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Abstract—The future wireless networks require both high data
transmission rates and secure communications. However, there
exists a trade-off between secure and non-secure rates since only

a fraction of the maximal achievable reliable rate in a wiretap
channel can be considered as secure. This paper studies the opti-
mal transmit strategies that achieve the optimal trade-off between
the communication rate and secrecy rate for the MISO wiretap
channels with different power constraint settings including sum
power constraint only, per-antenna power constraints only, and
joint sum and per-antenna power constraints. First, a necessary
and sufficient condition to ensure a positive secrecy capacity
is shown. After that, closed-form solutions to find an optimal
transmit strategy of related problems are derived. This provides a
parametrization of the boundary of the maximal achievable rate
and secrecy rate without additional time-sharing. The optimal
trade-off is characterized by the convex hull of the region. Lastly,
the results are illustrated by numerical examples.

I. INTRODUCTION

Security is a critical aspect in wireless communication

systems due to the open nature of wireless links. To enhance

the security, physical-layer secrecy methods have received

much attention recently. One of the pioneer studies is the

study of the secrecy capacity of the wiretap channel [1], where

Wyner showed that a positive secrecy rate can be achieved

when an eavedropper’s channel is a degraded version of the

main channel. The maximal secrecy rate is given by the

largest difference between the rate achievable at the legitimate

receiver and the rate achievable at the eavesdropper. Following

Wyner’s work, researchers in the physical-layer security area

have extended and considered the wiretap channel in various

aspects. Notable results include the extension to the non-

degraded case by Csiszár and Körner [2] and the extension

to the single-input single-output Gaussian wiretap channel by

Leung-Yan-Cheong and Hellman [3].

The secrecy capacities for MISO and MIMO wiretap chan-

nels with a sum power constraint, which can be motivated

by ecological aspects to limit the energy consumptions, have

been intensively studied in [4]–[6]. In [4], necessary conditions

for the optimal input covariance are derived. In particular, a

closed-form expression of the MISO secrecy capacity has been

shown. For the MIMO case an iterative algorithm is provided.

In [5] and [6], iterative optimization algorithms to find the

secrecy capacity have been proposed based on the concave-

convex procedure (CCCP) and the alternating optimization

approach. Alternatively, indirect approaches such as using

Sato-like argument and matrix analysis tools are also used to

find the secrecy capacity of a MIMO Gaussian wiretap channel

[7], [8].

In practice, each antenna has its own power amplifier,

which means the power allocation at the transmitter is usually

done under per-antenna power constraints instead of a sum

power constraint. Particularly, the problem of finding the

channel capacity with average per-antenna power constraints

has been investigated in both single-user [9], [10] and multi-

user setups [11]–[13]. Recently, the capacity of point-to-point

channels with joint sum and per-antenna power constraints

has been considered [14]–[17]. An interesting aspect of the

joint sum and per-antenna power constraints setting is that

it can be applied to systems with multiple antenna as well

as to distributed systems with separated energy sources. The

optimal transmit strategy problem with the joint sum and per-

antenna power constraints has been well studied for MISO

channel with two transmit antennas in [14] and general case

in [15]. In [15], a closed-form characterization of an optimal

beam-forming strategy is derived. It is shown that the optimal

solution is achieved by allocating the maximal sum power

with phases matched to the complex channel coefficients.

For the optimization problem with joint sum and per-antenna

power constraints, it is shown that whenever the optimal

power allocation of the corresponding problem with a sum

power constraint only exceeds per-antenna power constraints,

it is optimal to allocate the maximal per-antenna power to

those antennas. Shortly after [15], similar results have been

published in [16]. In [17], the optimal transmit strategy

problem for point-to-point MIMO channel with joint sum and

per-antenna power constraints has been studied. An iterative

algorithm to find the optimal transmit strategy in closed-form

using generalized water-filling solution is proposed. However,

to our best knowledge, the wiretap channels and in particular

the secrecy capacity with per-antenna power constraints and

the secrecy capacity with joint sum and per-antenna power

constraints have not been studied yet. Further, we are not aware

that the optimal trade-off between communication rate and

secrecy rate of a wiretap channel has been studied previously.

