Optimal Transmission Rate for MISO Channels with Joint Sum and Per-antenna Power Constraints

Phuong L. Cao¹, Tobias J. Oechtering¹, Rafael F. Schaefer², Mikael Skoglund¹

¹ KTH - Royal Institute of Technology, ² Department of Electrical Engineering, Princeton University.

London, UK - 2015

OVERVIEW

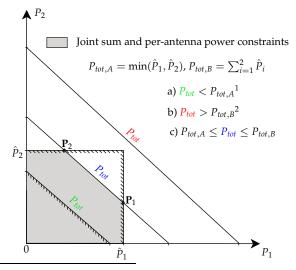
INTRODUCTION

PROBLEM FORMULATION System model Problem formulation

MAIN RESULTS Optimal stransmit strategy

NUMERICAL EXAMPLES Power constraint domains Optimal transmission rate examples

CONCLUSIONS


INTRODUCTION	PROBLEM FORMULATION	MAIN RESULTS	NUMERICAL EXAMPLES	CONCLUSIONS
●00	000	0000	000	

WHY JOINT SUM AND PER-ANTENNA POWER CONSTRAINTS?

- Sum power constraints are imposed e.g., by regulations or to limit the energy consumption,
- Per-antenna power constraints are imposed by hardware limitation of each RF chain,
- Both motivations are simultaneously relevant for practical systems, thus we consider a system with a joint sum and per-antenna power constraints.

INTRODUCTION	PROBLEM FORMULATION	MAIN RESULTS	NUMERICAL EXAMPLES	CONCLUSIONS
000	000	0000	000	

FEASIBLE POWER ALLOCATION REGIONS

I. Telatar, "Capacity of multi-antenna Gaussian channels," *European Trans. Telecommun.*, Nov. 1999.
 ² Mai Vu, "MISO Capacity with Per-antenna power constraint," *IEEE Trans. on Commun.*, May 2011.

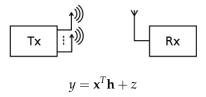
INTRODUCTION	PROBLEM FORMULATION	MAIN RESULTS	NUMERICAL EXAMPLES	CONCLUSIONS
000	000	0000	000	

FORMAL DEFINITION OF POWER CONSTRAINTS

► Sum Power Constraint:

$$\mathcal{S}_1 := \{ \mathbf{Q} \succeq 0 : \operatorname{tr}(\mathbf{Q}) \le P_{tot} \}.$$

Per-antenna Power Constraints:


$$\mathcal{S}_2 := \{ \mathbf{Q} \succeq 0 : \mathbf{e}_i^T \mathbf{Q} \mathbf{e}_i \le \hat{P}_i, i = 1, ..., n \}.$$

► Joint Sum and Per-antenna Power Constraints:

$$\begin{split} \mathcal{S}_3 &:= \mathcal{S}_1 \cap \mathcal{S}_2 \\ &= \{ \mathbf{Q} \succcurlyeq 0 : \mathrm{tr}(\mathbf{Q}) \leq P_{tot}, \mathbf{e}_i^T \mathbf{Q} \mathbf{e}_i \leq \hat{P}_i, i = 1, ..., n \} \end{split}$$

INTRODUCTION	PROBLEM FORMULATION	MAIN RESULTS	NUMERICAL EXAMPLES	CONCLUSIONS
000	•••	0000	000	

$n \times 1$ MISO system model

- Transmit signal $\mathbf{x} = [x_1, ..., x_n]^T \in \mathbb{C}^{n \times 1}$
- Channel $\mathbf{h} = [h_1, ..., h_n]^T \in \mathbb{C}^{n \times 1}$.
- Noise $z \sim \mathcal{CN}(0, \sigma^2)$

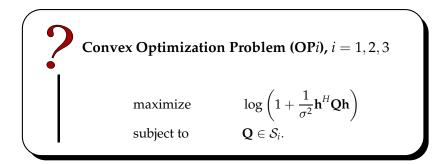
Introduction 000	PROBLEM FORMULATION $O \bullet \circ$	Main results 0000	Numerical examples	CONCLUSIONS

GOAL

Covariance matrix:

$$\mathbf{Q} = \mathbb{E}\left[\mathbf{x}\mathbf{x}^H\right]$$

For $\mathbf{Q} \in S_3$, Gaussian distributed input maximixed $I(\mathbf{x}; y)$ for the Gaussian MISO channel.


