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STATE OF THE ART

• Physical-layer secrecy has received much attention recently

• Wiretap channel - notable works:

Wyner (1975) - one of the pioneer studies
Csiszár and Körner (1978) - extended to non-degraded case
Leung-Yan-Cheong and Hellman (1978)- SISO Gaussian wiretap channel
F. Oggier et al. (2008), A. Khisti et al. (2010), J. Li et al. (2010), Q. Shi et al.
(2012), Q. Li et al. (2013) - MISO and MIMO wiretap channel with a sum
power constraint

• Per-antenna power constraints

M. Vu (2011), Z. Pi (2012) - point-to-point MISO/MIMO
W. Yu et al. (2007), S. Shi et al. (2008) - multi-user MIMO

• Joint sum and per-antenna power constraints

P. Cao et al. (2016,2017) - point-to-point MISO/MIMO

➔ Wiretap channels with joint sum and per-antenna power constraints have not
been considered yet.

➔ We are not aware that the optimal trade-off between communication rate and
secrecy rate of a wiretap channel has been studied
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POWER CONSTRAINTS

S(p̂) := {Q � 0 : tr(Q) ≤ Ptot, eT
k Qek ≤ P̂k, ∀k ∈ I},

where p̂ = [Ptot, P̂1, . . . , P̂Nt
], I := {1, . . . ,Nt}.

∗ Sum power constraint only is consider when the per-antenna power constraints

are never active, i.e., Ptot < mink{P̂k}

∗ Per-antenna power constraints only is considered when the sum power

constraint is never active, i.e., Ptot >
∑Nt

i=1 P̂k

∗ Joint sum and per-antenna power constraints are considered when the power

relations satisfy mink(P̂k) ≤ Ptot ≤
∑Nt

i=1 P̂k, i.e., both sum and per-antenna
power constraints can be active
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TRADE-OFF BETWEEN TRANSMISSION RATE AND SECRECY RATE

• Capacity and Secrecy capacity

C(p̂) = maxQ∈S(p̂) C(Q) and Cs(p̂) = maxQ∈S(p̂) Cs(Q)

where Cs(Q) = C(Q)− Ce(Q),C(Q) = log(1 + hH
r Qhr),Ce(Q) = log(1 + hH

e Qhe).

A necessary and sufficient condition for a positive secrecy rate of a Gaussian

MISO wiretap channel, i.e., Cs(Q) > 0, is that hrh
H
r - hehH

e ∈ CNt×Nt has to
have a positive eigenvalue.

• Rate region describing the trade-off between transmission rate and secrecy rate with
a given set of power constraints

RMISO(p̂) = {[R,Rs] : 0 ≤ Rs ≤ R ≤ C(Q),Rs ≤ Cs(Q),Q ∈ S(p̂)}

RMISO(p̂) is not necessarily a convex set sin Rs is non-convex.

• If we allow time-sharing between rate pairs, the convex hull of the rate region is
denoted by

CMISO(p̂) = Conv{[R,Rs] : 0 ≤ Rs ≤ R ≤ C(Q),Rs ≤ Cs(Q),Q ∈ S(p̂)}.
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BOUNDARY OF RATE REGION

• The region RMISO(p̂) can be characterized by the set of all weighted rate sum optimal
rate pairs.

• The weighted rate sum for a given weight vector w = [w1,w2] ∈ R2
+ with

w1 + w2 = 1

R∑(Q,w) := w1C(Q) + w2Cs(Q), (1)

or equivalently

R∑(Q,w) = C(Q)− w2Ce(Q). (2)

Find optimal transmit strategy Q with weights w1,w2 6= 0
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OPTIMIZATION PROBLEM

Optimization Problem

maximize R∑(Q,w)

s.t. Q ∈ S(p̂).
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OVERALL SOLUTION

Our solution

- Alternating problem formulation

- Find optimal transmit strategy for a given t ∈ [0, . . . , 2Cs(p̂)].

If we compute the optimal transmit strategy for all possible t, we
obtain a parametrization of the boundary without time-sharing

- Find the best value of t

How to approach the solution?
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ALTERNATIVE PROBLEM FORMULATION

Lemma 1 [JPKR’11, Scalar case]

Consider the function f (D) = −DE + log(D) + 1 where D,E ∈ R,E > 0.
Then,

max
D>0

f (D) = log(E−1),

with the optimum value D∗ = E−1.

3
J. Jose, N. Prasad, M. Khojastepour, and S. Rangarajan, ”On robust weighted-sum rate maximixation in MIMO

interference networks,” in IEEE International Conference on Communications (ICC), 2011.
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ALTERNATIVE PROBLEM FORMULATION

Alternative optimization problem
R∑(p̂) = max

Q∈S(p̂)
log(1 + hH

r Qhr)− w2 log(1 + hH
e Qhe)

= max
Q∈S(p̂)

{min
Dr>0

(Dr(1 + hH
r Qhr)− log(Dr)− 1)

+ w2 max
De>0

(−De(1 + hH
e Qhe) + log(De) + 1)}

Optimization to obtain optimal transmit strategy for a

given t

Qopt(p̂, t) = arg max
Q∈S(p̂)

hH
r Qhr − thH

e Qhe.

where t = w2
De
Dr

.
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PARAMETRIZATION OF THE BOUNDARY OF RATE REGION

Boundary of rate region

It is sufficient for the boundary of the rate region RMISO(p̂) to consider

0 ≤ t ≤ 2Cs(p̂)
,

where Cs(p̂) is the secrecy capacity.

