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ABSTRACT

This paper studies optimal transmit strategies for multiple-

input multiple-output (MIMO) Gaussian channels with joint

sum and per-antenna power constraints. It is shown that if an

unconstraint optimal allocation for an antenna exceeds a per-

antenna power constraint, then the maximal power for this an-

tenna is used in the constraint optimal transmit strategy. This

observation is then used in an iterative algorithm to compute

the optimal transmit strategy in closed-form. Finally, a nu-

merical example is provided to illustrate the theoretical re-

sults.

Index Terms— MIMO, sum power constraint, per-

antenna power constraints, transmit strategy

1. INTRODUCTION

The optimization problem in maximizing the transmission

rate for MIMO Gaussian channel has been extensively stud-

ied in the last two decades. Under the sum power constraint,

the transmission rate is obtained by performing singular value

decomposition and applying water-filling on channel eigen-

values [1, 2]. In contrast, the problem in finding maximal

transmission rate with per-antenna power constraints results

in a different mechanism since the power can not be arbitrar-

ily allocated among the transmit antennas. This problem has

been studied in [3–8]. In these works, the authors derived

necessary and sufficient conditions for the optimal MIMO

transmission schemes and developed an iterative algorithm

that converges to the optimal solution. Besides iterative al-

gorithms, a closed-form expression for the capacity of the

static Gaussian MIMO channel under per-antenna power

constraints is provided in [9].

In a practical system, when joint sum and per-antenna

power constraints are considered, the transmitted energy

should be limited in total and for each RF chain. The joint

sum and per-antenna power constraints setting can be applied

either to systems with multiple antennas or to distributed

systems with separated energy sources. The optimal transmit

strategy problem with the joint sum and per-antenna power

constraints has been studied for MISO channels in [10, 11].

Since the sum power constraint is not active if the allowed

sum power is larger than the sum of the per-antenna power

constraints, the problem is only interesting if the sum power

constraint is smaller than the sum of the individual power

constraints. In [12], the optimization problem with the as-

sumption that several antenna subsets are constrained by a

sum power constraint while the other antennas are subject to a

per-antenna power constraint is studied and a closed-form so-

lution is provided. Unfortunately, the results in that paper can

not be directly applied to the case where the transmit powers

are jointly constrained by both sum and per-antenna power

constraints. To make [12] applicable for the optimization

problem with joint sum and per-antenna power constraints,

we need to identify for each antenna which constraint is

active, which is the key step in this paper.

The contributions of the paper can be summarized as fol-

lows: An optimal transmit strategy for MIMO channels with

joint sum and per-antenna power constraints with the assump-

tion of perfect channel knowledge at the transmitter is char-

acterized. If an optimal power allocation of an antenna of

the unconstraint problem exceeds a per-antenna power con-

straint, then it is optimal to allocate the maximal power in the

constraint optimal transmit strategy. An iterative algorithm,

which always converges to the optimum, to compute the op-

timal solution in closed-form using [12] is proposed.

2. PROBLEM FORMULATION

We consider a MIMO channel with n transmit antennas andm

receive antennas. We assume that channel state information

(CSI) is known at both transmitter and receiver. The channel

input-output relation of this transmission model can be writ-

ten as
y = Hx + z (1)

where x ∈ Cn×1 is the complex transmit signal vector, y ∈
Cm×1 is the complex received vector. H ∈ Cm×n is the

channel coefficient matrix with complex elements. Finally,

z ∈ Cm×1 is zero-mean scalar additive white complex Gaus-

sian noise (AWGN), i.e., z ∼ CN (0, σ2I). In this paper, for

simplicity, we assume that σ2 = 1. Let Q = E
[

xxH
]

be

the transmit covariance matrix of the Gaussian input, then the

achievable transmission rate is

R = f(Q) = log det
(

Im + HQHH
)

. (2)



The question is how to identify the transmit covariance matrix

Q subject to a given power constraint such that the transmis-

sion rate in (2) is maximized.

