Q_{\text{out}} = \mathbf{E}_{1,d^{\text{I}}},\tag{72}$$

where

$$\mathbf{E} = e^{\Theta \mathbf{Q}^{\mathrm{I}}},\tag{73}$$

$$d^{\mathrm{I}} = \tilde{d} + 1, \tag{74}$$

$$\mathbf{Q}^{\mathrm{I}} = \begin{bmatrix} 0 & \tilde{\mathbf{p}} \\ \mathbf{0} & \tilde{\mathbf{Q}} \end{bmatrix}.$$
(75)

*Proof:* From Theorem 4.1, the outage probability can be directly computed as  $Q_{\text{out}} = \mathbb{P}\{Z \leq \Theta\} = \int_0^{\Theta} \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}} \tilde{\mathbf{r}} dz = \mathbf{e}_1^{\mathrm{T}} e^{\Theta \mathbf{Q}^{\mathrm{I}}} \mathbf{e}_{d^{\mathrm{I}}} = \mathbf{E}_{1,d^{\mathrm{I}}}.$ 

The Matrix Exponential Distribution – A Tool for Wireless System Performance Analysis



# Adaptive Modulation and Coding (Rate-Adaptive Transmission)





# Effective Capacity (1)

- "The EC identifies the maximum constant arrival rate that a given service process can support in orter to guarantee a desired statistical QoS specfied with the QoS exponent θ"
- Definition (when the service rate varies independently)

$$C_{\text{eff}}^{\text{RA}} \triangleq -\frac{1}{\theta} \ln \left( \mathbb{E} \left\{ e^{-\theta \zeta} \right\} \right)$$

[26] D. Wu and R. Negi, "Effective capacity: A wireless link model for support of quality of service," *IEEE Transactions on Wireless Communications*, vol. 2, no. 4, pp. 630–643, July 2003.



# Effective Capacity (2)

Theorem 5.1: (Effective capacity with ME-distributed service rate) Let the service rate  $\zeta$  be iid, and have pdf  $f_{\zeta}(\zeta) = \tilde{\mathbf{p}} e^{\zeta \tilde{\mathbf{Q}}} \tilde{\mathbf{r}}, \tilde{\mathbf{p}} \in \mathbb{R}^{1 \times \tilde{d}}, \tilde{\mathbf{Q}} \in \mathbb{R}^{\tilde{d} \times \tilde{d}}, \tilde{\mathbf{r}} = [0 \dots 0 \ 1]^{\mathrm{T}} \in \mathbb{R}^{\tilde{d} \times 1}$ . Then, the effective capacity for rate-adaptive transmission is

$$C_{\text{eff}}^{\text{RA}} = -\frac{1}{\theta} \ln \left( \tilde{\mathbf{p}} (\theta \mathbf{I} - \tilde{\mathbf{Q}})^{-1} \tilde{\mathbf{r}} \right)$$
$$= -\frac{1}{\theta} \ln \left( \frac{\tilde{p}(\theta)}{\tilde{q}(\theta)} \right).$$
(61)

where  $\theta$  is the effective capacity quality-of-service exponent. *Proof:* When  $\zeta$  is iid, the effective capacity is  $C_{\text{eff}}^{\text{RA}} \triangleq -\frac{1}{\theta} \ln \left( \mathbb{E} \left\{ e^{-\theta\zeta} \right\} \right) = -\frac{1}{\theta} \ln \left( \int_{0}^{\infty} e^{-\zeta\theta} \tilde{\mathbf{p}} e^{\zeta \tilde{\mathbf{Q}}} \tilde{\mathbf{r}} \, \mathrm{d}\zeta \right)$ , and we have  $\int_{0}^{\infty} e^{-\zeta\theta} \tilde{\mathbf{p}} e^{\zeta \tilde{\mathbf{Q}}} \tilde{\mathbf{r}} \, \mathrm{d}\zeta = \tilde{\mathbf{p}} (\theta \mathbf{I} - \tilde{\mathbf{Q}})^{-1} \tilde{\mathbf{r}} = \tilde{p}(\theta) / \tilde{q}(\theta)$ .



# Effective Capacity (3)

Theorem 5.2: (Effective capacity with the effective channel ME-distributed and the service rate equals the AWGN Shannon-capacity) Let the effective channel pdf be  $f_Z(z) = \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}} \tilde{\mathbf{r}}, \tilde{\mathbf{p}} \in \mathbb{R}^{1 \times \tilde{d}}, \tilde{\mathbf{Q}} \in \mathbb{R}^{\tilde{d} \times \tilde{d}}, \tilde{\mathbf{r}} = [0 \dots 0 \ 1]^{\mathrm{T}} \in \mathbb{R}^{\tilde{d} \times 1}$ . Then,

the effective capacity, with CSI known at the transmitter and perfect rate adaptation, is

$$C_{\text{eff}}^{\text{RA}} \triangleq -\frac{1}{\theta} \ln \left( \int_{0}^{\infty} e^{-\theta \ln(1+z)} \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}} \tilde{\mathbf{r}} \, \mathrm{d}z \right)$$
$$= -\frac{1}{\theta} \ln \left( \int_{0}^{\infty} \frac{u^{\theta-1} e^{-u}}{\Gamma(\theta)} \tilde{\mathbf{p}} \left( u\mathbf{I} - \tilde{\mathbf{Q}} \right)^{-1} \tilde{\mathbf{r}} \, \mathrm{d}u \right) \quad (62)$$
$$= -\frac{1}{\theta} \ln \left( \int_{0}^{\infty} \frac{u^{\theta-1} e^{-u}}{\Gamma(\theta)} \frac{\tilde{p}(u)}{\tilde{q}(u)} \, \mathrm{d}u \right). \quad (63)$$