In this work we look at this problem considering MISO

channels with different power constraint settings including

sum power constraint only, per-antenna power constraints only,

and joint sum and per-antenna power constraints. The optimal

trade-off between communication rate and secrecy rate of

MISO wiretap channels is motivated by the fact that the
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optimal communication strategy for wiretap channel is using

a two-layer codebook where the eavesdropper can effectively

decode the message encoded using the public layer codebook.

The idea of the coding scheme is that the decoding capability

of the eavesdropper is exhausted by the public message,

while the legitimate receiver can also decode the message of

the second layer. Therefore, instead of sending some useless

random message on the public layer, a useful message can be

communicated non-securely to the legitimate receivers. Since

the maximal transmission rate and secrecy rate are, in general,

achieved by different transmit strategies, we face a trade-off

between both objectives which we will study in the following.

The rest of this paper is organized as follows. We start by

briefly introducing the system model, sets of power constraints

including sum power constraint only, per-antenna power con-

straints only, and joint sum and per-antenna power constraints.

After that an equivalent formulation of the weighted rate sum

maximization between the transmission rate and the secrecy

rate is derived. The weighted rate sum optimal rate pairs

provide a characterization of the boundary of the region of the

achievable transmission rate and the secrecy rate. It is shown

that the optimal transmit strategy of MISO wiretap channels

with sum power constraint is a beam-forming strategy. Fur-

ther, closed-form solutions of the optimal transmit strategy

under per-antenna power constraints only and joint sum and

per-antenna power constraint considering only two transmit

antennas are shown in next sections. These solutions allow

us to come up with characterizations of the boundary of the

regions between the transmission rate and the secrecy rate.

The results are then illustrated and discussed in numerical

examples. Finally, we provide some remarks and conclusions.

II. SYSTEM MODEL AND POWER CONSTRAINT

We consider a MISO wiretap channel with multiple antennas

at the transmitter and single antenna at both legitimate receiver

and eavesdropper. Let Nt be the number of transmit antennas.

For each channel use, the received signals at the legitimate

receiver and the eavesdropper are given as follows

yr = hH
r x + zr, (1)

ye = hH
e x + ze, (2)

where x = [x1, . . . , xNt
]T ∈ CNt×1 is the random complex

transmit signal vector, hr = [hr1, . . . , hrNt
]T ∈ CNt×1 and

he = [he1, . . . , heNt
]T ∈ C

Nt×1 are channel coefficient

vectors between the transmitter and legitimate receiver, and

between the transmitter and eavesdropper. zr and ze are the

independent additive white complex Gaussian noise terms with

powers σ2
r and σ2

e . In this paper, we assume without loss

of generality that σ2
r = σ2

e = 1. The perfect channel state

information (CSI) at the transmitter is also assumed. We use

a Gaussian distributed codebook with covariance Q = E[xxH ]
which specifies the transmit strategy.

Let Ptot denote the maximal average sum transmit power.

Let P̂k , ∀k = 1, . . . , Nt, denote the maximal average trans-

mit power at the k-th antenna. Further, let S(p̂), p̂ :=

[Ptot, P̂1, . . . , P̂Nt
], denote the set of all transmit strategies

satisfying the power constraints p̂, i.e.,

S(p̂) := {Q � 0 : tr(Q) ≤ Ptot, eTk Qek ≤ P̂k, ∀k ∈ I} (3)

where I := {1, . . . , Nt} and ek is the kth Cartesian unit

vector. Depending on the per-antenna power constraints P̂k

and the sum power constraint Ptot, we can identify three

different cases:

• Sum power constraint only is considered when the per-

antenna power constraints are never active, i.e., Ptot <

mink(P̂k).
• Per-antenna power constraints only is considered when

the sum power constraint is never active, i.e., Ptot >∑Nt

i=1 P̂k.

• Joint sum and per-antenna power constraints are con-

sidered when the power relations satisfy mink(P̂k) ≤
Ptot ≤

∑Nt

i=1 P̂k, i.e., both sum and per-antenna power

constraints can be active.

