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Abstract—This paper considers the optimal transmit strategy
for multi-antenna bidirectional broadcast channels with per-
antenna power constraints. First, an equivalent formulation of
the weighted rate sum maximization problem is provided. This
allows us to come up with an effective solution to characterize
the boundary of the capacity region which relies on the weighted
rate sum optimal rate pair. To that end, an iterative algorithm
to find the optimal transmit strategy is derived, the convergence
to the optimum is proved, and a closed-form solution of the
corresponding off-diagonal elements of the optimal transmit
strategy is provided. Further, we provide a parametrization of
the curved section of the capacity region. Finally, the theoretical
results and algorithm performance are illustrated by numerical
examples.

I. INTRODUCTION

Recently, relay networks have become more and more
important in wireless communication systems since they effi-
ciently extend their coverage range. It was shown in previous
studies that bidirectional communication using the network
coding idea can greatly improve the throughput in relaying [1],
[2]. In bidirectional communication with decode-and-forward
protocol, the whole transmission is divided into two phase:
multiple-access phase (MAC) and broadcast phase (BC). Since
the optimal transmit strategy for the MAC is well known [3],
[4], we concentrate on bidirectional BC.

The optimal transmit strategies for the Gaussian MISO and
MIMO bidirectional broadcast channels with sum power con-
straint have been well-studied [5], [6]. In [5], the authors show
that, for the multiple-input single-output (MISO) bidirectional
broadcast channel with sum power constraint, beamforming is
always an optimal transmit strategy. It shows that an optimal
transmit strategy for MISO bidirectional broadcast channel
transmits into the subspace spanned by the channels only.
In [6], the transmit covariance matrix optimization problem
for the discrete memoryless multiple-input multiple-output
(MIMO) Gaussian bidirectional broadcast channel is studied.
A simple iterative fixed point algorithm is proposed to find the
maximal weighted rate sum, which characterizes the capacity
region of the bidirectional broadcast channel.

Practically, each antenna has its own power amplifier, which
means the power allocation at the transmitter is usually done
under the per-antenna power constraints instead of the sum
power constraint. Indeed, optimal transmit strategies with
average per-antenna power constraints have been investigated
in both single-user [7]–[9] and multi-users [10]–[15] settings.
In these works, the authors derived necessary and sufficient
conditions for optimal MIMO transmission schemes and devel-

oped iterative algorithms that converge to the optimal solution.
However, the bidirectional broadcast channels with average
per-antenna power constraints have not been considered yet.

In this paper, we study the optimal transmit strategy for a
MISO bidirectional broadcast channel with per-antenna power
constraints. We start by briefly introducing the system model
of the MISO bidirectional broadcast channel and capacity
region together with the power constraint. After that, we
derive an equivalent problem formulation of the weighted rate
sum maximization problem. Then, an iterative algorithm to
compute the optimal transmit covariance matrix is provided.
We also prove that the proposed algorithm converges to the
global optimum. Lastly, we provide a parametrization of the
curved section of the capacity region.1

II. MISO BIDIRECTIONAL BROADCAST CHANNEL

A. System Model and Power Constraint

Let Nt be the number of transmit antennas at the relay node.
The channel input-output relation between the relay node and
node i is given as follows:

yi = xT hi + zi, i = 1, 2 (1)

where x = [x1, . . . , xNt ]
T ∈ CNt×1 is the complex transmit

signal vector, hi = [hi1, . . . , hiNt ] ∈ CNt×1, i = 1, 2 are the
channel coefficient vectors, and zi, i = 1, 2 is the independent
additive white complex Gaussian noise with power σ2. The
transmit covariance matrix of the Gaussian input x is defined
as Q = E[xxH ]. In this paper, for simplicity, we assume
that σ2 = 1. Let S denote the set of all power allocations
which satisfy the per-antenna power constraints, then S can
be defined as S := {Q � 0 : eTk Qek ≤ P̂k, k = 1, . . . , Nt}
where ek is the kth Cartesian unit vector.
B. Capacity Region and Problem Statement

In this part, we first introduce the capacity region of the
Gaussian MISO bidirectional relay channel. After that, in per-
antenna power constraint domain, the problem to find the
optimal transmit strategy is formulated.

