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Abstract—This paper studies the characterization of the trade-
off between secrecy and non-secrecy capacity of the MISO
wiretap channels with different power constraint settings, in par-
ticular, sum power constraint only, per-antenna power constraints
only and joint sum and per-antenna power constraints. The
problem is motivated by the fact that the capacity of a channel
is usually larger than the secrecy capacity. First, a necessary
and sufficient condition to ensure a positive secrecy capacity is
shown. After that, related problems to find optimal transmit
strategies that maximize the weighted rate sum for wiretap
channels with given sets of power constraints are derived. Since
these problems are not necessarily convex, equivalent problem
formulations are used to derive optimal transmit strategies using
both closed-form solutions and iterative algorithms. This provides
the boundary of the rate region describing the optimal trade-off
between transmission and secrecy rate. Lastly, the theoretical
results are illustrated by numerical examples.

I. INTRODUCTION

Security is a critical aspect in wireless communication
systems due to the open nature of wireless links. To enhance
the security, physical-layer secrecy methods have received
much attention recently. One of the pioneer studies is the
study of the secrecy capacity of the wiretap channel [1],
where Wyner showed that a positive secrecy rate can be
achieved when an eavedropper’s channel is a degraded version
of the main channel. The maximal secrecy rate is given
by the largest difference between the mutual information to
the legitimate receiver and the mutual information to the
eavesdropper. Following Wyner’s work, researchers in the
physical-layer security area have extended and considered the
wiretap channel in various aspects. Notable results include the
extension to the non-degraded case by Csiszár and Körner [2]
and the extension to the single-input single-output Gaussian
wiretap channels by Leung-Yan-Cheong and Hellman [3].

The secrecy capacities for Gaussian multiple-input single-
output (MISO) and multiple-input multiple-output (MIMO)
wiretap channels with a sum power constraint have been
studied in [4]–[10]. In [4] and [5], the authors developed upper
bounds that enable to characterize the secrecy capacities for
MISO and MIMO wiretap channels. The proposed solutions
are to reduce the wiretap system into a set of parallel channels
based on the generalized singular value decomposition and
using an independent Gaussian wiretap code books on those
resulting channels. In [7], necessary conditions for the optimal
input covariance matrix are derived. In particular, a closed-
form expression of the MISO secrecy capacity has been
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Fig. 1: MISO wiretap channel with joint sum and per-antenna
power constraints, private message Mp and confidential mes-
sage Ms

shown. For the MIMO case an iterative algorithm is provided.
In [9] and [10], iterative optimization algorithms to find the
secrecy capacity have been proposed based on the concave-
convex alternating optimization procedure. Alternatively, indi-
rect approaches such as using Sato-like arguments or matrix
analysis tools are also used to find bounds on the secrecy
capacity of a MIMO Gaussian wiretap channel in [4]–[6].

In practice, each antenna has its own power amplifier,
which means the power allocation at the transmitter is usually
done under per-antenna power constraints instead of a sum
power constraint. Particularly, the problem of finding the
channel capacity with average per-antenna power constraints
has been investigated in both single-user [11]–[14] and multi-
user setups [15]–[17]. Recently, the capacity of point-to-point
channels with joint sum and per-antenna power constraints
has been considered [18]–[21]. An interesting aspect of the
joint sum and per-antenna power constraints setting is that it
can be applied to systems with multiple antenna as well as to
distributed systems with separated energy sources. The optimal
transmit strategy problem with the joint sum and per-antenna
power constraints has been studied first for MISO channel
with two transmit antennas in [18] and the general case in
[19]. In [19], a closed-form characterization of an optimal
beam-forming strategy is derived. It is shown that the optimal
solution is achieved by allocating the maximal sum power
with phases matched to the complex channel coefficients.
For the optimization problem with joint sum and per-antenna
power constraints, it is shown that whenever the optimal power
allocation of the corresponding problem with a sum power
constraint only exceeds per-antenna power constraints, it is
optimal to allocate the maximal per-antenna power to those
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antennas. In [21], the optimal transmit strategy problem for
point-to-point MIMO channel with joint sum and per-antenna
power constraints has been studied. An iterative algorithm
to find the optimal transmit strategy in closed-form using
generalized water-filling solution is proposed.

