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WHY JOINT SUM AND PER-ANTENNA POWER CONSTRAINTS?

◮ Sum power constraints are imposed e.g., by regulations or to
limit the energy consumption,

◮ Per-antenna power constraints are imposed by hardware
limitation of each RF chain,

◮ Both motivations are simultaneously relevant for practical
systems, thus we consider a system with a joint sum and
per-antenna power constraints.
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FEASIBLE POWER ALLOCATION REGIONS
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1
I. Telatar, ”Capacity of multi-antenna Gaussian channels,” European Trans. Telecommun., Nov. 1999.

2
Mai Vu, ”MISO Capacity with Per-antenna power constraint,”IEEE Trans. on Commun., May 2011.
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FORMAL DEFINITION OF POWER CONSTRAINTS

◮ Sum Power Constraint:

S1 := {Q < 0 : tr(Q) ≤ Ptot}.

◮ Per-antenna Power Constraints:

S2 := {Q < 0 : eT
i Qei ≤ P̂i, i = 1, ..., n}.

◮ Joint Sum and Per-antenna Power Constraints:

S3 := S1 ∩ S2

= {Q < 0 : tr(Q) ≤ Ptot, eT
i Qei ≤ P̂i, i = 1, ..., n}.

5 / 16



INTRODUCTION PROBLEM FORMULATION MAIN RESULTS NUMERICAL EXAMPLES CONCLUSIONS

n × 1 MISO SYSTEM MODEL

y = xTh + z

◮ Transmit signal x = [x1, ..., xn]
T ∈ Cn×1

◮ Channel h = [h1, ..., hn]
T ∈ Cn×1.

◮ Noise z ∼ CN (0, σ2)
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GOAL

◮ Covariance matrix:

Q = E
[

xxH
]

For Q ∈ S3, Gaussian distributed input maximixed I(x; y) for
the Gaussian MISO channel.

◮ Achievable transmission rate:

R(Q) = log

(

1 +
1

σ2
hHQh

)

Find optimal transmit strategy Q
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OPTIMIZATION PROBLEM

Convex Optimization Problem (OPi), i = 1, 2, 3

maximize log

(

1 +
1

σ2
hHQh

)

subject to Q ∈ Si.

◮ OP1 → Sum power constraint

◮ OP2 → Per-antenna power constraints

◮ OP3 → Joint sum and per-antenna power constraints
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PROPERTIES OF THE OPTIMAL TRANSMIT STRATEGY

Proposition 1

Beamforming is the optimal transmit strategy.

Proposition 2

The optimal transmit strategy uses full power Ptot, i.e.,

tr(Q(3)) = Ptot.
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PROPERTIES OF THE OPTIMAL TRANSMIT STRATEGY

Lemma (Optimal phase)

Let q(3) be the optimal beamforming vector correspond-

ing to the optimal covariance matrix Q(3). Then

q(3) ∈ Q :=

{

q : q =

[√
P1h∗

1

|h1|
, ...,

√
Pnh∗

n

|hn|

]T

,qqH ∈ S3

}

.

10 / 16



INTRODUCTION PROBLEM FORMULATION MAIN RESULTS NUMERICAL EXAMPLES CONCLUSIONS

OPTIMAL POWER ALLOCATION FOR OP3

Theorem (Problem reduction)

Let I ⊆ {1, . . . , n} and PV := {i ∈ I : P
(1)
i > P̂i}, if

PV = ∅ then P
(3)
i = P

(1)
i ∀i ∈ I, else P

(3)
i = P̂i ∀i ∈ PV

and the remaining optimal powers can be computed by
solving a reduced optimization problem

arg max
q′∈Q′

|h′Hq′|2

where h′ = [hi]
T
i∈Pc

V
∈ C|Pc

V|×1, Q′ := {q′ :
∑

i∈Pc
V
|qi|2 ≤

Ptot −
∑

i∈PV
P̂i, |qi|2 ≤ P̂i, i ∈ P c

V} and P c
V = I \ PV.

3
3

Phuong L. Cao, Tobias J. Oechtering, Rafael F. Schaefer, Mikael Skoglund, ”Optimal Transmit Strategy for
MISO Channels with Joint Sum and Per-antenna Power Constraints,” Submitted to IEEE Trans. on Signal Processing.,
Apr. 2015.
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OPTIMAL TRANSMIT STRATEGY
Input

h,Ptot, [P̂i]
n
i=1

Set of indices I := {1, ..., n}

* Compute P
(1)
i , i ∈ I

* PV = {i ∈ I : P
(1)
i > P̂i}

PV = ∅ ?

Compute q(3) from Lemma

using [P
(3)
i ]ni=1, [hi]

n
i=1

Q(3) = q(3)q(3)H .

P
(3)
i ← P̂i, i ∈ PV

Formulate the reduced problem

* I ← I \ PV ,

* Ptot ← Ptot −
∑

k∈PV
P̂k,

* h← [hi]
T
i∈I

.
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POWER CONSTRAINT DOMAINS
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◮ Crossing the intersection point, the power allocation behavior
will change.
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POWER CONSTRAINT DOMAINS
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◮ If the optimal power of OP1 violates the per-antenna power
constraints, it will reallocated on the boundary of joint sum and
per-antenna power constraints region.
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OPTIMAL TRANSMISSION RATE EXAMPLES
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: Intersection points

◮ Transmission rate in different power constraint domains and
different transmit antenna configurations.

◮ Keeping a maximum sum power while increase the number of
transmit antennas, the probability of power allocation of OP1
violating the per-antenna power constraints reduces. 15 / 16
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CONCLUSIONS

◮ Joint sum and per-antenna power constraints are relevant but
surprisingly have not studied yet.

◮ The optimal powers are set equal to the maximum per-antenna
powers if their optimal values in sum power constraint only
problem violate those per-antenna power constraints.

◮ The remaining powers can be found by solving a reduced
optimization problem.

◮ Extending to MIMO case.
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