Similarly to [5, Theorem 1], which considers an average
sum power constraint, we obtain that the capacity region of

1Notation: We use bold lower-case letters for vectors, bold capital letters for
matrices. The superscripts (·)T , (·)∗ and (·)H stand for transpose, conjugate,
and conjugate transpose. R, R+ and C are the sets of real, non-negative real
and complex numbers. dpch(·) denotes the downward positive comprehensive
hull which is defined for the vector x ∈ R2

+ by the set dpch(x) := {y ∈
R2
+ : yi ≤ xi, i = 1, 2}. ∇xif(x1, . . . , xm) denotes the partial derivative

of f with respect to xi.



the Gaussian MISO bidirectional broadcast channel, CMISO
BC ,

with per-antenna power constraints is given by

CMISO
BC =

⋃
Q∈S

dpch([C1(Q), C2(Q)]) (2)

with Ci(Q) := log
(
1 + hH

i Qhi

)
, i = 1, 2.

The boundary of the capacity region can be characterized by
the set of weighted rate sum optimal rate pairs. The weighted
rate sum for a given weight vector w = [w1, w2] ∈ R2

+ with
w1 + w2 = 1, is given by

R∑(Q,w):=w1 log
(
1+hH

1 Qh1

)
+w2 log

(
1+hH

2 Qh2

)
. (3)

The remaining question is to establish the optimal transmit
strategy Qopt(w) such that the weighted rate sum in (3) is
maximized for a given vector w. The optimization problem to
find the maximal weighted rate sum for MISO bidirectional
broadcast channels with per-antenna power constraint can be
written as follows

max
Q

R∑(Q,w), s. t.Q ∈ S. (4)

The boundary of the capacity region is given by the
weighted rate sum optimal rate pairs where each rate pair is
optimal for a certain weighted vector only. It is defined section-
wise and consists of two single-user optimal sections and the
Pareto optimal section which is the curved part of the boundary
similarly as in [5] for the sum power constraint problem. The
tradeoff between two rates is controlled by optimal transmit
strategy Q. Regarding the property of the weight vector where
0 ≤ w1, w2 ≤ 1 and w1 + w2 = 1, we know that when
w = [1, 0] and w = [0, 1], the channel stays the same, but the
optimization problem (3) becomes the single user problem.

The maximal unidirectional rate for user 1 is given by
the optimization problem with w = [1, 0], i.e., R(1)

1,opt :=

maxQ log(1 + hH
1 Qh1) subject to Q ∈ S . The rate

pair [R
(1)
1,opt, R

(1)
2,opt] can be found by solving this prob-

lem. The solution can be obtained from the single-user
MISO channel with per-antenna power constraints in [7].
The optimal covariance matrix Q(1)

opt has rank one with
Q(1)

opt =
∑Nt

k=1 P̂kv1vH
1 , and the beamforming vector v1

has the elements given as v1k =

√
P̂k√∑Nt
k=1 P̂k

h∗
1k

|h1k| . There-

with, the maximal unidirectional rate that user 1 can achieve

is R
(1)
1,opt = log

[
1 +

(∑Nt
k=1 |h1k|

√
P̂k

)2]
. Let ρk :=

v1kv
∗
2k = P̂k∑Nt

k=1 P̂k

h∗
1kh2k

|h1k||h2k| denote the correlation be-
tween two elements h1k and h2k of channels h1 and h2.
Then, the maximal rate user 2 can achieve is R

(1)
2,opt =

log

[
1 +

(∑Nt
k=1 |ρk||h2k|

√
P̂k

)2]
.

Similarly, for w = [0, 1], the rate pair [R
(2)
1,opt, R

(2)
2,opt]

can be achieved with Q(2)
opt =

∑Nt
k=1 P̂kv2vH

2 where the
beamforming vector v2 has the elements given as v2k =√

P̂k√∑Nt
k=1 P̂k

h∗
2k

|h2k| . The maximal unidirectional rate for user

2, R(2)
2,opt, and the correponding R

(2)
1,opt are then given as

R
(2)
2,opt = log

[
1 +

(∑Nt
k=1 |h2k|

√
P̂k

)2]
and R

(2)
1,opt =

log

[
1 +

(∑Nt
k=1 |ρk||h1k|

√
P̂k

)2]
.

In the following, we provide the solution to find the optimal
transmit strategy for weights w1, w2 6= 0. This also provides
us a characterization of the capacity region.

III. OPTIMAL TRANSMIT STRATEGY

In this section, we derive an iterative algorithm solution to
find the optimal transmit strategy of the problem (4) using an
alternating optimization approach. To describe our approach,
we reformulate our problem to a form that allows further
analysis. To this end, we need the following lemma.

