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STATE OF THE ART

◮ Relay communication, relay channels

◮ Bidirectional communication using the network coding idea can
greatly improve the throughput in relaying (P. Larsson et al.,
AdHoc’05 2005)

◮ Optimal transmit strategies with sum power constraints for
MISO (T. Oechtering et al., TSP 2009), MIMO (T. Oechtering et
al., TCOM 2009). MISO bidirectional broadcast channel
transmits into the subspace spanned by the channels only.

◮ Transmitter optimization for the multi-antenna downlink with
per-antenna power constraint (W. Yu and T. Lan, TSP 2007)

◮ MISO capacity (M. Vu, TCOM 2011), MIMO capacity (M. Vu,
GLOBECOM 2011; Z. Pi, GLOBECOM 2012) with per-antenna
power constraint

The bidirectional broadcast channels with average per-antenna
power constraints have not been considered yet.
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BIDIRECTIONAL RELAY CHANNELS

MISO MAC MISO Bi.-BC 1

1
T. J. Oechtering, R. F. Wyrembelski, and H. Boche, ”Multiantenna bidirectional broadcast channels - Optimal

transmit strategies,” IEEE Trans. on Signal Process., vol. 57, no. 5, pp. 19481958, May 2009.
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WHY PER-ANTENNA POWER CONSTRAINTS?

◮ Sum power constraints are imposed e.g., by regulations or to
limit the energy consumption,

S1 := {Q < 0 : tr(Q) ≤ Ptot}.

◮ Per-antenna power constraints are imposed by hardware
limitation of each RF chain,

S := {Q < 0 : eT
i Qei ≤ P̂i, i = 1, ..., n}.

◮ Joint sum and per-antenna power constraints2.

2
P. Cao, T. Oechtering, R. Shaefer and M. Skoglund, ”Optimal Transmit Strategies for MISO Channels with

Joint Sum and Per-antenna power constraints,” Trans. on Signal Processing., May. 2016.
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BIDIRECTIONAL BC CHANNELS - SYSTEM MODEL

yi = xThi + zi, i = 1, 2

◮ Transmit signal x = [x1, ..., xNR
]T ∈ C

NR×1

◮ Channel hi = [hi1, ..., hiNR
]T ∈ CNR×1, i = 1, 2

◮ Noise zi ∼ CN (0, σ2), i = 1, 2

◮ Transmit covariance matrix: Q = E
[

xxH
]
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CAPACITY REGION AND PROBLEM STATEMENT

◮ Capacity region of the Gaussian MISO bidirectional broadcast
channel with per-antenna power constraints:

CMISO
BC =

⋃

Q∈S

dpch([C1(Q),C2(Q)])

with Ci(Q) := log
(

1 + hH
i Qhi

)

, i = 1, 2.

◮ The boundary of the capacity region with a given weight vector
w = [w1,w2] ∈ R2

+ with w1 + w2 = 1

R∑(Q,w) := w1 log
(

1 + hH
1 Qh1

)

+ w2 log
(

1 + hH
2 Qh2

)

.
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BOUNDARY OF CAPACITY REGION

◮ Boundary of capacity region consists of:

◮ Two single-user optimal sections
◮ Pareto optimal section

◮ Unidirectional rate (with w = [0, 1] or w = [1, 0]) can be obtained
from the single-user MISO channel with per-antenna power
constraints.

◮ Remaining problem:

Find optimal transmit strategy Q with
weights w1,w2 6= 0
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OPTIMIZATION PROBLEM

Convex Optimization Problem

maximize R∑(Q,w) (1)

subject to Q ∈ S.
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SOLUTION

Our solutions

◮ Person-by-Person optimality

◮ Iterative algorithm: Solve optimization problem to

obtain (Q
[n]
opt,D

[n]
i ) in the nth iteration
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ALTERNATIVE OPTIMIZATION APPROACH

Lemma 1 [JPKR’11, Scalar case]

Consider the function f (D) = −DE + log(D) + 1 where
D,E ∈ R,E > 0. Then,

max
D>0

f (D) = log(E−1),

with the optimum value D∗ = E−1.