*Proof:* We have  $C_{\text{eff}}^{\text{RA}} = -\frac{1}{\theta} \ln \left( \mathbb{E} \left\{ e^{-\theta \ln(1+z)} \right\} \right)$ , where the expectation is

$$\begin{split} & \mathbb{E}\left\{\mathrm{e}^{-\theta\ln(1+z)}\right\} \\ &= \int_0^\infty \mathrm{e}^{-\theta\ln(1+z)}\tilde{\mathbf{p}}\mathrm{e}^{z\tilde{\mathbf{Q}}}\tilde{\mathbf{r}}\,\mathrm{d}z \\ &\stackrel{(a)}{=} \int_0^\infty (1+z)^{-\theta}\tilde{\mathbf{p}}\mathrm{e}^{z\tilde{\mathbf{Q}}}\tilde{\mathbf{r}}\,\mathrm{d}z \\ &= \int_0^\infty \left(\int_0^\infty \frac{u^{\theta-1}}{\Gamma(\theta)}\mathrm{e}^{-(1+z)u}\,\mathrm{d}u\right)\tilde{\mathbf{p}}\mathrm{e}^{z\tilde{\mathbf{Q}}}\tilde{\mathbf{r}}\,\mathrm{d}z \\ &= \int_0^\infty \frac{u^{\theta-1}\mathrm{e}^{-u}}{\Gamma(\theta)}\tilde{\mathbf{p}}\left(u\mathbf{I}-\tilde{\mathbf{Q}}\right)^{-1}\tilde{\mathbf{r}}\,\mathrm{d}u. \end{split}$$

Corollary 5.1: When  $\tilde{\mathbf{Q}}$  is diagonalizable,  $\tilde{\mathbf{V}}\tilde{\mathbf{A}}\tilde{\mathbf{V}}^{-1} = \tilde{\mathbf{Q}}$ ,  $\tilde{\mathbf{V}}$  is a non-singular Vandermonde matrix, and all eigenvalues  $\lambda_j, j \in \{1, 2, \dots J\}$ , are real negative, then

$$\tilde{\Xi} = \operatorname{diag}\{\xi_1, \xi_2, \dots, \xi_J\},\tag{67}$$

$$\xi_j = (-\lambda_j)^{\theta - 1} \mathrm{e}^{-\lambda_j} \Gamma(1 - \theta, -\lambda_j).$$
(68)

$$C_{\rm eff}^{\rm RA} = -\frac{1}{\theta} \ln \left( \tilde{\mathbf{p}} \tilde{\mathbf{T}} \tilde{\mathbf{\Xi}} \tilde{\mathbf{T}}^{-1} \tilde{\mathbf{r}} \right), \tag{64}$$



### **Basic Retransmission-Schemes**

The Matrix Exponential Distribution – A Tool for Wireless System Performance Analysis







# **ARQ Throughput**

Theorem 5.5: (Outage probability and ARQ throughput for the ME-distributed effective channel) Let the effective channel pdf be  $f_Z(z) = \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}} \tilde{\mathbf{r}}$ . Then, the throughput of ARQ is

$$T^{\mathrm{ARQ}} = R(1 - \mathbf{E}_{1,d^{\mathrm{I}}}),\tag{78}$$

with  $\mathbf{E}_{1,d^{\mathrm{I}}}$  given by Theorem 5.4.

*Proof:* The throughput is simply  $T^{ARQ} = R(1 - Q_{out})$ , and we then use the outage probability in Theorem 5.4.



### **Truncated-HARQ Throughput Analysis**

Theorem 5.6: (Truncated-HARQ throughput for the MEdistributed effective channel) Let the effective channel density be  $f_Z(z) = \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}} \tilde{\mathbf{r}}$ . Then, the throughput of truncated-HARQ, with a maximum of K transmissions and decoding threshold  $\Theta$ , is

$$T_K^{\text{HARQ}} = \frac{R(1 - \mathbf{E}_{1,(dK+1)})}{1 + \sum_{k=1}^{K-1} \mathbf{E}_{1,(dk+1)}},$$
(80)

where

$$\mathbf{E} = e^{\Theta \mathbf{Q}_{K^{\circledast}}^{l}},\tag{81}$$

and the ME-parameters are

$$\mathbf{p}_{K\circledast}^{\mathbf{I}} = [\mathbf{\tilde{p}} \ \mathbf{0}] \in \mathbb{R}^{1 \times d^{\mathbf{I}}},\tag{82}$$

$$\mathbf{Q}_{K\circledast}^{\mathrm{I}} = \begin{bmatrix} 0 & \mathbf{p}_{K\circledast} \\ \mathbf{0} & \mathbf{Q}_{K\circledast} \end{bmatrix} \in \mathbb{R}^{d^{\mathrm{I}} \times d^{\mathrm{I}}}, \tag{83}$$

$$\mathbf{r}_{K\circledast}^{\mathrm{I}} = \mathbf{e}_{d^{\mathrm{I}}} \in \mathbb{R}^{d^{\mathrm{I}} \times 1},\tag{84}$$