Lemma 1 ([16, Lemma 2, Scalar case]). Consider the function
f(D) = −DE + log(D) + 1 where D,E ∈ R, E > 0. Then,

max
D>0

f(D) = log(E−1), (5)

with the optimum value D∗ = E−1.

By applying Lemma 1 to problem (4) with Ei = 1+hH
i Qhi,

i = 1, 2, problem (4) can be expressed as

max
Q∈S

2∑
i=1

wi min
Di>0

(
Di(1 + hH

i Qhi)− log(Di)− 1
)

(6)

That expression suggests the use of person-by-person opti-
mality method for solving problem (6), i.e., at each iteration,
the objective is maximized with respect to one variable while
fixing the others. It is easy to see from (6) that by fixing either
Q or Di, i = 1, 2, the remaining problems are convex with re-
spect to the other decision variable. Thus, we propose to solve
the following optimization problems to obtain (Q[n]

opt, D
[n]
i ) for

i = 1, 2 in the nth iteration.

D
[n]
i = arg min

Di>0

(
Di(1 + hH

i Q[n−1]hi)− log(Di)
)

(7)

Q[n]
opt = argmax

Q∈S

2∑
i=1

wiD
[n]
i hH

i Qhi. (8)

From Lemma 1, we know that, the closed-form solution of
problem (7) can be computed as

D
[n]
i = (1 + hH

i Q[n−1]
opt hi)

−1. (9)

As a basic property, for a given vector w, the alternating
optimization iterations yield a non-decreasing sequence of the
weighted rate sums, i.e., R∑(Q[n]

opt,w) ≥ R∑(Q[n−1]
opt ,w) ≥

· · · ≥ R∑(Q[0]
opt,w). An arbitrary initial point, which corre-

sponding to Q[0]
opt, is chosen such that the per-antenna power

constraints are satisfied, i.e., Q[0]
opt ∈ S. Since the sequence of

the weighted rate sums are bounded and monotonic increasing,
convergence is guaranteed. Additionally, we can show that the
sequence converges to the global optimum.

Proposition 1. Sequence {Q[n]
opt} generated by the iterative

algorithm given by (7)-(8) converges to the global optimum of
problem (4).



Proof: The proof of Proposition 1 can be found in
Appendix A. The key idea is to show that the limit is a
stationary point of the convex optimization problem (4).

In problem (8), the optimal Q[n]
opt must have the diagonal

elements q[n]kk = P̂k. The problem remains to find the off-
diagonal elements q[n]kl , ∀k, l = 1, . . . , Nt; k 6= l.

Theorem 1. Let Q[n]
opt be the optimal covariance matrix at the

nth iteration. Then Q[n]
opt has the off-diagonal elements given

as

q
[n]
kl =

∑2
i=1 wiD

[n]
i h∗ikhil

|
∑2

i=1 wiD
[n]
i h∗ikhil|

√
P̂kP̂l. (10)

Proof: The proof of Theorem 1 can be found in Appendix
B. The idea of the proof is that relaxing the semi-definite
constraint to 2 × 2 principal minors, and show that the
optimal covariance matrix of the relaxing problem is indeed
the optimal covariance matrix of (8), similarly as in [7].

This leads to an iterative algorithm (IA) to find optimal
transmit strategy for problem (4) (see Algorithm 1).

IV. CHARACTERIZATION OF CAPACITY REGION

The most interesting part of the boundary is the curved
section. This section corresponds to the set of Pareto optimal
rate pairs which can be achieved by the following paremetrized
optimal transmit strategies.
Theorem 2. The optimal transmit strategies Qopt of the curved
part can be parametrized as follows

Qopt(t) = argmax
Q∈S

thH
1 Qh1 + (1− t)hH

2 Qh2, (11)

with t ∈ [0, 1].

Proof: The proof of Theorem 2 can be found in Appendix
C

Using the same argument in Theorem 1, we can identify
the off-diagonal element of Qopt(t) in (11) as

qkl(t) =
th∗1kh1l + (1− t)h∗2kh2l
|th∗1kh1l + (1− t)h∗2kh2l|

√
P̂kP̂l. (12)

Remark 1. From the proof of Theorem 2, we see that Qopt(t),
t ∈ [0, 1], is an optimal transmit strategy for the weights

wi(t)=
t(1 + hH

i Qopt(t)hi)

t(1 + hH
i Qopt(t)hi) + (1− t)(1 + hH

j Qopt(t)hj)
,

(13)

i, j= 1, 2, i 6= j.