• Achievable transmission rate:

$$R(\mathbf{Q}) = \log\left(1 + \frac{1}{\sigma^2}\mathbf{h}^H\mathbf{Q}\mathbf{h}\right)$$

Find optimal transmit strategy **Q**

OPTIMIZATION PROBLEM

- OP1 \rightarrow Sum power constraint
- ▶ OP2 \rightarrow Per-antenna power constraints
- ► OP3 → Joint sum and per-antenna power constraints

INTRODUCTION	PROBLEM FORMULATION	MAIN RESULTS	NUMERICAL EXAMPLES	CONCLUSIONS
000	000	●000	000	
				1

PROPERTIES OF THE OPTIMAL TRANSMIT STRATEGY

Proposition 1

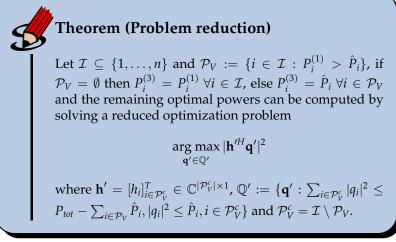
Beamforming is the optimal transmit strategy.

Proposition 2

The optimal transmit strategy uses full power P_{tot} , i.e., $tr(\mathbf{Q}^{(3)}) = P_{tot}$.

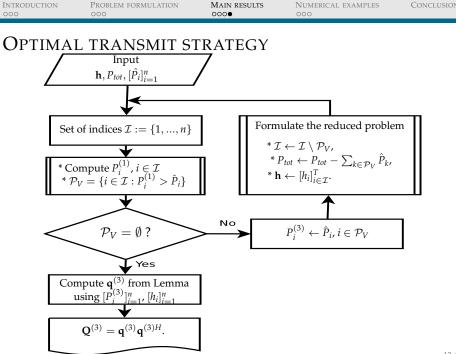
PROPERTIES OF THE OPTIMAL TRANSMIT STRATEGY

Let
$$\mathbf{q}^{(3)}$$
 be the optimal beamforming vector corresponding to the optimal covariance matrix $\mathbf{Q}^{(3)}$. Then
 $\mathbf{q}^{(3)} \in \mathbb{Q} := \left\{ \mathbf{q} : \mathbf{q} = \left[\frac{\sqrt{P_1}h_1^*}{|h_1|}, ..., \frac{\sqrt{P_n}h_n^*}{|h_n|} \right]^T, \mathbf{q}\mathbf{q}^H \in \mathcal{S}_3 \right\}.$

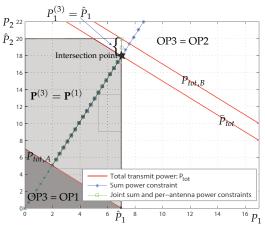

INTRODUCTION 000 PROBLEM FORMULATION

MAIN RESULTS

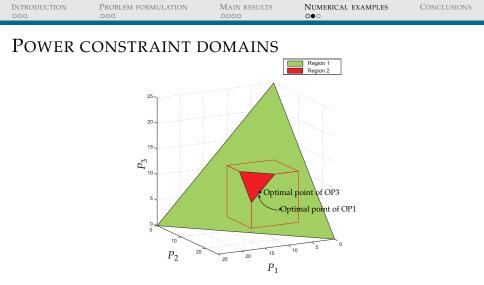
NUMERICAL EXAMPLES


CONCLUSIONS

OPTIMAL POWER ALLOCATION FOR OP3


³

³ Phuong L. Cao, Tobias J. Oechtering, Rafael F. Schaefer, Mikael Skoglund, "Optimal Transmit Strategy for MISO Channels with Joint Sum and Per-antenna Power Constraints," Submitted to *IEEE Trans. on Signal Processing.*, Apr. 2015.

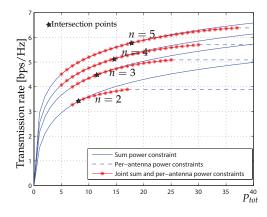


INTRODUCTION PROBLEM 000 000

POWER CONSTRAINT DOMAINS

 Crossing the intersection point, the power allocation behavior will change.

 If the optimal power of OP1 violates the per-antenna power constraints, it will reallocated on the boundary of joint sum and per-antenna power constraints region. INTRODUCTION PR 000 00


PROBLEM FORMULATION

MAIN RESULTS

NUMERICAL EXAMPLES

Conclusions

OPTIMAL TRANSMISSION RATE EXAMPLES

- Transmission rate in different power constraint domains and different transmit antenna configurations.
- Keeping a maximum sum power while increase the number of transmit antennas, the probability of power allocation of OP1 violating the per-antenna power constraints reduces.

CONCLUSIONS

- Joint sum and per-antenna power constraints are relevant but surprisingly have not studied yet.
- ► The optimal powers are set equal to the maximum per-antenna powers if their optimal values in sum power constraint only problem violate those per-antenna power constraints.
- The remaining powers can be found by solving a reduced optimization problem.
- Extending to MIMO case.