III. TRADE-OFF AND PROBLEM FORMULATION

A. Trade-off Between Transmission Rate and Secrecy Rate

The secrecy capacity of the Gaussian MISO channel [4]

with a given set of power constraints S(p̂) is given by

Cs(p̂) = max
Q∈S(p̂)

Cs(Q), (4)

where Cs(Q) = C(Q) − Ce(Q), C(Q) = log(1 +
hH
r Qhr), Ce(Q) = log(1 + hH

e Qhe). The capacity of MISO

point-to-point channel is denoted as

C(p̂) = max
Q∈S(p̂)

C(Q). (5)

Proposition 1. A necessary and sufficient condition for a

positive secrecy rate of a Gaussian MISO wiretap channel,

i.e., Cs(Q) > 0, is that hrhH
r - hehH

e ∈ CNt×Nt has to have

a positive eigenvalue.

Proof. The proof of the Proposition 1 can be found in Ap-

pendix A.

Next, we define the region describing the trade-off between

the point-to-point transmission rate and wiretap secrecy rate

with a given set of power constraints. Let RMISO be the rate

region defined as

RMISO(p̂) = {[R,Rs] : 0 ≤ Rs ≤ R ≤ C(Q),

Rs ≤ Cs(Q),Q ∈ S(p̂)}. (6)

Note that the secrecy rate is a fraction of the transmission rate

and 0 ≤ Rs ≤ R has to be satisfied. Therefore, the boundary

of the rate region is also bounded by the straight line for

which R = Rs. It can be seen from (6) that RMISO(p̂) is

not necessarily a convex set since Cs(Q) is non-convex in Q.

However, if we allow time-sharing between rate pairs, we can

obtain any achievable points in the convex hull of the rate

region which we denoted by

CMISO(p̂) = Conv{[R,Rs] : 0 ≤ Rs ≤ R ≤ C(Q),

Rs ≤ Cs(Q),Q ∈ S(p̂)}. (7)
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The optimal region CMISO(p̂) is convex and given by the

downward comprehensive hull of the weighted optimal rate

pairs in RMISO(p̂) conditioned that 0 ≤ RS ≤ R holds.

Therefore, the region RMISO(p̂) can be characterized by the

set of all weighted rate sum optimal rate pairs. The weighted

rate sum for a given weight vector w = [w1, w2] ∈ R2
+ with

w1 + w2 = 1 is given by

R∑(Q,w) := w1C(Q) + w2Cs(Q), (8)

or equivalently

R∑(Q,w) = C(Q)− w2Ce(Q). (9)

The remaining question is to find the optimal transmit strategy

Qopt(w) such that the weighted rate sum in (8) is maximized

for a given vector w. The optimization problem to find the

maximal weighted rate sum for MISO wiretap channels with

a given set of power constraints S can be written as follows

max
Q

R∑(Q,w), (10)

s. t. Q ∈ S(p̂).

In the following, we provide closed-form solutions to find

the optimal transmit strategies that characterize the trade-off

between the transmission rate of MISO point-to-point channel

and the secrecy rate of MISO wiretap channel without time-

sharing corresponding to the three different power constraint

cases.

B. Equivalent Problem Formulation

Since the objective function of (10) is not concave for w2 >

0, the optimization problem to find the maximal weighted rate

sum is a non-convex optimization problem. Therefore, we first

reformulate (10) to an equivalent optimization problem using

the following lemma.

Lemma 1 ([18, Lemma 2, scalar case]). Consider the function

f(D) = −DE + log(D) + 1 where D,E ∈ R, E > 0. Then,

max
D>0

f(D) = log(E−1), (11)

with the optimum value D� = E−1.

By applying Lemma 1 with Ei = 1 + hH
i Qhi, fi(Di) =

−DiEi + log(Di) + 1, i ∈ {r, e}, the optimization problem

(10) can be expressed as

R∑(p̂) = max
Q∈S(p̂)

log(1 + hH
r Qhr)− w2 log(1 + hH

e Qhe)

= max
Q∈S(p̂)

{− max
Dr>0

fr(Dr) + w2 max
De>0

fe(De)}

= max
Q∈S(p̂)

{min
Dr>0

(−fr(Dr)) + w2 max
De>0

fe(De)}

= max
Q∈S(p̂)

{min
Dr>0

(Dr(1 + hH
r Qhr)− log(Dr)− 1)

+ w2 max
De>0

(−De(1 + hH
e Qhe) + log(De) + 1)}

(12)

Thus, for given Dr, De, and w2, the optimization problem

to obtain the optimal transmit strategy Qopt(p̂, t) for a given

t can be written as

Qopt(p̂, t) = arg max
Q∈S(p̂)

hH
r Qhr − thH

e Qhe. (13)

where t = w2
De

Dr
. Note that the objective function in (13) can

be written as tr(AQ) with A = hrhH
r − thehH

e for a given t.