On the curved section of the boundary of capacity re-
gion, the rate pair R(t) := [R1(t), R2(t)] is achieved
as Ri(t) := log

(
1 + hH

i Q(t)hi

)
, i = 1, 2. R(1) and

R(0) correspond to the two single-user optimal rate pairs
[R

(1)
1,opt, R

(1)
2,opt] and [R

(2)
1,opt, R

(2)
2,opt], cf. Section II.B. Further

on, R(t), t ∈ [0, 1], parametrizes the curved section of the
boundary of the capacity region and therewith all Pareto
optimal rate pairs. Thus, following (2), the whole capacity
region is characterized by the parametrization and given as
CMISO
BC =

⋃
Q(t)∈S dpch([R1(t), R2(t)] : Ri(t) := log(1 +

hH
i Q(t)hi), i = 1, 2, t ∈ [0, 1]).

Algorithm 1: Algorithm to find optimal transmit strategy
for MISO bidirectional broadcast channel
Input : w,hi, [P̂1, . . . , P̂Nt ]

Output: Q[n]
opt

1 Initialize n = 1, ε > 0, and Q[0]
opt � 0 such that

eTk Q[0]
optek ≤ P̂k, ∀k = 1, . . . , Nt.

2 while |R∑(Q[n]
opt,w)−R∑(Q[n−1]

opt ,w)| > ε do
3 Update D[n]

i according to (9),
4 Compute off-diagonal element q[n]kl according to (10),
5 Form Q[n]

opt with diagonal elements q[n]kk = P̂k and
off-diagonal elements q[n]kl ,

6 n = n+1
7 end while

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illustrate
the theoretical results. We consider a MISO bidirectional
broadcast channel with two antennas at the relay and one
antenna each at the remaining nodes. The complex channel
coefficients are denoted as h1 = [1.3, 1.3j]T and h2 =
[1.2,−jej π2 ]T . Two per-antenna powers are set as P̂1 = 6
and P̂2 = 8.

Fig. 1 depicts the capacity region for the MISO bidirectional
broadcast channel with per-antenna power constraints. The
solid line depicts the boundary of the capacity region. It is
clear to see that the curved section corresponds to the weighted
rate sum optimal rate pair. With a certain weight vector, we can
obtain a rate pair. The point A and B in the Fig. 1 correspond to
the case of w = [1, 0] and w = [0, 1] as denoted in section II.B,
i.e., we have two corresponding rate pair [R

(1)
1,opt, R

(1)
2,opt] =

[3.65, 2.87] and [R
(2)
1,opt, R

(2)
2,opt] = [3.02, 3.53]. The point C

denotes the egalitarian solution, in this case the rate pair
[R

(3)
1,opt, R

(3)
2,opt] = [3.44, 3.44] achieves at w = [0.4.5, 0.595].

In the next examples, we configure various number of
antennas at the relay, and compare the working performance
of our proposed algorithm and the standard CVX [17] (see
http://cvxr.com/cvx/). The average running times of our al-
gorithm (IA) and CVX in the same computer and same
conditions2, are shown in Table I. It can be seen that our
proposed IA is much faster than CVX, particularly under a
large number of transmit antennas.

VI. CONCLUSIONS

In this paper, we studied the optimal transmit strategy for
MISO bidirectional relay channel with average per-antenna
power constraints. We derived an equivalent formulation of
the optimization problem, and developed an iterative algorithm
that converges to the global optimum. This also provided
us a characterization of the capacity region. The capacity
region, therefore, can be characterized. The efficiency of the

2The experiment is performed under: Processor - Intel Core i7-3740QM
CPU @ 2.70GHz × 8; Memory - 8GB; OS: Ubuntu 14.04; Matlab R2015a.
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Fig. 1: Capacity region for MISO bidirectional broadcast
channel with per-antenna power constraints P̂1 = 6, P̂2 = 8 .

TABLE I: Average running time (in secs.) of iterative algorithm (IA)
in comparison to CVX

Algorithm Number of antennas at the relay
2 4 6 8

IA 0.014 0.016 0.057 0.142
CVX 1.425 1.899 3.243 4.827

proposed approach has been demonstrated by a numerical
example. Moreover, the performance analysis results show that
the proposed algorithm performs much better than the standard
CVX, in particular for the channel with a large number of
transmit antennas.