Let A ⊆ {1, . . . , n} and S(A) := {Q < 0 : tr(Q) ≤
Ptot, Pi = eTi Qei ≤ P̂i, ∀i ∈ A} denote an index set and

the set of transmit strategies with total transmit power Ptot

and per-antenna power constraints P̂i, ∀i ∈ A, where ei =
[0, ..., 1, ..., 0]T is the i-th Cartesian unit vector. Let OP-A
be the optimization problem with optimization do main S(A)
restricted by the per-antenna power constraints with index i ∈
A. The optimization problem of transmission rate for MIMO

channels then will be given as

max
Q

f(Q) s.t. Q ∈ S(A). (3)

If A = ∅, then (3) corresponds to the sum power constraint

only problem which has been well studied in [2]. Therefore

in the following we focus on the optimization problem when

both sum and per-antenna power constraints are active, i.e.,

A 6= ∅. In the following sections, we first investigate the

properties of the power allocation of MIMO channels with

joint sum and per-antenna power constraints. After that, an

iterative algorithm to find the optimal transmit strategy is pro-

posed.

3. OPTIMAL TRANSMIT STRATEGIES

Depending on the per-antenna power constraints P̂i, ∀i =
1, . . . , n, and the sum power constraint Ptot, we can iden-

tify three different cases as follows: The first case is when the

per-antenna power constraints are never active, i.e., Ptot <

mini(P̂i). The second case is when the the sum power con-

straint is never active, i.e., Ptot >
∑n

i=1 P̂i. The most in-

teresting case is when both sum and per-antenna power con-

straints are active, i.e., mini(P̂i) ≤ Ptot ≤
∑n

i=1 P̂i [10].

Proposition 1 below shows that the capacity can be

achieved with a transmit strategy which allocates full sum

power if mini(P̂i) ≤ Ptot ≤
∑n

i=1 P̂i.

Proposition 1. For OP-A with a given channel H ∈ C
m×n

the maximum transmission rate R⋆ can be achieved when

the optimal transmit strategy Q⋆ uses full power Ptot, i.e.,

tr(Q⋆) = Ptot.

Proof (by Contradiction). Suppose that it is not possible to

achieve the maximum transmission rate using full power

Ptot. This implies that for tr(Q⋆) < Ptot, the maxi-

mum transmission rate is R⋆ = log det
(

Im + HQ⋆HH
)

=

log
∏min(n,m)

i=1 (1+λ2iφi), where λi and φi are the eigenvalues

of H and Q⋆.

Since tr(Q⋆) < Ptot, there exists a positive semi-definite

Hermitian matrix A < 0 with A = AH , such that Q⋆+A = Q

and tr(Q) = Ptot. Following Weyl’s theorem [13], we have

φi ≤ ψi for each i = 1, . . . ,min(n,m) where ψi are the

eigenvalues of Q. So that:

R = log det
(

Im + HQHH
)

= log

min(n,m)
∏

i=1

(1 + λ2iψi)

≥ log

min(n,m)
∏

i=1

(1 + λ2iφi) = R⋆. (4)

This contradicts the assumption that when the transmit

strategy uses full transmit power, the maximal transmission

rate is not achievable. It follows that there always exists an

optimal transmit strategy using full power.

Accordingly, it is sufficient for the optimization to con-

sider only transmit strategy which allocate full power Ptot,

i.e., the sum power constraint is always active. However,

it may happen that the optimal transmit powers of the per-

antenna unconstraint optimal solution using full transmit

power may exceed the maximum allowed per-antenna pow-

ers. Therefore, we can distinguish between the two following

cases: (i) All per-antenna power constraints are satisfied; (ii)

There exists at least one power exceeds the maximum allowed

per-antenna power. In the next lemma we study the properties

of those two cases in more detail.

Lemma 1. Let A′ ⊆ A := {1, . . . , n}, S(A′) := {Q <

0 : tr(Q) ≤ Ptot, P
S(A′)
j = eTj Qej ≤ P̂j , j ∈ A′}, and

P := {i ∈ Ac : P
S(A′)
i > P̂i} with Ac = A \ A′. Then, for

OP-A, the optimal power can be allocated as

{

P ⋆
i = P

S(A′)
i , ∀i ∈ Ac if P = ∅,

P ⋆
i = P̂i, ∀i ∈ P otherwise,

(5)

with P ⋆
i = eTi Q⋆ei.