In this work we study MISO wiretap channels with different
power constraint settings including sum power constraint only,
per-antenna power constraints only, and joint sum and per-
antenna power constraints. The optimal trade-off between
communication rate and secrecy rate of MISO wiretap chan-
nels is motivated by the fact that the optimal coding strategy
for the wiretap channel is using a two-layer codebook. The
layers are combined using a coding scheme with superposition
coding, random binning and rate splitting [22]. The idea of
the coding scheme is that the decoding capability of the
eavesdropper is exhausted by a part of the private message
on the public layer codebook, while the legitimate receiver
can decode both the private and confidential messages using
both public and private layer codebook. Therefore, instead of
sending some useless random messages on the public layer,
a useful message can be communicated non-securely to the
legitimate receiver [22]–[24] (see Fig. 1). Since the maximal
transmission rate and secrecy rate are, in general, achieved
by different transmit strategies, we face a trade-off between
both objectives which we will study in the following. Some
initial results of this paper have been presented in [25]. The
contributions of the paper can be summarized as follows:

• We characterize the optimal trade-off between the trans-
mission rate and the secrecy rate of the Gaussian MISO
wiretap channel under three different power constraint
configurations including: the sum power constraint only,
the per-antenna power constraints only, and the joint sum
and per-antenna power constraints.

• The closed-form solution of the optimal transmit strate-
gies for a general MISO wiretap channel with the sum
power constraints and a 2 × 2 MISO wiretap channel
with per-antenna power constraints only and joint sum
and per-antenna power constraints are derived.

• An iterative algorithm to find the optimal solution for
general MISO wiretap channels with different power
constraint settings are developed.

• A parametrization of the boundary of the rate region of
the transmission rate and the secrecy rate of the wiretap
channel based on the weighted rate sum optimal rate pairs
is derived.

This paper is organized as follows. We start by briefly intro-
ducing the system model, sets of power constraints including
sum power constraint only, per-antenna power constraints only,
and joint sum and per-antenna power constraints. After that
an equivalent formulation of the weighted rate sum maxi-
mization between the transmission rate and the secrecy rate
is derived. The weighted rate sum optimal rate pairs provide a
characterization of the boundary of the region of the achiev-
able transmission rate and the secrecy rate. Optimal transmit
strategies for MISO wiretap channels with different antenna
settings using closed-form solutions and iterative algorithms
are then shown in next sections. These solutions allow us to

come up with a characterization of the boundary of the region
of feasible transmission and secrecy rates. The results are then
illustrated and discussed in numerical examples. Finally, we
provide some remarks and conclusions.

Notation

We use bold lower-case letters for vectors, bold capital
letters for matrices. The superscripts (·)T , (·)∗ and (·)H stand
for transpose, conjugate, and conjugate transpose. We use <
for positive semi-definite relation, tr(·) for trace, rank(·) for
rank and diag{·} for diagonal matrix. The expectation operator
of a random variable is given by E[·]. R+ and C are sets of
non-negative real and complex numbers.

II. PROBLEM FORMULATION

A. System Model and Power Constraint

We consider a MISO wiretap channel with multiple antennas
at the transmitter and single antenna at both legitimate receiver
and eavesdropper. Let Nt be the number of transmit antennas.
For each channel use, the received signals at the legitimate
receiver and the eavesdropper are given as follows

yr = hH
r x + zr,

ye = hH
e x + ze, (1)

where x = [x1, . . . , xNt
]T ∈ CNt×1 is the random complex

transmit signal vector, hr = [hr1, . . . , hrNt
]T ∈ CNt×1,

hri 6= 0 ∀i = 1, . . . , Nt, and he = [he1, . . . , heNt
]T ∈ CNt×1

are channel coefficient vectors between the transmitter and
legitimate receiver, and between the transmitter and eavesdrop-
per, which are perfectly know at the transmitter. zr and ze are
independent additive white complex Gaussian noise terms with
σ2
r = σ2

e = 1. We will use a Gaussian distributed codebook
generated with covariance Q = E[xxH ], which also specifies
the transmit strategy.

