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Abstract—We consider multiple-input single-output (MISO)
Gaussian channels with joint sum and per-antenna power con-
straints. A closed-form solution of the optimal beamforming
vector is derived which achieves the maximal transmission rate.
The result shows that if the sum power constraint only optimal
power allocation violates a per-antenna power constraint then
the joint power constraint optimal power allocation is at the
intersection of the sum power constraint and the per-antenna
power constraints.

I. INTRODUCTION

The optimization problem to find the optimal transmit

strategy for a MISO Gaussian channel has been studied subject

to sum power constraint or per-antenna power constraints, but

never both together. Under the sum power constraint, when

the channel state information is known at both transmitter

and receiver, the transmission rate is obtained by performing

singular value decomposition and applying water-filling on

channel eigenvalues [1]-[3]. The per-antenna power constraints

problem, which receives more attention recently, results in a

different power allocation mechanism since the power can not

arbitrarily be allocated among the transmit antennas. Indeed,

the capacity of the MISO channel with per-antenna power

constraints has been studied for different setups [4]-[7]. In

[4], the closed-form solution of the capacity and the optimal

signalling scheme has been established for two separate cases:

a constant channel and a Rayleigh fading channel. In [5],

the problem of transmitter optimization for the multi-antenna

downlink is considered. They mainly focus on the minimum-

power beam-forming design and the capacity-achieving trans-

mitter design. In [6], an iterative algorithm is proposed for

solving the problem of maximizing the weighted sum rate

for multiuser system with per-antenna power constraint. The

ergodic capacity of the MISO channel with per-antenna power

constraint is considered in [4] and [7].

In practice, the individual power constraint reflects con-

straints on each transmitter chain while the sum power can

be a limitation on the allowed radiation from the transmitter

or it is used to bound the energy consumption. Although the

optimization problem with a separate sum power constraint

and/or per-antenna power constraints has been extensively

studied, to the best of our knowledge, a combination of both

constraints surprisingly has not been considered yet. Since the
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Fig. 1: Feasible power allocation region with joint sum and

per-antenna power constraints with a) per-antenna power con-

straints are inactive, b) sum power constraint is inactive, c)

sum and power antenna power constraints are all active.

sum power constraint is not active if the allowed sum power

is larger than the sum of the per-antenna power constraints,

the problem is only interesting if the sum power constraint

is smaller than the sum of the individual power constraints as

illustrated in Fig. 1. In this paper, we focus on finding maximal

transmission rate and analyzing power allocation behavior for

the MISO channel with joint sum and per-antenna power

constraints with the assumption of perfect channel knowledge

at the transmitter.

The paper is organized as follows. In the next section, the

system model and power constraints are briefly introduced.

Beamforming optimality and optimal transmission rate are

considered in the Section III. In Section IV, we analyze the

power allocation behavior of MISO channel with joint sum and

per-antenna power constraints when the number of transmit

antennas equals two with at most one violated per-antenna

power constraint. Then, the numerical examples are presented

in the next section. Finally, we provide some remarks and

conclusions.



Notation: We use bold lower-case letters for vectors, capital

letters for matrices. The superscripts (·)T , (·)∗ and (·)H
stand for transpose, conjugate, and conjugate transpose; the

superscripts (·)△, (·)∇ and (·)⋆ denote the corresponding

optimal values of optimization problems according to the

sum power constraint, the per-antenna power constraints, and

the joint sum and per-antenna power constraints respectively.

We use < for positive semi-definite relation, tr(·) for trace,

rank(·) for rank, diag{·} for diagonal matrix. The expectation

operator of a random variable is given by E[·].

II. SYSTEM MODEL AND POWER CONSTRAINTS

A. System Model

We consider a MISO channel with n transmit antennas and

one receive antenna. Further, we assume that channel state

information (CSI) is known at both transmitter and receiver.