$$d^{\mathrm{I}} = \tilde{d}K + 1,\tag{85}$$

$$\mathbf{p}_{K\circledast} = [\mathbf{\tilde{p}} \ \mathbf{0}] \in \mathbb{R}^{1 \times \tilde{d}K}, \tag{86}$$
$$\begin{bmatrix} \mathbf{\tilde{Q}} & \mathbf{\tilde{P}} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{Q}_{K\circledast} = \begin{bmatrix} \mathbf{\tilde{Q}} & \mathbf{\tilde{Q}} & \mathbf{\tilde{P}} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{\tilde{Q}} & \mathbf{\tilde{V}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{\tilde{Q}} & \mathbf{\tilde{V}} & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{\tilde{Q}} & \mathbf{\tilde{P}} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{\tilde{Q}} \end{bmatrix} \in \mathbb{R}^{\tilde{d}K \times \tilde{d}K}, \quad (87)$$
$$\mathbf{r}_{K\circledast} = \mathbf{e}_{\tilde{d}K} \in \mathbb{R}^{\tilde{d}K \times 1}, \quad (88)$$

$$\tilde{\mathbf{Q}} = \mathbf{S} - \tilde{\mathbf{r}}\tilde{\mathbf{q}} \in \mathbb{R}^{\tilde{d} \times \tilde{d}},\tag{89}$$

$$\tilde{\mathbf{P}} = \tilde{\mathbf{r}} \tilde{\mathbf{p}} \in \mathbb{R}^{\tilde{d} \times \tilde{d}}.$$
(90)

(We know that 
$$T_K^{\text{HARQ}} = R \left( 1 - \mathcal{L}_{\Theta}^{-1} \{ s^{-1} F(s)^K \} \right) / \left( 1 + \mathcal{L}_{\Theta}^{-1} \{ \sum_{k=1}^{K-1} s^{-1} F(s)^k \} \right)$$





### Persistent-HARQ Throughput Analysis

Theorem 5.7: (Persistent-HARQ throughput for the MEdistributed effective channel) Let the effective channel pdf  $f_Z(z) = \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}} \tilde{\mathbf{r}}$  have LT  $F(s) = \tilde{p}(s)/\tilde{q}(s)$ . Then, the throughput, with decoding threshold  $\Theta$ , is

$$T_{\infty}^{\mathrm{HARQ}} = \frac{R}{1 + \mathbf{E}_{1,d^{\mathrm{I}}}},\tag{91}$$

where

$$\mathbf{E} = e^{\Theta \mathbf{Q}^{\mathrm{I}}},\tag{92}$$

$$\mathbf{Q}^{\mathrm{I}} = \begin{bmatrix} 0 & \tilde{\mathbf{p}} \\ \mathbf{0} & \mathbf{S} - \tilde{\mathbf{r}}(\tilde{\mathbf{q}} - \tilde{\mathbf{p}}) \end{bmatrix}.$$
(93)

Proof: The mean number of transmissions is

$$\begin{aligned} \mathfrak{L}_{\Theta}^{-1} \left\{ \frac{1}{s} \frac{1}{1 - F(s)} \right\} &= \mathfrak{L}_{\Theta}^{-1} \left\{ \frac{1}{s} \frac{1}{1 - \tilde{p}(s)/\tilde{q}(s)} \right\} \\ &= 1 + \mathfrak{L}_{\Theta}^{-1} \left\{ \frac{1}{s} \frac{\tilde{p}(s)}{\tilde{q}(s) - \tilde{p}(s)} \right\} \\ &= 1 + \mathbf{e}_{1} \mathrm{Te}^{\Theta \mathbf{Q}^{\mathrm{I}}} \mathbf{e}_{d^{\mathrm{I}}} = 1 + \mathbf{E}_{1,d^{\mathrm{I}}}, \ \mathbf{E} \triangleq \mathrm{e}^{\Theta \mathbf{Q}^{\mathrm{I}}}. \end{aligned}$$



### Persistent-HARQ with diversity order 2

Corollary 5.3: (Persistent-HARQ throughput for the MEdistributed wireless channel and N-fold diversity) Let the effective channel pdf  $f_Z(z) = \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}\tilde{\mathbf{r}}}$  have LT  $F(s) = \tilde{p}(s)/\tilde{q}(s) = (p(s)/q(s))^N, N \in \mathbb{N}^+$ . Then, the throughput, with decoding threshold  $\Theta$ , is

$$T_{\infty}^{\mathrm{HARQ}} = \frac{R}{1 + \mathbf{E}_{1,d^{\mathrm{I}}}},\tag{94}$$

where

$$\mathbf{E} = e^{\Theta \mathbf{Q}_{N \circledast}^{\mathrm{I}}},\tag{95}$$

*Example 5.13:* (Persistent-HARQ with diversity order 2) Consider Theorem 5.7 with N = 2. Then,

$$\mathbf{Q}_{2\circledast}^{\mathrm{I}} = \begin{bmatrix} \mathbf{0} & \mathbf{p} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} - \mathbf{r}(\mathbf{q} - \mathbf{p}) & \mathbf{r}\mathbf{p} \\ \mathbf{0} & \mathbf{0} & \mathbf{S} - \mathbf{r}(\mathbf{q} + \mathbf{p}) \end{bmatrix}, \quad (106)$$

since

$$\begin{aligned} \mathfrak{L}_{\Theta}^{-1} &\left\{ \frac{1}{s} \frac{1}{1 - (p(s)/q(s))^2} \right\} \\ &= 1 + \mathfrak{L}_{\Theta}^{-1} \left\{ \frac{1}{s} \frac{p(s)}{q(s) - p(s)} \frac{p(s)}{q(s) + p(s)} \right\}. \end{aligned}$$