Let Ptot denote the maximal average sum transmit power
and P̂k, 1 ≤ k ≤ Nt, denotes the maximal average
transmit power at the k-th antenna. Further, let S(p̂), p̂ =
[Ptot, P̂1, . . . , P̂Nt

], denote the set of all transmit strategies
satisfying the power constraints p̂, i.e.,

S(p̂) := {Q � 0 : tr(Q) ≤ Ptot, eTk Qek ≤ P̂k,∀k ∈ I} (2)

where I := {1, . . . , Nt} and ek is the k-th Cartesian unit
vector. Depending on the per-antenna power constraints P̂k

and the sum power constraint Ptot, we can identify three dif-
ferent cases: (i) Sum power constraint only case is considered
when the per-antenna power constraints are never active, i.e.,
Ptot < mink(P̂k), (ii) Per-antenna power constraints only
case is considered when the sum power constraint is never
active, i.e., Ptot >

∑Nt

k=1 P̂k, and (iii) Joint sum and per-
antenna power constraints case are considered when the power
constraints relations satisfy mink(P̂k) ≤ Ptot ≤

∑Nt

k=1 P̂k,
i.e., both sum and per-antenna power constraints can be active.
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B. Trade-off Between Transmission Rate and Secrecy Rate

A wiretap channel consists of a legitimate receiver who
wishes to receive messages of high rate from a transmitter
in the presence of an eavesdropper. In general, for the general
wiretap channel, Csiszár and Körner considered transmitting a
message M , which is uniformly distributed over {1, . . . , 2nR}
where n and R are the block-length and the transmission rate
of communication, to the legitimate receiver under the obser-
vation of the eavesdropper [2]. They showed that for a discrete
memoryless wiretap channel, there exists a weakly-secure
coding scheme with transmission rate R and equivocation rate
Req ≤ 1

nH(M |Y n
e ) − ε, for some ε > 0, corresponding to

input-output variables that satisfy M → Xn → Y n
r Y

n
e . Let R

denote the set consisting of all non-negative achievable rate
pairs of transmission rate R and equivocation rate Req . Then
(R,Req) ∈ R if and only if there exist random variables
U → V → X → YrYe such that

0 ≤ Req ≤ I(V ;Yr|U)− I(V ;Ye|U) (3)
Req ≤ R ≤ I(V ;Yr|U) + min[I(U ;Yr), I(U ;Ye)]. (4)

The secrecy capacity, which is defined as the maximum rate
at which the message can be securely sent to the legitimate
receiver, is then given as

Cs = max
p(u)p(v|u)p(x|v)

I(V ;Yr|U)− I(V ;Ye|U). (5)

It is known from [3]–[5] that for Gaussian channels, the
secrecy capacity can be achieved with Gaussian distributed
inputs. It can be obtained by solving the following optimiza-
tion problem

Cs(p̂) = max
Q∈S(p̂)

Rs(Q), (6)

where Rs(Q) = log(1 + hH
r Qhr)− log(1 + hH

e Qhe).
In the following proposition, we provide a condition for a

positive secrecy capacity.

Proposition 1. A necessary and sufficient condition for a
positive secrecy capacity of a Gaussian MISO wiretap channel,
i.e., Cs(p̂) > 0, is that hrhH

r - hehH
e ∈ CNt×Nt has to have

a positive eigenvalue.

Proof: The proof of Proposition 1 is in Appendix A.
In [22] and [24], authors extended the problem in [2] to

a problem of simultaneously transmitting private and confi-
dential message. The coding schemes are designed such that
the legitimate receiver can decode the message of both public
and private layers while the eavesdropper might be able to
decode the message on the public layer only. Therefore, it is
reasonable to use the public layer to transmit useful messages
non-securely to the legitimate receiver instead of broadcasting
useless random messages in order to exhaust the capacity of
the eavesdropper only. In this setting, M = (Mp,Ms) where
a private message Mp and a confidential message Ms are uni-
formly distributed over {1, . . . , 2nRp} and {1, . . . , 2nRs}, is
transmitted from the transmitter to the legitimate receiver (see
Fig. 1). The confidential message Ms needs to be kept secret
from the eavesdropper while there is no secrecy constraint is
applied on Mp.