The channel input-output relation of this transmission model

can be written as

y = xT h + z (1)

where x = [x1, ..., xn]
T ∈ Cn×1 is a complex transmit signal

vector, h = [h1, ..., hn]
T ∈ Cn×1 is channel coefficient vector

with complex elements and z is zero-mean scalar additive

white complex Gaussian noise with power σ2. Without loss

of generality, we assume that |hk| > 0, ∀k ∈ {1, ..., n}, since

otherwise we consider a MISO channel with a reduced number

of antennas. In the following we focus on achievable rates

using Gaussian distribution input. Let Q = E
[

xxH
]

be the

transmit covariance matrix of the Gaussian input, then the

achievable transmission rate is

R = f(Q) = log

(

1 +
1

σ2
hHQh

)

. (2)

The question is how to identify the transmit covariance matrix

Q subject to a given power constraint such that the transmis-

sion rate in (2) is maximized.

B. Power Constraints

In this part, we formally introduce the sum power, the

per-antenna power and the joint sum and per-antenna power

constraints problems.

1) Sum Power Constraint: If we consider a sum power

constraint, the total transmit power from all antennas is limited

by Ptot. This power can be allocated arbitrarily among the

transmit antennas, and the input covariance matrix has to

satisfy the condition tr(Q) ≤ Ptot. Let S1 denote the set of

all power allocations which satisfy the sum power constraint,

then S1 can be represented as

S1 := {Q < 0 : tr(Q) ≤ Ptot}.

2) Per-antenna Power Constraints: In per-antenna power

constraints case [4]-[8], each individual transmit antenna has

its own average power limitation P̂i, ∀i ∈ {1, ..., n}. In fact,

there is no resource allocation flexibility among the transmit

antennas. However, the antennas can fully cooperate with each

other for the transmission. Thus, for the per-antenna power

constraints, the input covariance matrix Q is formed with

diagonal values which have to satisfy qii = eTi Qei ≤ P̂i with

ei = [0, ..., 1, ..., 0]T is the ith Cartesian unit vector. Let S2

denote the set of all power allocation which satisfy the per-

antenna power constraints, then S2 can be represented as

S2 := {Q < 0 : eTi Qei ≤ P̂i, i = 1, ..., n}.
3) Joint Sum and Per-antenna Power Constraints: In this

case, we combine the sum power and per-antenna power con-

straints. This means each transmit antenna has the maximum

individual transmit power budget of P̂i, ∀i ∈ {1, ..., n} and

the sum power condition Ptot has to be satisfied as well. Let

S3 denote the set of all power allocations which satisfy the

joint sum and per-antenna power constraints, then S3 can be

represented as

S3 = S1 ∩ S2

= {Q < 0 : tr(Q) ≤ Ptot, eTi Qei ≤ P̂i, i = 1, ..., n}.
In Fig. 1, the power constraint domains are shown with

two given maximum individual powers on each antenna and

increasing sum power, i.e., P 1
tot < min(P̂1, P̂2) ≤ P 3

tot ≤
∑2

i=1 P̂i < P 2
tot. We have three different cases from Fig. 1 as

follows:

• Sum power constraint power domain: this domain exists

when Ptot = P 1
tot < min(P̂1, P̂2). Then only sum power

constraint is activated [3].

• Per-antenna power constraints power domain: this domain

exists when Ptot = P 2
tot >

∑2
i=1 P̂i. Then only per-

antenna power constraints are activated [4].

• Joint sum and per-antenna power constraints power do-

main: this domain (gray area in Fig. 1) is considered

when the power relations satisfy min(P̂1, P̂2) ≤ Ptot =
P 3
tot ≤ ∑2

i=1 P̂i. Both sum power constraint and per-

antenna power constraints are activated.

III. PROBLEM FORMULATIONS AND SOLUTIONS

In this section, we derive the new result on the maximum

transmission rate of the MISO channel using Gaussian in-

put with joint sum and per-antenna power constraints. First,

we review the known results corresponding to optimization

problem with sum power constraint and optimization problem

with per-antenna power constraints separately. After that, the

optimization problem with joint sum and per-antenna power

constraints will be studied.

A. Review of Known Results

1) Optimization Problem 1 (OP1) - Sum Power Constraint:

This problem aims to find the maximum transmission rate in

(2) under the set of power constraint S1. The optimization

problem of transmission rate for our given MISO channel in

this case can be written as

maximize log

(

1 +
1

σ2
hHQh

)

(3)

subject to Q ∈ S1.