# **3-phase NC Bidirectional Relaying**

Theorem 5.8: Consider the 3-phase NCBR model with nodes  $\nu_1, \nu_2, \nu_3$ , in Fig. 3. Let each link between a node pair  $\{\nu_i, \nu_j\}, \{ij\} = \{13, 32, 23, 31\}$ , be characterized by the effective channel SNR r.v.  $Z_{ij}$  with pdf  $f_Z^{(ij)}(z) = \tilde{\mathbf{p}}_{ij} e^{z\tilde{\mathbf{Q}}_{ij}} \tilde{\mathbf{r}}_{ij}$ ,  $\tilde{\mathbf{p}}_{ij} \in \mathbb{R}^{1 \times \tilde{d}_{ij}}, \tilde{\mathbf{Q}}_{ij} \in \mathbb{R}^{\tilde{d}_{ij} \times \tilde{d}_{ij}}, \tilde{\mathbf{r}}_{ij} = [0 \dots 0 \ 1]^{\mathrm{T}} \in \mathbb{R}^{\tilde{d}_{ij} \times 1}$ , and the decoding threshold  $\Theta_{12} = e^{R_{12}} - 1$ ,  $\Theta_{21} = e^{R_{21}} - 1$ . Then, the ETE sum-throughput is

$$T^{\text{NCBR}} = \frac{R_{12}(1 - Q_{12}) + R_{21}(1 - Q_{21})}{3},$$
 (115)

where

$$Q_{ij} = 1 - (1 - \mathbf{E}_{1,d_{i3}^{l}}^{(i3)})(1 - \mathbf{E}_{1,d_{3j}^{l}}^{(3j)}), \qquad (116)$$

$$\mathbf{E}^{(ij)} \triangleq \mathrm{e}^{\Theta_{ij}\mathbf{Q}_{ij}^{\mathrm{I}}},\tag{117}$$

$$\mathbf{Q}_{ij}^{\mathrm{I}} = \begin{bmatrix} 0 & \tilde{\mathbf{p}}_{ij} \\ \mathbf{0} & \tilde{\mathbf{Q}}_{ij} \end{bmatrix}.$$
 (118)

*Proof:* The ETE outage probability is

$$Q_{ij} = 1 - \mathbb{P} \{ \ln(1 + \min(Z_{i3}, Z_{3j})) > R_{ij} \}$$
  
= 1 - \mathbb{P} \{ \mathbb{m}(Z\_{i3}, Z\_{3j}) > \mathbf{\Theta}\_{ij} \}  
= 1 - \mathbb{P} \{ Z\_{i3} > \mathbf{\Theta}\_{ij} \} \mathbb{P} \{ Z\_{3j} > \mathbf{\Theta}\_{ij} \}  
= 1 - (1 - \mathbb{P} \{ Z\_{i3} < \mathbf{\Theta}\_{ij} \})(1 - \mathbb{P} \{ Z\_{3j} < \mathbf{\Theta}\_{ij} \})  
= 1 - (1 - \mathbf{E}\_{1,d\_{i3}^{l}}^{(i3)})(1 - \mathbf{E}\_{1,d\_{3j}^{l}}^{(3j)}),

with  $\mathbf{E}^{(ij)}$  given by (117).





# System Model:

# ARQ with Independent Interference

- Signal ME-pdf  $f_Z(z) = \mathbf{p} e^{z\mathbf{Q}}\mathbf{r}$
- Sum-interference
  - $Z_{\rm I} = \sum_{u=1}^{U} Z_u$
  - Individual ME-pdfs  $f_z^{(u)}(z) \sim \mathbf{p}_u \mathrm{e}^{z\mathbf{Q}_u} \mathbf{r}_u$
  - Sum-interference pdfs  $f_{Z_{I}}(z_{I}) = \mathbf{p}_{I} e^{z \mathbf{Q}_{I}} \mathbf{r}_{I}$
- Outage probability

 $P_{\text{Int}}^{\text{ARQ}} = \mathbb{P}\left\{\ln\left(1 + Z/(1 + Z_{\text{I}})\right) > R\right\} = \mathbb{P}\left\{Z \le \Theta(1 + Z_{\text{I}})\right\}$ where  $\Theta = e^{R} - 1$ 





### **ARQ** with Independent Interference

*Theorem 5.9:* (ARQ throughput for iid ME-distributed signal and interferers) Let the signal and sum-interferer be given by the system model. Then, the throughput is

$$T_{\text{Int}}^{\text{ARQ}} = R\left(\mathbf{p}_{\text{I}} \otimes \mathbf{p}\right) \left( (\mathbf{Q}_{\text{I}} \oplus \Theta \mathbf{Q}) (\mathbf{I} \otimes \mathbf{Q} e^{-\Theta \mathbf{Q}}) \right)^{-1} \left(\mathbf{r}_{\text{I}} \otimes \mathbf{r}\right).$$
(120)





### **ARQ** with Independent Interference

*Proof:* The throughput is  $T_{\text{Int}}^{\text{ARQ}} = RP_{\text{Int}}^{\text{ARQ}}$ , where  $P_{\text{Int}}^{\text{ARQ}} = \mathbb{P}\{Z > \Theta(1 + Z_{\text{I}})\}$  is determined via the integral

$$P_{\text{Int}}^{\text{ARQ}} = \int_{0}^{\infty} \int_{\Theta(1+z_{\text{I}})}^{\infty} \mathbf{p}_{\text{I}} e^{z_{\text{I}} \mathbf{Q}_{\text{I}}} \mathbf{r}_{\text{I}} \mathbf{p} e^{z_{\text{Q}}} \mathbf{r} \, dz_{\text{I}} \, dz$$