In the following, we aim to find the optimal transmit strategy

solution with different sets of power constraints. The key

idea is that we first fix the value of t and find the optimal

transmit strategy for this t. Given the optimal transmit strategy

Qopt(p̂, t) for a given t we can then compute the corresponding

De and Dr. Therewith the weight w2 corresponding to the

optimal transmit strategy can be found. Thus, if we compute

the optimal transmit strategy for all possible t, we obtain a

parametrization of the boundary without time-sharing. This

result will be made more clear in Theorem 1. This set can be

then also used in a line search algorithm to find the best value

of t for a specific weight w2.

IV. PARAMETRIZATION OF THE BOUNDARY OF RATE

REGION

The most interesting part of the boundary is the curved

section which corresponds to the set of Pareto optimal rate

pairs of RMISO(p̂). Next, we will provide a parametrization

of this section. When t = 0, we optimize C(Q) which

corresponds to w2 = 0 only, i.e., (10) becomes (5). If w2 = 1,

then (10) becomes (4). In the next theorem, it is shown that

this corresponds to t = 2Cs(p̂).

Theorem 1. It is sufficient for the boundary of the rate region

RMISO(p̂) to consider

0 ≤ t ≤ 2Cs(p̂), (14)

where Cs(p̂) is the secrecy capacity.

Proof. The proof of Theorem 1 can be found in Appendix B.

The idea of this proof is to show that with a given weight, the

optimization problems (13) and (10) have the same optimal

solutions.

With the corresponding sets of power constraints, the opti-

mal transmit strategy Qopt(p̂, t), t ∈ [0, 2Cs(p̂)] characterizes

the curved section of the rate region RMISO which is given

by

RMISO(p̂) ={[R,Rs] : 0 ≤ Rs ≤ R ≤ C(Q(p̂, t)),

Rs ≤ Cs(Q(p̂, t)), t ∈ [0, 2Cs(p̂)]}. (15)

V. OPTIMAL TRANSMIT STRATEGY

In this section, we aim to find closed-form solutions of the

optimal transmit strategies for a given t of the weighted rate

sum optimization problem for the MISO wiretap channel with

a sum power constraint only, per-antenna power constraints

only, and with joint sum and per-antenna power constraints

respectively. First we discuss the rank of the optimal transmit

strategy.
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Lemma 2. The rank of the optimal transmit strategy (13) for

a given t is at most two, i.e., rank(Q) ≤ 2.

Proof. The proof of Lemma 2 can be found in Appendix C.

Since a transmit strategy of rank one actually denotes a

beam-forming strategy, it will be interesting to see where

beam-forming is sufficient for optimality. This is the case

in the sum power constraint only setup as well as for the

per-antenna power constraint cases if one considers only two

transmit antennas.

A. Optimal Transmit Strategy with Sum Power Constraint

In the sum power constraint only case, the per-antenna

power constraints are never active, e.g., if we have Ptot < Pk

∀k. Let SSPC denote the set of all power allocations which

satisfy the sum power constraint Ptot only. Then we can

obtain the set as SSPC = {Q � 0 : tr(Q) ≤ Ptot}. The

equivalent problem of finding the weighted rate sum optimal

transmit strategy for the MISO wiretap channel with sum

power constraint only for a given t can be written as

QSPC(t) = arg max
Q∈SSPC

hH
r Qhr − thH

e Qhe. (16)

Theorem 2. The closed-form expression for the optimal trans-

mit strategy of (16) is given by

QSPC(t) = PtotvvH (17)

where v is the eigenvector associated with the largest eigen-

value of hrhH
r − thehH

e for a given t.

Proof. The proof of Theorem 2 can be found in the Appendix

D.

Remark 1. The rank of the optimal transmit strategy of (17)

for a given t is one, i.e., a beam-forming strategy is optimal.

In the next sections, we aim to find the optimal solution for

the two remaining cases with per-antenna power constraints

only and with joint sum and per-antenna power constraints.

B. Optimal Transmit Strategy with Per-antenna Power Con-

straints

In contrast to the sum power constraint only case, the per-

antenna power constraints only case is considered when the

sum power constraint is never active, e.g., Ptot >
∑

k∈I P̂k.