The transmit strategy for the MISO channel is to send

the information only in the direction of the channel vector

h [1],[2].

The optimal solution is to perform beamforming using

full power Ptot in the direction of the channel, i.e.,

Q△ = Ptotu1uH
1 with u1 = h/‖h‖. The MISO channel

capacity with a sum power constraint Ptot is

R△ = log

(

1 +
Ptot

σ2

n
∑

i=1

|hi|2
)

= log

(

1 +
Ptot

σ2
‖h‖2

)

.

(4)

2) Optimization Problem 2 (OP2) - Per-antenna Power

Constraints: In [4], Vu established the closed-form expression

of the capacity and optimal signaling scheme for the single-

user MISO channel with per-antenna power constraints.

The capacity in this situation can be found by solving the

optimization problem

maximize log

(

1 +
1

σ2
hHQh

)

(5)

subject to Q ∈ S2.

The problem in (5) can be solved by relaxing the semi-definite

constraint, reducing the problem to a form solvable in closed-

form, and then showing that the optimal solution to the relaxed

problem is also the optimal solution to the original problem

[4]. In the per-antenna power constraints case, there is no

power allocation among the antennas. Therefore, the transmit

power from the ith antenna is fixed to be P̂i. The optimal

covariance matrix Q∇ has rank one with Q∇ = λv1vH1 ,

λ =
∑

i P̂i and the beamforming vector v1 has the elements

given as

vk1 = ηk
h∗
k

|hk|
with ηk =

√

P̂k
√

∑n
i=1 P̂i

, k = 1, ..., n. (6)

The capacity with per-antenna power constraints is then

given as

R∇ = log

(

1 +
1

σ2

n
∑

i=1

P̂i|hHv1|2
)

(7)

= log



1 +
1

σ2

(

n
∑

i=1

|hi|
√

P̂i

)2


 . (8)

B. Optimization Problem 3 (OP3) - Joint Sum and Per-

antenna Power Constraints

In the optimization problem with joint sum and per-antenna

power constraints, Gaussian distributed input is optimal, but

the proof is not presented here due to space limitation.

1) Problem formulation: The optimization problem to find

the capacity is a convex optimization problem given as follows

maximize log

(

1 +
1

σ2
hHQh

)

(9)

subject to Q ∈ S3.

The objective function of problem (9) is concave while both

constraints tr(Q) ≤ Ptot and eTi Qei ≤ Pi ∀i ∈ {1, ..., n}
are linear in Q. Furthermore, since log

(

1 + 1
σ2 hHQh

)

is an

increasing function in hHQh, we can express the optimization

problem (9) as

max
Q∈S3

log

(

1 +
1

σ2
hHQh

)

= log

(

1 +
1

σ2
max
Q∈S3

hHQh

)

.

(10)

Thus, we can equivalently focus on the following optimization

problem

maximize hHQh (11)

subject to Q ∈ S3.

The results in the following propositions will show that the

optimal transmit strategy for joint sum and per-antenna power

constraint is beamforming; the optimal transmission method is

to transmit with full sum power while the per-antenna power

constraints have to satisfied. The phase is chosen that match

the phase of the channel coefficient. In the following, let q

denote a beamforming vector of a rank one transmit strategy

Q, i.e., Q = qqH .

2) Beamforming Optimality:

Proposition 1: For OP3 with Ptot <
∑n

i=1 P̂i and a given

channel h ∈ Cn×1 with hi 6= 0, ∀i ∈ {1, ..., n}, beamforming

is the optimal transmit strategy.

Proof:

We denote P = diag{P̂i} as diagonal matrix of the per-

antenna power constraints, Ptot as the total transmit power,

D = diag{νi} as diagonal matrix of Lagrangian multiplier for

the per-antenna power constraints, µ as Lagrangian multiplier

for the sum power constraint and K < 0 as Lagrangian

multiplier for the positive semi-definite constraint. Then the

Lagrangian for problem (11) is given by

L = hHQh−tr[D(Q−P)]−µ(tr(Q)−Ptot)+tr(KQ). (12)

Taking the first derivative and set it equal to zero, we have

∂L
∂Q

= hhH − D − µI + K
!
= 0 (13)

hhH = W − K, (14)

where W = D + µI.