Following [22, Theorem 1], the region of the transmission
rate and equivocation of the Gaussian wiretap channel under
the power constraint (2) is given by the set of pairs of
transmission rate and equivocation rate satisfying

Re = Rs ≤ min{R,Cs(p̂)} (7)
R = Rp +Rs ≤ C(p̂), (8)

where

C(p̂) = max
Q∈S(p̂)

R(Q), (9)

with R(Q) = log(1 + hH
r Qhr).

Alternatively, in [22], authors also pointed out that a non-
negative pair (R,Re) = (Rp+Rs, Rs) is achievable for a dis-
crete memoryless wiretap channel if and only if (Rp, Rs) is an
achievable private-confidential rate pair for the same channel.
Rates in the rate pair above is actually the transmission rate R
and secrecy rate Rs, i.e., (R,Re) = (Rp+Rs, Rs) = (R,Rs).
Since the optimal choices of the optimal transmit strategies of
the transmission capacity in (9) and the secrecy capacity in (5)
do not have to be the same, a trade-off between two objectives
appears.

For a Gaussian MISO wiretap channel, the rate region R
that describes the trade-off, which is controlled by optimal
transmit strategy Q, between the transmission rate and secrecy
rate with a given set of power constraints can be described as

RMISO(p̂) = {[R,Rs] : 0 ≤ Rs ≤ R ≤ R(Q),

Rs ≤ Rs(Q),Q ∈ S(p̂)}. (10)

The boundary of the rate region RMISO(p̂) can be deter-
mined from the bounds on the secrecy rate (6), transmission
rate (9) and the Pareto optimal section for w ∈ (0, 1). This
implies that with weight 0 ≤ w ≤ 1 the optimal trade-off
between transmission and secrecy rates for a Gaussian MISO
wiretap channel with power constraints p̂, can be obtain by
solving the following optimization problem

R∑(p̂, w) = max
Q

R∑(Q, w), s. t.Q ∈ S(p̂), (11)

where

R∑(Q, w)=(1−w)R(Q) + wRs(Q)=R(Q)− wRe(Q) (12)

with Rs(Q) = R(Q)−Re(Q), R(Q) = log(1+ hH
r Qhr), and

Re(Q) = log(1 + hH
e Qhe).

Note that the secrecy rate is a fraction of the transmission
rate, i.e., 0 ≤ Rs ≤ R has to be satisfied. Therefore, the
boundary of the rate region is also bounded by a line for
which R = Rs. If this region is convex (see Fig. 2) then the
set of weighted rate sum optimal rate pairs characterize the
boundary of the rate region. If this region is non-convex, then
the set of all weighted rate sum optimal rate pairs can be used
to characterize the boundary of the convex hull of the rate
region, i.e., CMISO(p̂) = ConvexHull(RMISO(p̂)). In this
case, we need to allow time-sharing between two rate pairs.

In the following, we provide solutions for the optimization
problem (11). These also provide us a characterization of
the rate region (10) that describes the trade-off between the
transmission rate and the secrecy rate of the Gaussian MISO
wiretap channel.
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Fig. 2: Capacity region illustrating the trade-off between
transmission rate R and secrecy rate Rs

III. EQUIVALENT PROBLEM FORMULATIONS AND
PARAMETRIZATIONS OF THE BOUNDARY OF RATE REGION

Since (11) is not a convex optimization problem because
Rs(Q) is non-convex in Q, we first reformulate (11) using
the following lemma to an equivalent convex optimization
problem that allows further analysis.

Lemma 1 ([26, Lemma 2, scalar case]). Consider the function
f(D) = −DE + log(D) + 1 where D,E ∈ R, E > 0. Then,

max
D>0

f(D) = log(E−1), (13)

with the optimum value D? = E−1.

In the following, we provide two reformulations of (11)
using Lemma 1. Lemma 1 is first applied to both R(Q) and
Re(Q) of the weighted rate sum function (12). After that,
Lemma 1 is applied to Re(Q) of the weighted rate sum
function (12) only. The first reformulation is later used to
derive a closed-form solution of the optimal transmit strategy
for certain cases. The second reformulation is then used for
the derivation of an efficient iterative optimization algorithm.