Proof. The proof of this lemma can be divided into two parts.

First, we show that if P = ∅ the P ⋆
i = P

S(A′)
i , ∀i ∈ Ac.

Since S(A) ⊆ S(A′), maxQ∈S(A) f(Q) ≤ maxQ∈S(A′) f(Q).

If QS(A′) ∈ S(A) then QS(A′) is also the optimal transmit

strategy for OP-A, i.e. Q⋆ = QS(A′) or P ⋆
i = P

S(A′)
i ,

∀i ∈ Ac.

Next, we prove that if P 6= ∅ then P ⋆
i = P̂i, ∀i ∈ P .

This part can be proved by applying [10, Lemma 2] directly

to an optimization function f(Q) given in (2). For a given

B = A′∪P withA′ ⊆ A, ifP 6= ∅ then P
S(B)
i = P̂i, ∀i ∈ P .

Thus, by simply setting A′ = A \ P we have P ⋆
i = P̂i,

∀i ∈ P .

Note that, with Lemma 1, if A′ = ∅, then for P = 0,

P ⋆
i is also the optimal power allocation of the optimization

problem with sum power constraint only.

Lemma 1 leads to an iterative algorithm to compute the

optimal transmit strategy Q⋆ in closed-form. To see this we



consider the following sequence of optimization problems:

max
Q∈S(∅)

f(Q) = max
Q∈S(∅)∩{[Q]ii≤P̂i:∀i∈P(1)}

f(Q)

≥ max
Q∈S(∅)∩{[Q]ii≤P̂i:∀i∈P(2)}

f(Q)

. . .

≥ max
Q∈S(∅)∩{[Q]ii≤P̂i:∀i∈P(K−1)}

f(Q)

≥ max
Q∈S(∅)∩{[Q]ii≤P̂i:∀i∈P(K)}

f(Q)

= max
Q∈S(A)

f(Q), (6)

where P(k) is the set of indices of powers which violate the

per-antenna power constraints in the k-th iteration with ini-

tialization P(1) = ∅. The update of P(k) in each iteration is

done using Lemma 1 and can be found in Section 4. The op-

timization problem in each iteration can be solved using the

closed-form solution in [12] because every iteration in (6) can

be related to an optimization problem with a total power con-

straint and a limited number of per antenna power constraints.

4. ITERATIVE ALGORITHM

We now show in detail how to implement the iterative algo-

rithm. If we assume that the iterative algorithm to find the op-

timal solution for OP-A has K iterations in total, then at k-th

iteration, k = 1, ...K , the set of violated power can be calcu-

lated as P(k + 1) = P(k) ∪ {i ∈ Pc(k) : eTi Q⋆(k)ei > P̂i}
withPc(k) = A\P(k). Note that,P(1) = ∅ and if we denote

P⋆ := {i ∈ {1, . . . , n} : P ⋆
i = eTi Q⋆ei > P̂i} as a set of all

violated power of OP-A, then P⋆ =
⋃K

k=1 P(k). Following

this formulation, it is clear to obtain that if we consider an

arbitrary index i, if i ∈ P(k) then i ∈ P(k + 1).

Remark 1. The maximum number of violated per-antenna

power constraints is n − 1, which also corresponds to the

maximal number of iterations, i.e., K ≤ n− 1.