Let SPAPC denote the set of all power allocations which

satisfy the per-antenna power constraints P̂K , ∀k ∈ I, only.

Then SPAPC = {Q � 0 : eTk Qek ≤ P̂k, k ∈ I}. The

equivalent problem of finding the weighted rate sum optimal

transmit strategy for the MISO wiretap channel with per-

antenna power constraints only for a given t can be written

as

QPAPC(t) = arg max
Q∈SPAPC

hH
r Qhr − thH

e Qhe. (18)

In general, the diagonal elements of the optimal transmit

strategy can be obtained by the proposition below.

Proposition 2. The optimal transmit strategy QPAPC(t) of

problem (18) has diagonal elements qkk = P̂k, ∀k ∈ I.

Proof. The proof of Proposition 2 can be found in Appendix

E.

Proposition 2 shows that for the per-antenna power con-

straint only problem, it is optimal to allocate maximal indi-

vidual power on the transmit antennas. The remaining problem

is to find off-diagonal elements of QPAPC(t) for a given t.

The main difficulty here is the positive semi-definite con-

straint. To overcome this, we consider a relaxed optimization

problem involving a 2 × 2 principal minors of QPAPC(t)
similarly as done in [19]. Let Xk,l(t) is a principal minor

matrix which is obtained by removing Nt−2 columns, except

k and l, and the corresponding transposed Nt − 2 rows of Q.

Then, Xk,l(t) is given as

Xk,l(t) =

[
P̂k q∗kl(t)

qkl(t) P̂l

]
(19)

where k, l ∈ I, k �= l. Therewith, we can formulate a relaxed

optimization problem as follows

max
Q

hH
r Qhr − thH

e Qhe, (20)

s. t. qkk = P̂k, ∀k ∈ I

Xk,l(t) � 0, k, l ∈ I, k �= l.

The off-diagonal elements of the covariance matrix in (20)

then can be obtained using the following theorem.

Theorem 3. The optimal transmit strategy QPAPC−R(t) of

the relaxed optimization problem (20) has off-diagonal ele-

ments

qkl(t) =
h∗
rkhrl − th∗

ekhel

|h∗
rkhrl − th∗

ekhel|

√
P̂kP̂l. (21)

with k, l ∈ I; k �= l.

Proof: The proof of Theorem 3 can be found in Appendix

F.

From Proposition 2 and Theorem 3, we have the following

conclusions and remarks.

Remark 2. If the solution (21) leads to a positive semi-definite

solution, then it is also an optimal solution of (18).

Corollary 1. If there are only two transmit antennas, i.e.,Nt =
2, then (21) always leads to positive semi-definite solution with

eigenvalues zero and P̂1+ P̂2, i.e., the optimal solution (21) of

the relaxed optimization problem (20) is actually the optimal

solution of (18).

Remark 3. The optimal transmit strategy QPAPC−R(t) of the

relaxed optimization problem (20) has rank one solution, i.e.,

beam-forming is optimal.

The numerical experiments show that the results in Propo-

sition 2 and Theorem 3 also hold for Nt > 2, i.e., Proposition

2 and Theorem 3 specifies an optimal solution.
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C. Optimal Transmit Strategy with Joint Sum and Per-antenna

Power Constraints

In this section, we discuss the optimization for the wiretap

channel for the interesting case when both sum and per-

antenna power constraints can be active, i.e., mink(P̂k) ≤
Ptot ≤

∑Nt

i=k P̂k [15]. Let SPAPC denote the set of all power

allocations which satisfy the joint sum and per-antenna power

constraints such that mink(P̂k) ≤ Ptot ≤
∑Nt

i=k P̂k. Then we

can obtain the set SJSPC = {Q � 0 : tr(Q) ≤ Ptot, eTk Qek ≤
P̂k, ∀k ∈ I}. Similar to the optimization problem with sum

power constraint only and per-antenna power constraints only,

by applying Lemma 1, an equivalent optimization problem for

finding the optimal transmit strategy for the wiretap channel

with joint sum and per-antenna power constraints can be stated

as

QJSPC(t) = arg max
Q∈SJSPC

hH
r Qhr − thH

e Qhe (22)

for a given t.