$$= -\int_{0}^{\infty} \mathbf{p}_{\text{I}} e^{z_{\text{I}} \mathbf{Q}_{\text{I}}} \mathbf{r}_{\text{I}} \mathbf{p} \mathbf{Q}^{-1} e^{\Theta \mathbf{Q}} e^{z_{\text{I}} \Theta \mathbf{Q}} \mathbf{r} \, dz_{\text{I}} \qquad (121)$$

$$\stackrel{(a)}{=} \left( \mathbf{p}_{\text{I}} \otimes \left( \mathbf{p} \mathbf{Q}^{-1} e^{\Theta \mathbf{Q}} \right) \right) \left( \mathbf{Q}_{\text{I}} \oplus \Theta \mathbf{Q} \right)^{-1} \left( \mathbf{r}_{\text{I}} \otimes \mathbf{r} \right)$$

$$\stackrel{(b)}{=} \left( \mathbf{p}_{\text{I}} \otimes \mathbf{p} \right) \left( \mathbf{I} \otimes \mathbf{Q}^{-1} e^{\Theta \mathbf{Q}} \right) \left( \mathbf{Q}_{\text{I}} \oplus \Theta \mathbf{Q} \right)^{-1} \left( \mathbf{r}_{\text{I}} \otimes \mathbf{r} \right)$$

$$\stackrel{(c)}{=} \left( \mathbf{p}_{\text{I}} \otimes \mathbf{p} \right) \left( \mathbf{I} \otimes \mathbf{Q} e^{-\Theta \mathbf{Q}} \right)^{-1} \left( \mathbf{Q}_{\text{I}} \oplus \Theta \mathbf{Q} \right)^{-1} \left( \mathbf{r}_{\text{I}} \otimes \mathbf{r} \right)$$

$$\stackrel{(d)}{=} \left( \mathbf{p}_{\text{I}} \otimes \mathbf{p} \right) \left( (\mathbf{Q}_{\text{I}} \oplus \Theta \mathbf{Q}) (\mathbf{I} \otimes \mathbf{Q} e^{-\Theta \mathbf{Q}}) \right)^{-1} \left( \mathbf{r}_{\text{I}} \otimes \mathbf{r} \right),$$

where Lemma 5.1 is used in step (a), and the identities  $(\mathbf{X}_1 \otimes \mathbf{Y}_1)(\mathbf{X}_2 \otimes \mathbf{Y}_2) = (\mathbf{X}_1 \mathbf{X}_2) \otimes (\mathbf{Y}_1 \mathbf{Y}_2), (\mathbf{X} \otimes \mathbf{Y})^{-1} = (\mathbf{X}^{-1} \otimes \mathbf{Y}^{-1}), \text{ and } \mathbf{X}^{-1} \mathbf{Y}^{-1} = (\mathbf{Y} \mathbf{X})^{-1}, \text{ are used in step (b)-(d), respectively.}$ 



# Throughput Analysis – Dependent Signal and Interference

Definition 5.1: (Bivariate ME-distribution) We define the joint ME-density of the wireless channel SNR r.v.s  $(Z_1, Z_2)$ , as  $f_{Z_1, Z_2}(z_1, z_2) = \mathbf{p}_1 e^{z_1 \mathbf{Q}_1} \mathbf{P}_{12} e^{z_2 \mathbf{Q}_2} \mathbf{r}_2, z_1 \ge 0, z_2 \ge 0$ , where  $\mathbf{p}_1 \in \mathbb{R}^{1 \times d_1}, \mathbf{Q}_1 \in \mathbb{R}^{d_1 \times d_1}, \mathbf{P}_{12} \in \mathbb{R}^{d_1 \times d_2}, \mathbf{Q}_2 \in \mathbb{R}^{d_2 \times d_2}, \mathbf{r}_2 \in \mathbb{R}^{d_2 \times 1}$ . The parameters defining the joint density are, in a similar manner as for the univariate-ME-distribution, assumed selected to have a corresponding bivariate CDF fulfilling necessary characteristics, e.g.  $0 \le F_{Z_1, Z_2}(z_1, z_2) \le 1$ ,

*Theorem 5.10:* (ARQ throughput solution with Sylvester's equation) Let the signal of interest, and the sum-interference, SNRs have joint density  $f_{Z_I,Z}(z_I, z) = \mathbf{p}_I e^{z_I \mathbf{Q}_I} \mathbf{P}_{12} e^{z \mathbf{Q}} \mathbf{r}$ . Then, the throughput is

$$T_{\rm Int}^{\rm ARQ} = R \mathbf{p}_{\rm I} \mathbf{X} \mathbf{r}, \qquad (130)$$

where  $\mathbf{X}$  is given by the solution  $\mathbf{X}$  to the Sylvester equation

$$\mathbf{Q}_1 \mathbf{X} + \mathbf{X} \Theta \mathbf{Q}_2 = -\breve{\mathbf{P}}_{12}, \tag{131}$$

with

$$\breve{\mathbf{P}}_{12} \triangleq -\mathbf{P}_{12}\mathbf{Q}^{-1}\mathbf{e}^{\Theta\mathbf{Q}},\tag{132}$$

and  $\Theta = e^R - 1$ .