Therefore, we can, without loss of generality, re-assign

the antenna coefficient order corresponding to the number of

iteration such that the first |P(k)| coefficient are in P(k), i.e.,

P(k) = {1, . . . , |P(k)|}. Therewith, the optimal transmit

strategy at the k-iteration, we can be written as

Q⋆(k) =

[

QP (k) qH(k)
q(k) QS(k)

]

, (7)

with QP (k) is a |P(k)|× |P(k)|matrix which contains P ⋆
i =

P̂i, ∀i ∈ P(k), and QS(k) is a (n−|P(k)|)×(n−|P(k)|) ma-

trix which satisfies the condition that tr(QS(k)) = Ptot(k)
where Ptot(k) = Ptot −

∑

i∈P(k) P̂i. This implies that

the diagonal elements of Q⋆(k) can be formed as P ⋆
i (k) =

eTi QP (k)ei = P̂i, ∀i ∈ P(k) and Pj(k) = eTj QS(k)ej
∀j ∈ Pc(k). To find the remaining optimal power allocation

Pj(k), ∀j ∈ Pc(k) in QS(k), we consider following reduced

optimization problem

max
Q(k)

f(Q(k)) s.t. Q(k) ∈ S(P(k)) (8)

where f(Q(k)) = log det
(

Im + HQ(k)HH
)

, S(P(k)) =

{Q(k) < 0 : Pi(k) = P̂i ∀i ∈ P(k),
∑

j∈Pc(k) Pj(k) ≤

Ptot(k)} with Pi(k) = eTi Q(k)ei is the transmit power of

i-th antenna at k-th iteration.

The Lagrangian of (8) is given as follows

L(Q(k),D,M) =f(Q(k)) +
∑

j∈Pc(k)

[D]j,jPtot(k)

−
∑

i∈A

{tr(DQ(k))}+ tr(MQ(k)). (9)

Following [12], the optimal transmit strategy Q(k) of the

optimization problem (8) can be calculated in closed-form.

For simplicity, we here assume that the number of nonzero

singular values of H is L = min(n,m). The detail about the

more general case can be found in [12].

Lemma 2 ([12]). The optimal solution of the transmit strat-

egy in (8) denoted by Q⋆(k) is given by

Q⋆(k) = (D− 1

2 [U]:,1:L[U]H:,1:LD− 1

2 − [U]:,1:LΛ
−1[U]H:,1:L)

+,

(10)

where diagonal matrix Λ and the first L columns of a unitary

matrix [U]:,1:L are obtained from eigenvalue decomposition

HHH = U

[

Λ 0

0 0

]

UH . The diagonal elements of L ×

L diagonal matrix Λ are positive real values in decreasing

order.

The operation “+” is to guarantee that the solution is

positive-semi definite, i.e., the negative eigenvalues of Q⋆(k)
are forced to be zero. At high SNR, the elements of the

diagonal D to can be computed as

[D]i,i =
[[U]:,1:L[U]H:,1:L]i,i

P̂i + [[U]:,1:LΛ−1[U]H:,1:L]i,i
if i ∈ P(k) (11)

and

[D]j,j =

∑

j [[U]:,1:L[U]H:,1:L]j,j

Ptot(k) +
∑

j [[U]:,1:LΛ−1[U]H:,1:L]j,j
,

if j ∈ Pc(k). (12)

From the result in Lemma 2, the value of QS(k) and the

optimal transmit power on j-th antennas at k-th iteration,

Pj(k) can be obtained as Pj(k) = [Q⋆(k)]j,j or Pj(k) =
eTj QS(k)ej , ∀j ∈ Pc(k) respectively. However, it occurs

that Pj(k) may violate the per-antenna power constraint

P̂j(k) for some j ∈ Pc(k). According to the Lemma 1, that



power has to be set equal to the per-antenna power constraint.

Consequently, for the OP-A solution, a new iteration has

to be performed with a new re-assigned covariance matrix

which contains a QP (k + 1) with diagonal elements con-

tains powers that set equal to per-antenna power constraints

and QS(k + 1) with trace equal new reduced total power

Ptot(k + 1). The power allocations P⋆(k) = [P ⋆
i (k), i ∈ A],

PP (k) = [P̂i, i ∈ P(k)], PS(k) = [Pj(k), j ∈ Pc(k)] which

are corresponding to Q⋆(k), QP (k) and QS(k) therefore are

updated as follows:

...P(k)
(a)
−−→ PP (k)

(b)
−−→ P(k)→ PS(k)

(c)
−−→ P(k + 1)....

where (a) follows Lemma 1, (b) follows Lemma 2 and (c)
follows the limitation of per-antenna power on the antennas.