Proposition 3. The optimal solution for the MISO wiretap

channel with joint sum and per-antenna power constraints

problem can be achieved when the transmit strategy uses full

power Ptot, i.e., tr(QJSPC(t)) = Ptot.

Proof. The proof of Proposition 3 can be found in Appendix

G.

This proposition permits us to consider only transmit strate-

gies which allocate full power Ptot. If the solution of the sum

power constraint only problem does not violate the per-antenna

power constraints, then it is also the solution of the joint

sum and per-antenna power constraints problem. However, this

is not always the case. In such cases, the maximum power

will be allocated to those antennas where the sum power

constraint only optimal solution violates the per-antenna power

constraints. In the next theorem we show how this leads to the

optimal transmit strategy considering two transmit antennas.

Theorem 4. Let QSPC(t) be the optimal transmit strategy

under the sum power constraint only. Let P := {k ∈ I :
eTk QSPC(t)ek > P̂k} where I := {1, 2}. Then, for the

optimization problem with joint sum and per-antenna power

constraints, we have

• If P = ∅, QJSPC(t) = QSPC(t)
• Otherwise QJSPC(t) has diagonal elements

{
eTk QJSPC(t)ek = P̂k,

eTl QJSPC(t)el = Ptot − P̂k,
(23)

and off-diagonal elements

q�kl(t) =
h∗
rkhrl − th∗

ekhel

|h∗
rkhrl − th∗

ekhel|

√
P̂k(Ptot − P̂k), (24)

with k ∈ P , l �= k.

Proof. Since the case with P = ∅ is obvious, we focus to

prove the remaining case. Consider a scalar function f(Q) :=
hH
r Qhr − thH

e Qhe. From [20, Lemma 3.10], we know that
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Fig. 1: The optimal regions between the transmission rates and

the secrecy rate with sum power constraint only Ptot = 14 and

per-antenna power constraints only P̂1 = 6 and P̂2 = 8

the scalar function f(Q) : Q → R+ is monotone. Therefore,

if any k-th optimal power of the sum power constraint only

solution violated the per-antenna power constraints, it has to

set equal to the maximal individual power P̂k, k = {1, 2}.
Consequently, the remaining optimal transmit power has to

set equal to Ptot − P̂k and the off-diagonal elements of the

optimal transmit strategy for the wiretap channel with joint

sum and per-antenna power constraints are then calculated

using Theorem 3 with the corresponding optimal transmit

powers eTk QJSPC(t)ek = P̂k and eTl QJSPC(t)el = Ptot−P̂k,

k ∈ P , l �= k.

Remark 4. Since the solution for the two antennas case is

either the solution of the sum power constraint only problem

or the per-antenna power constraints only problem, beam-

forming is again optimal.

VI. NUMERICAL EXAMPLES

In this section, numerical examples for the optimization

problems with sum power constraint only and per-antenna

power constraint only with two antennas at the transmitter,

and one antenna at legitimate receiver and eavesdropper

each are shown. We first provide a MISO wiretap channel

with two transmit antennas. The complex channel coeffi-

cients corresponds to legitimate receiver and eavesdropper are

given as hr = [0.3737 + 0.8912i, 0.9795 + 1.2926i]T and

he = [0.4387 + 0.7655i, 0.3816+ 0.7952i]T . The powers on

maximum transmit power on antennas are set as P̂1 = 6 and

P̂2 = 8. The sum power constraint Ptot = 14.

Fig. 1 depicts optimal regions between the transmission rate

and the secrecy rate of the wiretap channel with two different

set of power constraints: sum power constraint only and per-

antenna power constraints only. The figure shows that the
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regions are fully characterized by the curved sections which

can be obtained from the parametrized optimal solution in

Theorem 1. It also shows the trade-off between the transmis-

sion rate and the secrecy rate. For instance, we can see that

the strategies that maximize the secrecy rates, t = 2C
SPC

s with

CSPC
s = 0.995 for the case with sum power constraint only

and t = 2C
PAPC

s with CPAPC
s = 0.85 for the case with per-

antenna power constraints only.