*Proof:* The throughput is  $T_{\text{Int}}^{\text{ARQ}} = RP_{\text{Int}}^{\text{ARQ}}$ , where, analogously to Theorem 5.9, the decoding probability is

$$\begin{split} P_{\text{Int}}^{\text{ARQ}} &= \int_{0}^{\infty} \int_{\Theta(1+z_{1})}^{\infty} \mathbf{p}_{\text{I}} \mathrm{e}^{z_{1}\mathbf{Q}_{\text{I}}} \mathbf{P}_{12} \mathrm{e}^{z\mathbf{Q}} \mathbf{r} \, \mathrm{d}z_{\text{I}} \, \mathrm{d}z \\ &= -\int_{0}^{\infty} \mathbf{p}_{\text{I}} \mathrm{e}^{z_{\text{I}}\mathbf{Q}_{\text{I}}} \mathbf{P}_{12} \mathbf{Q}^{-1} \mathrm{e}^{\Theta(1+z_{\text{I}})\mathbf{Q}} \mathbf{r} \, \mathrm{d}z_{\text{I}} \\ &= \int_{0}^{\infty} \mathbf{p}_{\text{I}} \mathrm{e}^{z_{\text{I}}\mathbf{Q}_{\text{I}}} \mathbf{\breve{P}}_{12} \mathrm{e}^{z_{1}\Theta\mathbf{Q}} \mathbf{r} \, \mathrm{d}z_{\text{I}}, \ \mathbf{\breve{P}}_{12} \triangleq -\mathbf{P}_{12} \mathbf{Q}^{-1} \mathrm{e}^{\Theta\mathbf{Q}}, \\ &= \mathbf{p}_{\text{I}} \mathbf{X} \mathbf{r}, \ \mathbf{X} \triangleq \int_{0}^{\infty} \mathrm{e}^{z_{\text{I}}\mathbf{Q}_{\text{I}}} \mathbf{\breve{P}}_{12} \mathrm{e}^{z_{\text{I}}\Theta\mathbf{Q}} \, \mathrm{d}z_{\text{I}}. \end{split}$$

Based on Lemma 5.2, we then solve for  $\mathbf{X}$  in the Sylvester equation (131).



### **Modulation and Detection**

Theorem 5.11: (Differential binary PSK (DBPSK) and FSK BER with non-coherent detection). Let the conditional error probability have the generic form  $P(z) = e^{-az}/2$ , where z is the instantaneous SNR, and a is constant for the specific modulation and detection method (DBPSK: a = 1, FSK: a = 1/2), [3], [4], [24]. Then, the BER can be written as

$$P_{b} = \int_{0}^{\infty} \frac{1}{2} \mathbf{e}^{-az} \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}} \tilde{\mathbf{r}} dz$$
$$= \frac{1}{2} \tilde{\mathbf{p}} (a\mathbf{I} - \tilde{\mathbf{Q}})^{-1} \tilde{\mathbf{r}} = \frac{1}{2} \frac{\tilde{p}(a)}{\tilde{q}(a)}.$$
(153)

Theorem 5.12: (Binary PSK (BPSK) and FSK BER with coherent detection). Let the conditional error probability have the generic form  $P(z) = Q(\sqrt{2az})$ , where z is the instantaneous SNR, and a is constant for the specific modulation and detection method (BPSK: a = 1, FSK: a = 1/2) [3], [4], [24]. Then, the BER is

$$P_{\mathbf{b}} = \int_{0}^{\infty} Q(\sqrt{2az}) \tilde{\mathbf{p}} e^{z\tilde{\mathbf{Q}}} \tilde{\mathbf{r}} dz$$
$$= \frac{1}{2} \left( 1 + \tilde{\mathbf{p}} \tilde{\mathbf{Q}}^{-1} (\mathbf{I} - \tilde{\mathbf{Q}} a^{-1})^{-1/2} \tilde{\mathbf{r}} \right).$$
(154)

Theorem 5.13: (Pairwise error probability). Let the conditional pairwise error probability have the generic form  $P(\mathbf{c} \rightarrow \mathbf{e}|z_1, \ldots z_N) = Q\left(\sqrt{2\sum_{n=1}^N a_n z_n}\right)$ , see e.g. [3, (6.6.9)], [19, (3.84)], or [23, Chap. 13], where  $a_n, n \in \{1, 2, \ldots N\}$ , are constants, and  $z_n$  are ME-distributed r.v.s. Then, the average PEP is

$$PEP(\mathbf{c} \to \mathbf{e}) = \frac{1}{\pi} \int_0^{\pi/2} \prod_{n=1}^N \tilde{\mathbf{p}}_n \left( \frac{a_n}{\sin^2(t)} \mathbf{I} - \tilde{\mathbf{Q}}_n \right)^{-1} \tilde{\mathbf{r}}_n \, \mathrm{d}t.$$
(157)





### **OTHER USES OF THE ME-DISTR.**





### **ME-distributed** Time-discrete Signals

#### Lloyd-Max Quantization

$$l_q = \frac{1}{2} \left( \hat{u}_{q-1} + \hat{u}_q \right), \ q = \{1, 2, \dots M - 1\},$$
$$\hat{u}_q = \frac{\int_{l_q}^{l_{q+1}} t f_T(t) \, \mathrm{d}t}{\int_{l_q}^{l_{q+1}} f_T(t) \, \mathrm{d}t}, \ q = \{0, 1, \dots M - 1\},$$

- with ME-distr.

$$\hat{u}_{q} = \frac{\int_{l_{q}}^{l_{q+1}} t \mathbf{x} e^{t\mathbf{Y}} \mathbf{z} \, \mathrm{d}t}{\int_{l_{q}}^{l_{q+1}} \mathbf{x} e^{t\mathbf{Y}} \mathbf{z} \, \mathrm{d}t}$$
$$= \frac{\mathbf{x} e^{t\mathbf{Y}} \left( t \mathbf{Y}^{-1} - \mathbf{Y}^{-2} \right) \mathbf{z} \Big|_{l_{q}}^{l_{q+1}}}{\mathbf{x} e^{t\mathbf{Y}} \mathbf{Y}^{-1} \mathbf{z} \Big|_{l_{q}}^{l_{q+1}}}.$$