Using the slackness condition KQ = 0, we obtain

hhHQ = WQ. (15)

Since rank(W) = rank(D + µI) is full rank, at the optimum,

we have

rank(Q⋆) ≤ rank(hhH) = 1. (16)

Obviously, since hi 6= 0, ∀i ∈ {1, ..., n}, rank(Q⋆) = 0 is

not optimal. Therefore, the optimal rank of Q⋆ is one, i.e.

beamforming is the optimal transmit strategy.

Proposition 2: For OP3 with Ptot <
∑n

i=1 P̂i and a given

channel h ∈ Cn×1 with hi 6= 0, ∀i ∈ {1, ..., n}, the maximum



transmission rate R⋆ is achieved when the optimal transmit

strategy Q⋆ uses full power Ptot, i.e., tr(Q⋆) = Ptot.

Proof (by Contradiction): Let f(Q) denote the transmis-

sion rate expressed as a function of Q

f(Q) = log(1 +
1

σ2
hHQh). (17)

Also, let P ⋆
i , i = 1, ..., n denote the optimal power allocation

of OP3. Suppose there exists an optimal transmit strategy

Q⋆ with tr(Q⋆) =
∑n

i=1 P
⋆
i < Ptot. Then, the maximum

transmission rate R⋆ can be calculated as

R⋆ = f(Q⋆) = max
Q:{tr(Q)≤Ptot,qii≤P̂i,Q<0}

f(Q)

= log(1 +
1

σ2
(

n
∑

i=1

|hi|
√

P ⋆
i )

2). (18)

Since tr(Q⋆) < Ptot, there exists a k with P ⋆
k < Pk ≤

P̂k and Ptot − Pk ≥∑n
i=1
i6=k

P ⋆
i , so that:

R̃ = log(1 +
1

σ2
(

n
∑

i=1
i6=k

|hi|
√

P ⋆
i + |hk|

√

Pk)
2)

> log(1 +
1

σ2
(

n
∑

i=1

|hi|
√

P ⋆
i )

2) = R⋆. (19)

This contradicts the assumption that R⋆ = f(Q⋆) is the max-

imum transmission rate. It follows that the optimal transmit

strategy Q⋆ allocates full sum power Ptot.

Next, we focus on characterizing properties of the optimal

beamforming vector q⋆.

Lemma 1: Let q⋆ be the optimal beamforming vector

corresponding to the optimal covariance matrix Q⋆. Then

q⋆ ∈ Q :=

{

q : q =

[√
P1h

∗
1

|h1|
, ...,

√
Pnh

∗
n

|hn|

]T

, qqH ∈ S3

}

.

Proof: Consider optimization problem (11) with the op-

timization domain S3, we have

max
Q∈S3

hHQh
(1)
= max

q:qqH∈S3

|hHq|2

(2)
= max

q:qqH∈S3

|
n
∑

i=1

|hi|
√

Pie
j(ϕi−ϕhi

)|2

≤ max
q:qqH∈S3

(
n
∑

i=1

|hi|
√

Pi)
2

= max
q∈Q

(

n
∑

i=1

|hi|
√

Pi)
2

= max
q∈Q

|
n
∑

i=1

h∗
i

√

Pi

hi

|hi|
|2

= max
q∈Q

|hHq|2

(3)

≤ max
q:qqH∈S3

|hHq|2 (20)

where

(1) follows Proposition 1 and 2,

(2) from the definition hi = |hi|ejϕhi , qi =
√
Pie

jϕi with

ϕhi
, ϕi ∈ [0, 2π], and

(3) from the fact that Q ⊆ {q : qqH ∈ S3}.

From (20) it follows that the optimal beamforming vector

q⋆ is in Q.