VII. CONCLUSIONS

In this paper, we investigated the trade-off between the

MISO point-to-point transmission rate and the wiretap secrecy

rate considering different power constraint settings. We derived

an equivalent formulation of the optimization problem and

characterized capacity region from the optimal rate pairs using

a parametrization of the rate region. We showed that beam-

forming is the optimal solution for the optimization problem

with a sum power constraint only. It is also the optimal

solution for the remaining optimization problems with two

transmit antennas only. Under per-antenna power constraints

only, the diagonal elements of the covariance matrix are set

to be equals maximal individual transmit power on every

antennas. The optimal transmit strategy with joint sum and per-

antenna power constraints is achieved when full sum transmit

power is used. In addition, the transmit power is set equal to

the maximal per-antenna transmit power if an optimal power

allocation of the sum power constraint only solution exceeds

a per-antenna power constraint.

APPENDIX

A. Proof of Proposition 1

The proof of the proposition includes two following steps:

Step 1: For the necessary part, we need to show that for

Cs(Q) > 0, hrhH
r −hehH

e has at least one positive eigenvalue.

The secrecy capacity can be written as

Cs(Q) = log(1 + hH
r Qhr)− log(1 + hH

e Qhe)

= log

(
1 +

tr{(hrhH
r − hehH

e )Q}

1 + hH
e Qhe

)
> 0. (25)

Since 1+hH
e Qhe > 0, it suffices to show that for tr{(hrhH

r −
hehH

e )Q} > 0 the matrix A = hrhH
r − hehH

e has to

have at least one positive eigenvalue. We have tr(A) =∑
i∈I λi(Q)vH

i Avi > 0. Since λi(Q) ≥ 0, ∀i, for a largest

eigenvalue λmax(A), we have

λmax(A) = max
‖wi‖

wH
i Awi ≥ vHi Avi > 0. (26)

Step 2: For the sufficient part, we need to show that if A =
hrhH

r −hehH
e has a positive eigenvalue, then there exists Q ∈

S(p̂) such that Cs(Q) > 0.

Since A has a positive eigenvalue, there exist a vector

v : ‖v‖ = 1 such that vHAv > 0. This implies that we

can construct Q = ξvvH , ξ > 0, such that Q ∈ S(p̂) and

tr(AQ) > 0. Then we have

Cs(Q) = log(1 + hH
r Qhr)− log(1 + hH

e Qhe)

= log

(
1 +

tr(AQ)

1 + hH
e Qhe

)
> 0. (27)

�

B. Proof of Theorem 1

In (13), we defined t = w2
De

Dr
. Since w2 ∈ [0, 1], De, Dr >

0, it suffices to consider the value of t as t ∈ [0, tmax], where

tmax is the largest value of t. In the following, we show that the

optimization problem (13) and (10) have the same solutions.

The optimization problem in (13) can be equivalently rewritten

as

Qopt(p̂) = arg max
Q∈S(p̂)

DrhH
r Qhr − w2DehH

e Qhe. (28)

Let φ(Q,w, Dr, De) denote the objective function of (28).

Suppose that Q� is an optimal solution of (13) and (28), then

following [21, Section 4.2] and Lemma 1 we know that for a

given Q� the corresponding values D�
r and D�

e are given by

D�
r = (1 + hH

r Q�hr)
−1, (29)

D�
e = (1 + hH

e Q�he)
−1. (30)

Thus,

∂φ(Q�,w, D�
r , D

�
e)

∂Q� = D�
rhrhH

r − w2D
�
ehehH

e

= hr(1 + hH
r Q�hr)

−1hH
r − w2he(1 + hH

e Q�he)
−1hH

e

=
∂R∑(Q�,w)

∂Q� . (31)

This implies that Q� is also a stationary point of (10). Note that

with growing w2, D�
e becomes larger and D�

r becomes smaller

so that tmax is obtained at w2 = 1 when (9) corresponds to the

secrecy optimization problem (4). Accordingly, for w2 = 1,

we can write

Cs(p̂) = log(1 + hH
r Q�hr)− log(1 + hH

e Q�he)

= log

(
1 + hH

r Q�hr

1 + hH
e Q�he

)

= log(
D�

e

D�
r

)

= log(tmax). (32)

Therefore, tmax = 2Cs(p̂), i.e., it is sufficient for the boundary

of the rate region to consider t ∈ [0, 2Cs(p̂)]. This proves

Theorem 1. �

C. Proof of Lemma 2

Consider the optimization problem

max
Q

hH
r Qhr − thH

e Qhe, s. t.Q ∈ S(p̂). (33)
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The Lagrangian for problem (33) is given by

L = hH
r Qhr − thH

e Qhe − tr(D(Q− P̂))

− μ(tr(Q)− Ptot) + tr(MQ), (34)

where D = diag{νi} is a diagonal matrix of Lagrangian

multiplier for the per-antenna power constraints, μ is the

Lagrangian multiplier for the sum power constraint, M is the

Lagrangian multiplier for the positive semi-definite constraint,

and P̂ = diag{P̂i}, ∀i = I is a diagonal matrix of the per-

antenna power constraints.