Panter-Dite formula  

$$MSE \approx \frac{1}{12M^{2}} \left( \int_{0}^{\infty} (\mathbf{x}e^{t\mathbf{Y}}\mathbf{z})^{1/3} dt \right)^{3}.$$

$$\mathbf{x}\mathbf{T}^{-1} = \mathbf{\breve{x}} \otimes \mathbf{\breve{x}} \otimes \mathbf{\breve{x}},$$

$$\mathbf{T}\mathbf{Y}\mathbf{T}^{-1} = \mathbf{\breve{Y}} \oplus \mathbf{\breve{Y}} \oplus \mathbf{\breve{Y}},$$

$$\mathbf{T}\mathbf{z} = \mathbf{\breve{z}} \otimes \mathbf{\breve{z}} \otimes \mathbf{\breve{z}},$$

$$\int_{0}^{\infty} (\mathbf{x}e^{t\mathbf{Y}}\mathbf{z})^{1/3} dt$$

$$= \int_{0}^{\infty} \left( (\mathbf{x}\mathbf{T}^{-1}e^{t\mathbf{T}\mathbf{Y}\mathbf{T}^{-1}}\mathbf{T}\mathbf{z})^{1/3} dt$$

$$= \int_{0}^{\infty} \left( (\mathbf{\breve{x}} \otimes \mathbf{\breve{x}} \otimes \mathbf{\breve{x}}) e^{t(\mathbf{\breve{Y}} \oplus \mathbf{\breve{Y}} \oplus \mathbf{\breve{Y}})} (\mathbf{\breve{z}} \otimes \mathbf{\breve{z}} \otimes \mathbf{\breve{z}}) \right)^{1/3} dt$$

$$= \int_{0}^{\infty} \left( \left( \mathbf{\breve{x}}e^{t\mathbf{\breve{Y}}}\mathbf{\breve{z}} \right)^{3} \right)^{1/3} dt$$

$$= -\mathbf{\breve{x}}\mathbf{\breve{Y}}^{-1}\mathbf{\breve{z}}.$$
(167)  
**–** Alternativ Integral repr.

 $\int_0^\infty \left( \mathbf{x} \mathrm{e}^{t\mathbf{Y}} \mathbf{z} \right)^{1/3} \, \mathrm{d}t = \frac{3\sqrt{3}}{2\pi} \int_0^\infty \int_0^\infty \frac{\mathbf{x} \mathrm{e}^{t\mathbf{Y}} \mathbf{z}}{u^3 + \mathbf{x} \mathrm{e}^{t\mathbf{Y}} \mathbf{z}} \, \mathrm{d}t \, \mathrm{d}u.$ 





## **ME-distributed** Time-discrete Signals

• Entropy

 $h = -\int_0^\infty \mathbf{x} e^{t\mathbf{Y}} \mathbf{z} \ln\left(\mathbf{x} e^{t\mathbf{Y}} \mathbf{z}\right) dt.$ 

Not yet solved in closed-form !

$$h = -\int_{0}^{1} \int_{0}^{\infty} \frac{\mathbf{x} e^{t\mathbf{Y}} \mathbf{z} \left(\mathbf{x} e^{t\mathbf{Y}} \mathbf{z} - 1\right)}{1 + u \left(\mathbf{x} e^{t\mathbf{Y}} \mathbf{z} - 1\right)} dt du, \qquad (159)$$

$$h = \lim_{\theta \to 0} \frac{1}{\theta} \ln \left( \int_{0}^{\infty} f_{T}(t)^{1-\theta} dt \right). \qquad (160)$$

$$\int_{0}^{\infty} \left(\mathbf{x} e^{t\mathbf{Y}} \mathbf{z}\right)^{1-\theta} dt$$

$$\stackrel{(a)}{=} \frac{\sin \left(\pi (1-\theta)\right)}{\pi (1-\theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathbf{x} e^{t\mathbf{Y}} \mathbf{z}}{u^{\frac{1}{1-\theta}} + \mathbf{x} e^{t\mathbf{Y}} \mathbf{z}} dt du$$

$$\stackrel{(b)}{=} \frac{\sin \left(\pi (1-\theta)\right)}{\pi (1-\theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \mathbf{x} \left(u^{\frac{1}{1-\theta}} e^{-t\mathbf{Y}} + \mathbf{z} \mathbf{x}\right)^{-1} \mathbf{z} dt du, \qquad (161)$$

- Mutual Information
  - The signal and noise are assumed ME-distributed

$$y = x + w, \, x \ge 0, \, w \ge 0,$$

$$I = h(y) - h(y|x) = h(y) - h(w)$$

$$= \ln (S_{\rm x}/S_{\rm w}) - (h(y_{\rm um}) - h(w_{\rm um})).$$

KTH VETENSKAP VETENSKAP

T

The Matrix Exponential Distribution – A Tool for Wireless System Performance Analysis



### Type-I pdf: Matrix Gaussian-like

Definition 7.1: Let  $f_T(t) = c \mathbf{x} e^{t^2 \mathbf{Y}} \mathbf{z}, t \in [-\infty, \infty]$ , with  $c = (\sqrt{\pi} \mathbf{x} (-\mathbf{Y})^{-1/2} \mathbf{z})^{-1}$ , denote the type I pdf.