The capacity in (2) with joint sum and per-antenna power

constraint can be expressed as:

R⋆ = log

(

1 +
1

σ2
hHQ⋆h

)

. (21)

3) Optimal Power Allocation for OP3: In joint sum and

per-antenna power constraints problem, Proposition 2 states

that the capacity achieving strategy always allocates full sum

power Ptot. The optimal power allocation solution of OP1

sometimes exceeds the maximum allowed per-antenna power

of OP3. In the following theorem, we will show how to real-

locate the powers for the MISO channel with two antennas to

satisfy the constraints. Since we consider P̂1 + P̂2 ≥ Ptot, the

OP1 solution can violate at most one per-antenna constraint.

Theorem 1: Consider the MISO channel h ∈ C2×1 and

Ptot <
∑2

i=1 P̂i. Let π△ be an optimal point of the OP1 with

the optimal power allocation [P△
1 , P△

2 ] under the sum power

constraint only. Let π1 = [P̂1, Ptot − P̂1] and π2 = [Ptot −
P̂2, P̂2] be intersection points of the sum power constraint and

per-antenna power constraints. For any optimal point π⋆ of

OP3 with the power allocation pair [P ⋆
1 , P

⋆
2 ], we have

π⋆ =











π1, if P△
1 ≥ P̂1.

π2, if P△
2 ≥ P̂2.

π△, otherwise.

(22)

for π△, π1, π2, π
⋆ ∈ R2

+.

Proof: The proof can be found in Appendix.

IV. NUMERICAL EXAMPLE

For numerical example, we first provide a MISO 2 × 1
system with the complex channel is given as h = [0.9572 +
0.8003i, 0.4854+0.1419i]T , σ2 = 1. We choose the maximum

power on each antenna P̂1 = 7, P̂2 = 10, and the total

transmit power Ptot = 13. The relationship between sum and

per antenna power constraints in the joint scenario is shown

in Fig. 1 and Fig. 2. Let π1 = (P̂1, Ptot − P̂1) = (7, 6) and

π2 = (Ptot − P̂2, P̂2) = (3, 10) be the intersection points of

sum and per-antenna power constraints when each antenna 1
and 2 transmits full individual power, then the transmission

rate at π1 and π2 are calculated as R(7,6) and R(3,10). The

optimal point π△ of OP1 can be found with the optimal power

allocation [P△
1 , P△

2 ] = [11, 2]. However, at the optimum of

OP1, the transmit power at antenna 1 violates the per-antenna

power constraint of antenna 1. Following Theorem 1, once

P△
1 ≥ P̂1, π1 will be the optimal point of OP3 instead of π△.

Due to the limitation of the transmit power on each antenna
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Fig. 2: Power allocation behaviour and transmission rate when

P̂1 = 7, P̂2 = 10 and Ptot = 13.

and the sum power in the joint sum and per-antenna power

constraints problem, the optimal transmission rate of OP3 in

this example is achieved at the power allocation P1 = P̂1 = 7,

P2 = Ptot−P̂1 = 6. The plot of this numerical example in Fig.

2 shows the trend of transmission rate and power allocation

behaviour. We can observe that the optimal transmission rate

of OP3 is the same as optimal transmission rate of OP1 when

both sum power constraint and per-antenna power constraints

are satisfied. When the optimization solution of OP1 violates

the per-antenna power constraints, the transmission rate of

OP1 will reduce and set equal as the maximum transmission

rate of an intersection point of the sum and per-antenna power

constraints.

In Fig. 3, the optimal transmission rates with respect to

sum power constraint, per-antenna power constraints and joint
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Fig. 3: Transmission rates in different power constraint do-

mains.

sum and per-antenna power constraint are shown with the

given transmit power per antenna, i.e., P̂1 = 7, P̂2 = 10
and increasing of total transmit power Ptot. From the Fig. 3,

we see that with the different range of total transmit power,

the optimization problem will be subjected to different power

constraints. When the total transmit power Ptot = P 1
tot <

min(P̂1, P̂2) = 7, there is only the sum power constraint

active. In this case, the optimal transmission rate of the channel

is the channel capacity with sum power constraint. When

the power relations satisfy min(P̂1, P̂2) = 7 ≤ Ptot ≤
∑2

i=1 P̂i = 17, both constraints can be active. In case

Ptot = P 3
tot >

∑2
i=1 P̂i = 17, only the per-antenna power

constraints are active. In this case, whatever the total transmit

power increases, the optimal transmission rate will keep the

same value R(7,10).