Rate region corresponds to a set of power constraints S(p̂)

RMISO(p̂) ={[R,Rs] : 0 ≤ Rs ≤ R ≤ C(Q(p̂, t)),

Rs ≤ Cs(Q(p̂, t)), t ∈ [0, 2Cs(p̂)]}.

- Sum power constraint, S(p̂) → SSPC

- Per-antenna power constraints, S(p̂) → SPAPC

- Joint sum and per-antenna power constraints, S(p̂) → SJSPC
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OPTIMAL TRANSMIT STRATEGY FOR A GIVEN t

WITH SUM POWER CONSTRAINT

Problem:

QSPC(t) = arg max
Q∈SSPC

hH
r Qhr − thH

e Qhe.

Solution:

Closed-form solution

The closed-form expression for the optimal transmit strategy is given by

QSPC(t) = PtotvvH

where v is the eigenvector associated with the largest eigenvalue of hrh
H
r −

thehH
e for a given t.
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OPTIMAL TRANSMIT STRATEGY FOR A GIVEN t

WITH PER-ANTENNA POWER CONSTRAINT
Problem:

QPAPC(t) = arg max
Q∈SPAPC

hH
r Qhr − thH

e Qhe.

Solution:

Diagonal elements

The optimal transmit strategy QPAPC(t) has diagonal elements qkk = P̂k,
∀k ∈ I .

Off-diagonal elements

We consider a relaxed optimization problem involving a 2 × 2 principal
minors of QPAPC(t). The optimal transmit strategy QPAPC−R(t) of a relaxed
optimization problem has off-diagonal elements

qkl(t) =
h∗rkhrl−th∗ekhel

|h∗
rk

hrl−th∗
ek

hel|

√

P̂kP̂l

with k, l ∈ I ; k 6= l.
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OPTIMAL TRANSMIT STRATEGY FOR A GIVEN t

WITH PER-ANTENNA POWER CONSTRAINT

• If QPAPC−R(t) � 0, then QPAPC(t) = QPAPC−R(t)

• If there are only two transmit antennas, then QPAPC(t) = QPAPC−R(t)

• QPAPC−R(t) has rank one solution

• The numerical experiments show that the results of diagonal and off-diagonal
elements hold for Nt > 2
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OPTIMAL TRANSMIT STRATEGY FOR A GIVEN t

WITH JOINT SUM AND PER-ANTENNA POWER CONSTRAINTS

Problem:

QJSPC(t) = arg max
Q∈SJSPC

hH
r Qhr − thH

e Qhe

Solution:

Property

The optimal solution for the MISO wiretap channel with joint sum and
per-antenna power constraints problem can be achieved when the transmit
strategy uses full power Ptot, i.e., tr(QJSPC(t)) = Ptot.
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OPTIMAL TRANSMIT STRATEGY FOR A GIVEN t

WITH JOINT SUM AND PER-ANTENNA POWER CONSTRAINTS

Solution (cont.):

Optimal transmit strategy (special case with two transmit

antennas only)
Let QSPC(t) be the optimal transmit strategy under the sum power con-

straint only. Let P := {k ∈ I : eT
k

QSPC(t)ek > P̂k} where I := {1, 2}.
Then, for the optimization problem with joint sum and per-antenna power
constraints, we have

• If P = ∅, QJSPC(t) = QSPC(t)

• Otherwise QJSPC(t) has diagonal elements
{

eT
k QJSPC(t)ek = P̂k,

eT
l QJSPC(t)el = Ptot − P̂k,

and off-diagonal elements

q⋆kl(t) =
h∗rkhrl−th∗ekhel

|h∗
rk

hrl−th∗
ek

hel|

√

P̂k(Ptot − P̂k),

with k ∈ P , l 6= k.

17 / 20



INTRODUCTION PROBLEM FORMULATION MAIN RESULTS NUMERICAL EXAMPLES CONCLUSIONS

OPTIMAL RATE REGION

Transmission Rate [bit/channel use]
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SUMMARY AND CONCLUSIONS

- Trade-off between transmission rate and secrecy rate considering different
power constraint settings

- Capacity region is characterized from the optimal rate pairs using a
parametrization of the rate region

- Beam-forming is the optimal solution for the optimization problem with a sum
power constraint only

- Under per-antenna power constraints only, the diagonal elements of the
covariance matrix are set to be equals maximal individual transmit power on
every antennas

- The optimal transmit strategy with joint sum and per-antenna power constraints
is achieved when full sum transmit power is used. The transmit power is set
equal to the maximal per-antenna transmit power if an optimal power allocation
of the sum power constraint only solution exceeds a per-antenna power
constraint.
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Q & A
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