A. Equivalent problem formulation for closed-form solution

By applying Lemma 1 with logE−1i = maxDi>0 fi(Di)
where Ei = 1 + hH

i Qhi and fi(Di) = −DiEi + log(Di) + 1
for i ∈ {r, e}, the optimization problem (11) can be expressed
as

R∑(p̂, w) = max
Q∈S(p̂)

log(1 + hH
r Qhr)− w log(1 + hH

e Qhe)

= max
Q∈S(p̂)

(− max
Dr>0

fr(Dr) + w max
De>0

fe(De))

= max
Q∈S(p̂)

min
Dr>0

max
De>0

(−fr(Dr) + wfe(De))

= max
Q∈S(p̂)

min
Dr>0

max
De>0

Dr(1 + hH
r Qhr)− log(Dr)

− 1 + w(−De(1 + hH
e Qhe) + log(De) + 1)

= max
Q∈S(p̂)

min
Dr>0

max
De>0

Dr(hH
r Qhr + w

De

Dr
hH
e Qhe)

+Dr − log(Dr)− 1 + w(−De + log(De) + 1). (14)

For a given w, let us define t := wDe

Dr
and φ(1)(Q, t) =

hH
r Qhr − thH

e Qhe = tr(AQ) with A := hrhH
r − thehH

e , then
(14) can be written as

R∑(p̂, w) = max
Q∈S(p̂)

min
Dr>0

max
De>0

Drφ
(1)(Q, t) +Dr − log(Dr)

+ w(−De + log(De) + 1)− 1. (15)

Although t is dependent on De, Dr and w, the optimization
with respect to Q only depends on t. Thus, we first find the
optimal transmit strategy Q(1)

opt(p̂, t) by solving

Q(1)
opt(p̂, t) = arg max

Q∈S(p̂)
φ(1)(Q, t) (16)

for a given t and power constraints p̂. After having the optimal
Q(1)

opt(p̂, t) for a given t, we can obtain the corresponding
optimal D?

e and D?
r following Lemma 1. The corresponding

w is then given by t
D?

r

D?
e

. The following theorem shows that
the previous procedure can be used to compute the optimal
weighted rate sum R∑(p̂, w).

Theorem 1. Let tmax = 2Cs(p̂), the optimal solution of (11)
can be determined as follows.
(i) For every w ∈ [0, 1] there exists a t ∈ [0, tmax]

such that Q(1)
opt(p̂, t) is an optimal transmit strategy, i.e.,

R∑(p̂, w) = R∑(Q(1)
opt(p̂, t), w).

(ii) For every t ∈ [0, tmax] there exists a w ∈ [0, 1]

such that Q(1)
opt(p̂, t) is an optimal transmit strategy, i.e.,

R∑(p̂, w) = R∑(Q(1)
opt(p̂, t), w).

Proof: The proof of Theorem 1 is in Appendix B
As a result, the optimal region that describes the trade-

off between the point-to-point transmission rate and the wire-
tap secrecy rate is equivalently described as RMISO(p̂) =
{[R,Rs] : 0 ≤ Rs ≤ R ≤ R(Q(p̂, t)), Rs ≤ Rs(Q(p̂, t)), t ∈
[0, tmax]}.

B. Equivalent problem formulation for iterative algorithm

By applying Lemma 1 with Ee(Q) = 1 + hH
e Qhe and

fe(De,Q) = −DeEe(Q)+log(De)+1 only, the optimization
problem (11) can be alternatively expressed as

R∑(p̂, w) = max
Q∈S(p̂)

log(1 + hH
r Qhr)− w log(1 + hH

e Qhe)

= max
Q∈S(p̂)

max
De>0

log(1 + hH
r Qhr) + wfe(De,Q)

= max
Q∈S(p̂)

max
De>0

log(1 + hH
r Qhr)

+ w(−De(1 + hH
e Qhe) + log(De) + 1). (17)

Similarly, if we define s = wDe and φ(2)(Q, s) = log(1 +
hH
r Qhr)− shH

e Qhe, then (17) can be written as

R∑(p̂, w) = max
Q∈S(p̂)

max
De>0

φ(2)(Q, s)− s+ w log(De) + w.