Taking the first derivative of the Lagrangian above and set

equal to zero, we have

∂L

∂Q
= hrhH

r − thehH
e − D− μI + M

!
= 0. (35)

Using the slackness condition MQ = 0, we obtain

(hrhH
r − thehH

e )Q = KQ, (36)

where K = D + μI. Since K has full rank, at the optimum,

we have

rank(Q�) ≤ rank(hrhH
r ) + rank(hehH

e ) = 2. (37)

�

D. Proof of Theorem 2

By using singular value decomposition, for a given t, we

have hrhH
r − thehH

e = VΛVH . Let Q̃ = VHQV, we obtain

Q̃ � 0. Then

hH
r Qhr − thH

e Qhe = tr{(hrhH
r − thehH

e )Q}

= tr{ΛQ̃}

= tr{Λ diag(Q̃)}

≤ λmaxPtot (38)

with λmax is the largest entry in Λ and tr(Q̃) = tr(Q) = Ptot.

Equation (38) holds with equality if Q̃ is diagonal and has a

unique nonzero entry equal to Ptot corresponding to the largest

entry of Λ. This implies that Q and hrhH
r − thehH

e share

the same eigenvectors and Q has rank one [22]. Therefore,

we have QSPC(t) = PtotvvH where v is the eigenvector

associated with the largest eigenvalue of hrhH
r − thehH

e for a

given t. This proves the Theorem 2. �

E. Proof of Proposition 2

Consider the optimization problem

max
Q

hH
r Qhr − thH

e Qhe, s. t. Q ∈ SPAPC . (39)

The Lagrangian for the problem (39) is given by

L = hH
r Qhr − thH

e Qhe − tr(D(Q − P̂)) + tr(MQ), (40)

where D = diag{νi} is a diagonal matrix of Lagrangian

multiplier for the per-antenna power constraints, M is the

Lagrangian multiplier for the positive semi-definite constraint,

and P̂ = diag{P̂i}, ∀i ∈ I is a diagonal matrix of the per-

antenna power constraints. Based on the KKT conditions, we

then obtain a set of optimality conditions as follows

hrhH
r − thehH

e = D + M (41)

MQ = 0 (42)

D � 0 (43)

Hermitian Q,M � 0. (44)

Since D � 0 has full-rank, at the optimum the power constraint

must be met with equality, i.e., qkk = P̂k , ∀k ∈ I, otherwise

we can always increase the power and get higher rate. This

proves Proposition 2. �

F. Proof of Theorem 3

Consider an optimization problem (20). The Lagrangian for

problem (20) is given by

L = hH
r Qhr − thH

e Qhe

−
∑
k �=l

λkl(|qkl(t)|
2 − P̂kP̂l)−

∑
k

μk(qkk − P̂k), (45)

where λkl and μk are the Lagrange multipliers, and k, l ∈ I.

Taking the first derivative of (45) and set it equal to zero, we

have

∂L

∂qkl
= h∗

rkhrl − th∗
ekhel − λklqkl(t)

!
= 0, (46)

or equivalently

qkl(t) =
h∗
rkhrl − th∗

ekhel

λkl

. (47)

Similar to [13], the optimal value of qkl in (47) is obtained

when its constraint is satisfied with equality, i.e., |qkl(t)|2 =
P̂kP̂l. By combining this condition with (47), we have the

value of qkl(t) as in (21). �

G. Proof of Proposition 3

Given function f(Q) : Q → R+, f(Q) := hH
r Qhr −

thH
e Qhe = tr(AQ). From [20], it follows that for any

positive semi-definite Hermitian matrices Q1 � Q2, we have

f(Q1) ≥ f(Q2). This implies that for (22) the optimal solution

is achieved when the optimal transmit strategy allocates the

maximal sum power Ptot, i.e., tr(QJSPC(t)) = Ptot.

�
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