$$E\{T^{n}\} = c \int_{-\infty}^{\infty} t^{n} \mathbf{x} e^{t^{2}\mathbf{Y}} \mathbf{z} \, \mathrm{d}t, \, n = \{0, 2, 4, \ldots\},$$

$$= 2c \int_{0}^{\infty} t^{n} \mathbf{x} e^{t^{2}\mathbf{Y}} \mathbf{z} \, \mathrm{d}t$$

$$= c \int_{0}^{\infty} y^{(n-1)/2} \mathbf{x} e^{y\mathbf{Y}} \mathbf{z} \, \mathrm{d}y$$

$$= \frac{2c}{\sqrt{\pi}} \int_{0}^{\infty} \int_{0}^{\infty} y^{n/2} e^{-yx^{2}} \mathbf{x} e^{y\mathbf{Y}} \mathbf{z} \, \mathrm{d}y \, \mathrm{d}x$$

$$= c\Gamma\left(\frac{n+1}{2}\right) \mathbf{x} \left(-\mathbf{Y}\right)^{-(n+1)/2} \mathbf{z}.$$
(168)



Figure 4. Example of type I distribution for a)  $\mathbf{x} = [50 \ 0 \ 0], \mathbf{y} = [50 \ 52 \ 3], \mathbf{z} = [0 \ 0 \ 1]^{T}$ , and b)  $\mathbf{x} = [1 \ 0], \mathbf{y} = [1 \ 2], \mathbf{z} = [0 \ 1]^{T}$ , with  $\mathbf{Q} = \mathbf{S} - \mathbf{rp}$ .





### Type-II pdf: Bivariate Matrix Gaussian-like

Definition 7.2: Let  $f_{U,V}(u,v) = \frac{1}{\pi} \mathbf{x} e^{(u^2+v^2)\mathbf{Y}} \mathbf{z}, u \in [-\infty,\infty], v \in [-\infty,\infty]$ , denote the type II pdf.

$$\mathbb{E}\{U^{n}V^{m}\} = \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u^{n} v^{m} \mathbf{x} e^{(u^{2}+v^{2})\mathbf{Y}} \mathbf{z} \, du \, dv,$$
  

$$n = \{0, 2, 4, \ldots\}, \ m = \{0, 2, 4, \ldots\},$$
  

$$= \frac{4}{\pi} \int_{0}^{\infty} a^{(n-1)/2} b^{(m-1)/2} \mathbf{x} e^{(a+b)\mathbf{Y}} \mathbf{z} \, da \, db$$
  

$$= \frac{4}{\pi} \Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{m+1}{2}\right)$$
  

$$\times \mathbf{x} \left(-\mathbf{Y}\right)^{-(n+1)/2} \left(-\mathbf{Y}\right)^{-(m+1)/2} \mathbf{z}.$$
 (16)



69) Figure 5. Example of type II distribution for  $\mathbf{x} = [50 \ 0 \ 0], \mathbf{y} = [50 \ 52 \ 3], \mathbf{z} = [0 \ 0 \ 1]^T$ , and  $\mathbf{Y} = \mathbf{S} - \mathbf{z}\mathbf{x}$ .

$$f_U(u) = \frac{1}{\pi} \int_{-\infty}^{\infty} \mathbf{x} e^{(u^2 + v^2)\mathbf{Y}} \mathbf{z} dv$$
$$= \frac{1}{\sqrt{\pi}} \mathbf{x} e^{u^2 \mathbf{Y}} \left(-\mathbf{Y}\right)^{-1/2} \mathbf{z}.$$
(170)



The Matrix Exponential Distribution – A Tool for Wireless System Performance Analysis



# Type-III pdf: Matrix Rayleigh-like

Definition 7.3: Let  $f_T(t) = 2t\mathbf{x}e^{t^2\mathbf{Y}}\mathbf{z}, t \in (0, \infty]$ , denote the type III pdf.

$$\mathbb{E}\{T^n\} = \int_0^\infty 2t^{n+1} \mathbf{x} e^{t^2 \mathbf{Y}} \mathbf{z} \, \mathrm{d}t \, n = \{0, 1, \ldots\}$$
$$= \int_0^\infty u^{n/2} \mathbf{x} e^{u \mathbf{Y}} \mathbf{z} \, \mathrm{d}u$$
$$= \Gamma\left(\frac{n+2}{2}\right) \mathbf{x} \left(-\mathbf{Y}\right)^{-(n+2)/2} \mathbf{z}. \tag{171}$$



Figure 6. Example of type III distribution for a)  $\mathbf{x} = [50 \ 0 \ 0], \mathbf{y} = [50 \ 52 \ 3], \mathbf{z} = [0 \ 0 \ 1]^{T}$ , and b)  $\mathbf{x} = [1 \ 0], \mathbf{y} = [1 \ 2], \mathbf{z} = [0 \ 1]^{T}$ , with  $\mathbf{Y} = \mathbf{S} - \mathbf{z}\mathbf{x}$ .





# Summary

- structured, refined and extended the ME-distribution approach for perf. analysis of wireless comm. systems with ME-distributed fading SNR.
- New tools derived, new communication cases analyzed, new channel fading models introduced.
- Analyzed:
  - Effective capacity of AMC
  - Throughput of persistent/truncated-(H)ARQ
  - Throughput of 3-phase NCBR
  - SER/BER of Modulation and detection, etc.
  - Throughput of ARQ w (in)dependent Interference
- Widened the use of the ME-distribution to discrete-time r.v. signals: Max-Lloyd Quantization, Panter-Dite formula, Entropy, Mutual information...
- Generalized the ME-distribution to new Matrix distributions.



# Conclusion

 The ME-distribution approach can be helpful for wireless system performance analysis in communication theory, information theory, and related areas.





### END