This updated sequence stops when there is no per-antenna

power constraint violated, i.e.,P(k+1) = P(k). The optimal

transmit strategy of the optimization problem with joint sum

and per-antenna power constraints then can be determined as

Q⋆ = Q⋆(K). From the discussion above, we can summarize

on the iterative algorithm to compute the optimal solution of

OP-A in Algorithm 1.

As a basic result of the algorithm, one can verify that

f(Q⋆(1)) ≥ · · · ≥ f(Q⋆(k)) ≥ · · · ≥ f(Q⋆(K)). Since

the reduce optimization problem is convex at every iteration,

every limit point of the sequence {Q⋆(k)} generated by Al-

gorithm 1 is a KKT point of the optimization problem (3),

i.e., the global convergence of the proposed iteration method

is guaranteed after at most n− 1 iterations [14].

Remark 2. (10) is a generalized water-filling solution. In

particular, if P⋆ = ∅, D is the proportional to an identity

matrix, i.e., D = µI, and (10) reduces to the standard water-

filling solution of the optimization problem with sum power

constraint only [2].

5. NUMERICAL EXAMPLE

For numerical example, we provide the transmission rate of

the optimization problem OP-Awith a 3×3 complex channel

H = [h1, h2, h3] with

h1 = [1.1356e0.9653j, 0.9284e0.4658j, 0.9553e−0.4193j]T ,

h2 = [0.9640e−0.9996j, 1.2905e−0.9527j, 1.0384e−0.4533j]T ,

h3 = [0.6110e−0.9156j, 1.0559e−12103j, 0.7126e−0.3535j]T .

Fig. 1 shows the choices of constraints result of the opti-

mization problem OP-A with Ptot = 25. We perform the ex-

ample by adjusting per-antenna power constraint on antenna

1 from 0 to 14 and setting per-antenna power constraint con-

figurations on antennas 2 and 3 as follows: (i) Per-antenna

power constraints on antennas 2 and 3 are active; (ii) Only

per-antenna power constraint on antenna 3 is active; (iii) Per-

antenna power constraints on antennas 2 and 3 are not active.

Setting Ptot = P̂i in the numerical experiments illustrated in

Fig. 1 denotes the case without a power constraint for the i-th

antenna. The plot of the sum power constraint only solution,

which corresponds to case when all per-antenna power con-

straints are never active, is also shown in the figure. We can

Algorithm 1: OA(H, Ptot, P̂): Iterative algorithm with

Ptot ≤
∑n

i=1 P̂i, A := {1, ..., n}.

Output: Q⋆

1 Initialize k = 1, P(1) = ∅
2 Compute Q⋆(k) using Lemma 2

3 P(k + 1) = P(k) ∪ {i ∈ Pc(k) : Pi(k) > P̂i},
4 if P(k + 1) = P(k) then

5 Q⋆ ← Q⋆(k),
6 Break.

7 else

8 for i ∈ P(k + 1) do

9 k ← k + 1,

10 end for

11 Pi(k)← P̂i according to Lemma 1,

12 Ptot(k)← Ptot −
∑

i∈P(k) P̂i,

13 end if

14 Return to 2.
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Fig. 1: Capacity under different power constraint settings

see from the figure that the more restricted per-antenna power

constraint, the less optimal transmission rate. This happens

because of the fact we have less freedom to allocate the opti-

mal transmit power when the optimization domain is limited

by adding more per-antenna power constraints.

6. CONCLUSIONS

In this paper, we present an iterative algorithm to find the op-

timal transmit strategy in closed-form for a MIMO channel

with joint sum and per-antenna power constraints using gen-

eralized water-filling solution. The algorithm exploits the fact

that if an unconstraint optimal power allocation of an antenna

exceeds a per-antenna power constraint, then it is optimal to

allocate the maximal power in the constraint optimal transmit

strategy including the per-antenna power constraints which

then enables us to use closed-form solution from [12] in an

iterative algorithm to compute the optimal transmit strategy

satisfying both sum and per-antenna power constraints.
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