3
J. Jose, N. Prasad, M. Khojastepour, and S. Rangarajan, ”On robust weighted-sum rate maximixation in MIMO

interference networks,” in IEEE International Conference on Communications (ICC), 2011.
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ALTERNATIVE OPTIMIZATION APPROACH

Alternative optimization problem

max
Q∈S

2
∑

i=1

wi min
Di>0

(

Di(1 + hH
i Qhi)− log(Di)− 1

)

(2)

Person-by-Person optimality

We propose to solve the following optimization prob-

lems to obtain (Q
[n]
opt,D

[n]
i ), i = 1, 2 in the nth iteration

D
[n]
i = arg min

Di>0

(

Di(1 + hH
i Q[n−1]hi)− log(Di)

)

(3)

Q
[n]
opt = arg max

Q∈S

2
∑

i=1

wiD
[n]
i hH

i Qhi. (4)
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CLOSED-FORM SOLUTIONS

Problem

D
[n]
i = arg min

Di>0

(

Di(1 + hH
i Q[n−1]hi)− log(Di)

)

The closed-form solution can be computed using
Lemma 1 as

D
[n]
i = (1 + hH

i Q
[n−1]
opt hi)

−1
.
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CLOSED-FORM SOLUTIONS

Problem

Q
[n]
opt = arg max

Q∈S

2
∑

i=1

wiD
[n]
i hH

i Qhi.

◮ Diagonal elements: q
[n]
kk = P̂k, ∀k = 1, . . . ,NR

◮ Off-diagonal elements:

q
[n]
kl =

∑2
i=1 wiD

[n]
i h∗ikhil

|
∑2

i=1 wiD
[n]
i h∗ikhil|

√

P̂kP̂l.

∀k, l = 1, . . . ,NR, k 6= l.
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ALGORITHM

Initialize
n = 1, ǫ > 0,Q

[n]
opt � 0

|R∑(Q
[n]
opt , w) − R∑(Q

[n−1]
opt , w)| > ǫ ?

Update D
[n]
i

Compute Q
[n]
opt

n = n + 1

Qopt

Generated {Qopt} converges to the global optimum.
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ALGORITHM PERFORMANCE

Algorithm
Number of antennas at the relay

2 4 6 8
IA 0.014 0.016 0.057 0.142
CVX 1.425 1.899 3.243 4.827

Average running time (in secs.)

4
The experiment is performed under: Processor - Intel Core i7-3740QM CPU @ 2.70GHz × 8; Memory - 8GB;

OS: Ubuntu 14.04; Matlab R2015a.

16 / 20



INTRODUCTION PROBLEM FORMULATION MAIN RESULTS NUMERICAL EXAMPLES CONCLUSIONS

CAPACITY REGION
Characterization of boundary of capacity region:

◮ Two single-user optimal sections

◮ Pareto optimal section (curved part)

The optimal transmit strategies Qopt of the curved part
can be parametrized as follows

Qopt(t) = arg max
Q∈S

thH
1 Qh1 + (1 − t)hH

2 Qh2, (5)

with t ∈ [0, 1].

The whole capacity region

CMISO
BC =

⋃

Q(t)∈S

dpch([R1(t),R2(t)] : Ri(t) := log(1 + hH
i Q(t)hi),

i = 1, 2, t ∈ [0, 1]).
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CAPACITY REGION

Rate R
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Capacity region for MISO bidirectional broadcast channel with

per-antenna power constraints P̂1 = 6, P̂2 = 8 .

◮ A and B correspond to the cases w = [1, 0] and w = [0, 1],

◮ C denotes the egalitarian solution at w = [0.405, 0.595].
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SUMMARY AND CONCLUSIONS

◮ With the help of Lemma 1, the optimization problem can be
decomposed in to an equivalent formulation which can be
solved by an efficient algorithm,

◮ The capacity region can be characterized by the parametrization,

◮ Practical applications.
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Q & A
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