Then the problem of finding the optimal transmit strategy
Q(2)

opt(p̂, s) depends only on s can be expressed as

Q(2)
opt(p̂, s) = arg max

Q∈S(p̂)
φ(2)(Q, s). (18)
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The approach is similar as for the previous reformulation
in Section III.A. Although s is dependent on De and w, the
optimization with respect to Q only depends on s. Thus, we
first solve (18) for a given s and power constraints p̂. Once
Q(2)

opt(p̂, s) is obtained, the corresponding D?
e and weight w

can be found using Lemma 1 and formula w = s/D?
e =

s(1 + hH
e Q(2)

opts(p̂, s)he).

Theorem 2. Let smax = (1 + hH
e Qshe)

−1 with Qs =
arg maxQ∈S(p̂)R

∑(Q, w = 1) = arg maxQ∈S(p̂)Rs(Q), the
optimal solution of (11) can be determined as follows.

(i) For every w ∈ [0, 1] there exists a s ∈ [0, smax]

such that Q(2)
opt(p̂, s) is an optimal transmit strategy, i.e.,

R∑(p̂, w) = R∑(Q(2)
opt(p̂, s), w).

(ii) For every s ∈ [0, smax] there exists a w ∈ [0, 1]

such that Q(2)
opt(p̂, s) is an optimal transmit strategy, i.e.,

R∑(p̂, w) = R∑(Q(2)
opt(p̂, s), w).

Proof: The proof of Theorem 2 can be done by simply re-
place t ∈ [0, tmax] in the proof of Theorem 1 by s ∈ [0, smax].

As a result, the optimal region that describes the trade-
off between the transmission rate and the secrecy rate is
equivalently described as RMISO(p̂) = {[R,Rs] : 0 ≤ Rs ≤
R ≤ R(Q(p̂, s)), Rs ≤ Rs(Q(p̂, s)), s ∈ [0, smax]}.

In the following, we propose solutions to find the optimal
transmit strategy and characterize the optimal trade-off be-
tween the transmission rate and secrecy rate of the Gaussian
wiretap channels using the reformulations above.

C. Beamforming Optimality

The rank of the optimal transmit strategy for a given set of
power constraints p̂ is given in the following theorem.

Theorem 3. For an optimal transmit strategy, it is sufficient
to consider beam-forming strategies, i.e., there exists always
an optimal rank one solution.

Proof: The proof of Theorem 3 is in Appendix C.

IV. FINDING OPTIMAL TRANSMIT STRATEGIES USING
CLOSED-FORM SOLUTION

In this section, we present closed-form solutions of the
optimal transmit strategies for a given t of the weighted rate
sum optimization problem for the MISO wiretap channel for
three different power constraint cases: (i) with a sum power
constraint only; (ii) per-antenna power constraints only; and
(iii) with joint sum and per-antenna power constraints.

A. Sum Power Constraint Only

In the sum power constraint only case, the per-antenna
power constraints are never active, e.g., if we have Ptot < P̂k

∀k. Let SSPC denote the set of all allocated powers which
satisfy the sum power constraint Ptot only, i.e., SSPC = {Q �
0 : tr(Q) ≤ Ptot}. The equivalent problem of finding the
weighted rate sum optimal transmit strategy for the MISO

wiretap channel with sum power constraint only for a given t
can be written as

QSPC(t) = arg max
Q∈SSPC

φ(1)(Q, t), (19)

where φ(1)(Q, t) = hH
r Qhr − thH

e Qhe.

Theorem 4. The closed-form expression for the optimal trans-
mit strategy of (19) is given by

Q(1)
SPC(t) = PtotvvH (20)

where v is the eigenvector associated with the largest eigen-
value of hrhH

r − thehH
e for a given t.

Proof: The proof of Theorem 4 is in Appendix D.
In the next sections, we aim to find optimal solutions for

the two remaining cases with per-antenna power constraints
only and with joint sum and per-antenna power constraints.