V. CONCLUSIONS

In this paper, we derived the solution in finding optimal

transmission rate for MISO channel with joint sum and per-

antenna power constraints. In our work, we find a procedure

how to obtain the optimal solution for MISO channel with

joint sum and per-antenna power constraints from two previous

different optimization problems with sum power constraint

and with per-antenna power constraints. It is shown that

beamforming is the optimal transmit strategy and that it is

always optimal to use full power.

Furthermore, it has been shown that if the sum power only

optimal power allocation violates a per-antenna power con-

straint, then the optimal power allocation is at the intersection

point of the violated per-antenna power allocation and sum

power constraint. Thus, the solution of the joint constraint



optimal power allocation can be followed from the individual

constraint problems.

APPENDIX

Proof of Theorem 1

For the proof of the theorem we need the following lemma.

Lemma 2: Consider the function

f(P1) = log

(

1 +
1

σ2
hHQ△(P1)h

)

(23)

with h = [|h1|u1, |h2|u2]
T , ui = hi/|hi|, i = 1, 2 and

Q△(P1) =

[

P1 q∗12
q12 Ptot − P1

]

(24)

where q12 =
√

P1(Ptot − P1)u
∗
1u2.

For any P1 ∈ [P△
1 , Ptot] with

P△
1 =

|h1|2
|h1|2 + |h2|2

Ptot,

f(P1) is a strictly decreasing function.

Proof: Consider the function R = f(P1), where P△
1 <

P1 < Ptot.

f(P1) =

log

(

1 +
1

σ2

[

|h1|u1

|h2|u2

]H[
P1 qH12
q12 Ptot − P1

][

|h1|u1

|h2|u2

]

)

(25)

where q12 =
√

P1(Ptot − P1)u
∗
1u2.

Taking the derivative of (25), we obtain

∂f(P1)

∂P1
=

1
σ2 (|h1|

√
P1 + |h2|

√
Ptot − P1)

1 + 1
σ2 (|h1|

√
P1 + |h2|

√
Ptot − P1)2

×
( |h1|√

P1

− |h2|√
Ptot − P1

)

= A

( |h1|√
P1

− |h2|√
Ptot − P1

)

, (26)

where

A =
1
σ2 (|h1|

√
P1 + |h2|

√
Ptot − P1)

1 + 1
σ2 (|h1|

√
P1 + |h2|

√
Ptot − P1)2

> 0. (27)

Also, we have

P△
1 =

|h1|2
|h1|2 + |h2|2

Ptot < P1 < Ptot

⇒ |h1|√
P1

<
|h2|√

Ptot − P1

. (28)

From (28) and (26) we get the inequality
∂f(P1)
∂P1

< 0.

Since
∂f(P1)
∂P1

< 0, f(P1) is a strictly decreasing function on

[P△
1 , Ptot].
Now, we start to prove the Theorem 1 by applying Lemma

2 directly. Assume that full sum power Ptot is used. We can

find an optimum point which achieves the capacity, such that

R△ = log
(

1 + 1
σ2 hHQ△h

)

, tr(Q△) = P△
1 + P△

2 = Ptot.

Let π2 = [Ptot − P̂2, P̂2] be an intersection point of sum

and per-antenna power constraints. Then the corresponding

transmit power are represented as
{

P1 = Ptot − P̂2,

P2 = P̂2.

If P△
1 < Ptot − P̂2, we examine the function R = f(P1)

with P△
1 < P1 < Ptot. From Lemma 2, we know that

R = f(P1) is a strictly decreasing function. Therefore,

due to power constraints, for any optimal point of OP1

with power allocation pair [P△
1 , P△

2 ], if P△
2 > P̂2 then

[P1, P2] = [P ⋆
1 , P

⋆
2 ] = [Ptot − P̂2, P̂2]. Similarly, if P△

1 > P̂1

then [P1, P2] = [P ⋆
1 , P

⋆
2 ] = [P̂1, Ptot − P̂1]. This prove the

optimal power allocation (22) of OP3.
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