APPENDIX

A. Proof of Proposition 1

Let φ1(Q,w), φ2(Q, Di) and φ3(Q,w, Di), be the objective
functions of (4), (7), and (8). Suppose that (Q?, D?

i ), ∀i = 1, 2,
is a limit point of the sequence {Qn

opt} generated by (7)-(8).
Because (7) is convex, following [17, Section 4.2 - pp.136-
145] we have
∇Diφ2(Q

?, D?
i )(Di −D?

i ) ≥ 0,∀Di ∈ R, Di > 0. (14)

This implies that for a given Q?, the corresponding D?
i , i =

1, 2, is uniquely given by D?
i = (1 + hh

i Q?hi)
−1. Thus,

∂φ3(Q?,w, D?
i )

∂Q? =

2∑
i=1

wiD
?
i hihH

i

=

2∑
i=1

wihi(1 + hh
i Q?hi)

−1hH
i =

∂φ1(Q?,w)

∂Q? , (15)

i.e., Q? is a stationary point of problem (4). Since Q? satisfies
also the sufficient Karush-Kuhn-Tucker (KKT) conditions of
the convex optimization problem (4), it is also the global
optimum. �

B. Proof of Theorem 1

The main difficulty here is the positive semi-definite con-
straint Q[n] � 0. This constraint is equivalent to having all
principal minors of Q[n] being positive semi-definite [18].

Let M[n] be a relaxed version with semi-definite constraints
involving only 2× 2 principal minors of Q[n] [7]. The minor
matrix is obtained by removing Nt−2 columns, except k and l,
and the corresponding transposed Nt − 2 rows of Q[n]. Then,

M[n] is given as M[n] =

[
P̂k q

[n]∗
kl

q
[n]
kl P̂l

]
, k, l = 1, . . . , Nt,

k 6= l. A relaxed version of the optimization problem (8)
iteration is formed as

max
Q

2∑
i=1

wiD
[n]
i hH

i Qhi, s. t. q
[n]
kk ≤ P̂k, k = 1, . . . , Nt (16)

M[n] � 0.

It is clear to see that if the optimal Q[n]
opt of this relaxed problem

is positive semi-definite, then it is also the optimal solution of
(8) [7]. The Lagrangian for problem (16) is given by

L =

2∑
i=1

wiD
[n]
i hH

i Qhi

−
∑
k 6=l

λkl(|q[n]kl |
2 − P̂kP̂l)−

∑
k

µk(q
[n]
kk − P̂k), (17)

where λkl and µk are the Lagrange multipliers at nth iteration,
and k, l = 1, . . . , Nt. Taking the first derivative of (17) and
set it equal to zero, we have

∂L
∂q

[n]
kl

=

2∑
i=1

wiD
[n]
i h∗ikhil − λklq

[n]
kl

!
= 0, (18)

or equivalently

q
[n]
kl =

∑2
i=1 wiD

[n]
i h∗ikhil

λkl
. (19)

The optimal value of q[n]kl is obtained when its constraint is
satisfied with equality, i.e., |q[n]kl |2 = P̂kP̂l. By combining this
condition with (19), we have the value of q[n]kl as in (10). Since
λkl > 0 then second derivative ∂2L

∂(q
[n]
kl )

2
= −λkl < 0. This

implies that Q[n]
opt with q

[n]
kl above is the maximum point of

(16). Besides that, since the optimal Q[n]
opt is positive semi-

definite, it is also the optimal solution of (8). �

C. Proof of Theorem 2
The proof can be divided in two following steps:
Step 1: We show that there exists a t ∈ [0, 1] such that

Qopt(t) = Q? for a given (w, D?
i ). Suppose that for a given

weight w = [w1, w2], (Q?, D?
i ), ∀i = 1, 2, is the optimal

solution of (8). Then, by letting t = w1D
?
1∑2

i=1 wiD?
i

, t ∈ [0, 1], we

have Qopt(t) = argmaxQ∈S thH
1 Qh1 + (1− t)hH

2 Qh2 = Q?.
Step 2: We show that there exists a weight vector w =

[w1, w2], w1+w2 = 1 such that the optimal Q?(w) = Qopt(t)
for t ∈ [0, 1]. We know from (9) that, at the optimum, D?

i (t)
is given as D?

i (t) = (1+hH
i Qopt(t)hi)

−1, ∀i = 1, 2. Then, by
letting wi(t) =

tD?
j (t)

(1−t)D?
i (t)+tD?

j (t)
, ∀i, j = 1, 2, i 6= j, we have

Q?(w(t))= argmaxQ∈S
∑2

i=1 wi(t)D
?
i (t)h

H
i Qhi= Qopt(t).

�
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