B. Per-antenna Power Constraints Only

The per-antenna power constraints only case is considered
when the sum power constraint is never active, e.g., Ptot >∑

k∈I P̂k with I = {1, . . . , Nt}. Let SPAPC denote the set
of all power allocations which satisfy the per-antenna power
constraints P̂k, ∀k ∈ I, only, i.e., SPAPC = {Q � 0 :
eTk Qek ≤ P̂k,∀k ∈ I}. The equivalent problem of finding
the weighted rate sum optimal transmit strategy for the MISO
wiretap channel with per-antenna power constraints only for a
given t can be written as

Q(1)
PAPC(t) = arg max

Q∈SPAPC

φ(1)(Q, t), (21)

where φ(1)(Q, t) = hH
r Qhr − thH

e Qhe.
In general, the diagonal elements of the optimal transmit

strategy can be obtained by the proposition below.

Proposition 2. The optimal transmit strategy QPAPC(t) of
problem (21) has diagonal elements qkk = P̂k, ∀k ∈ I.

Proof: The proof of Proposition 2 is in Appendix E.
Proposition 2 shows that for the per-antenna power con-

straint only problem, it is optimal to allocate maximal indi-
vidual power on the transmit antennas. The remaining problem
is to find off-diagonal elements of QPAPC(t) for a given t.

The main difficulty here is the positive semi-definite con-
straint. To overcome this, we consider a relaxed optimization
problem involving the 2 × 2 principal minors of QPAPC(t)
similarly as done in [27]. Let Xk,l(t) be a principal minor
matrix which is obtained from Q by removing Nt−2 columns,
except columns k and l, and the corresponding Nt − 2 rows
except rows k and l. Then, Xk,l(t) is given as

Xk,l(t) =

[
P̂k q∗kl(t)

qkl(t) P̂l

]
(22)

where k, l ∈ I, k 6= l. Therewith, we can formulate a relaxed
optimization problem as follows

max
Q

φ(1)(Q, t), s. t. qkk = P̂k,∀k ∈ I (23)

Xk,l(t) � 0,∀k, l ∈ I, k 6= l.
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The off-diagonal elements of the covariance matrix in (23)
then can be obtained using the following theorem.

Theorem 5. The optimal transmit strategy QPAPC−R(t) of
the relaxed optimization problem (23) has off-diagonal ele-
ments

qkl(t) =
h∗rkhrl − th∗ekhel
|h∗rkhrl − th∗ekhel|

√
P̂kP̂l, k, l ∈ I, k 6= l. (24)

Proof: The proof of Theorem 5 is in Appendix F.
From Proposition 2 and Theorem 5, we have the following

conclusion and remarks.

Corollary 1. If there are only two transmit antennas, i.e.,Nt =
2, then (24) always leads to a positive semi-definite solution
with eigenvalues zero and P̂1 + P̂2, i.e., the optimal solution
(24) of the relaxed optimization problem (23) is actually the
optimal solution of (21).

For n > 2, it is not clear if (24) always results in a
positive semi-definite solution. Numerical experiments suggest
this assumption, but a proof is missing. So that, we have only
the following remark.

Remark 1. If the solution (24) leads to a positive semi-definite
solution, then it is also an optimal solution of (21).

Thus it is a good strategy to first compute the solution
according to (24) and then test if it is positive semi-definite.

C. Joint Sum and Per-antenna Power Constraints

In this section, we discuss the optimization for the wiretap
channel for the interesting case when both sum and per-
antenna power constraints can be active, i.e., mink(P̂k) ≤
Ptot ≤

∑Nt

i=1 P̂k [19]. Let SJSPC = {Q � 0 : tr(Q) ≤
Ptot, eTk Qek ≤ P̂k,∀k ∈ I} denote the set of all power
allocations which satisfy the joint sum and per-antenna power
constraints. Then similar to the optimization problem with sum
power constraint only and per-antenna power constraints only,
an equivalent optimization problem for finding the optimal
transmit strategy for the Gaussian wiretap channel with joint
sum and per-antenna power constraints can be stated as

Q(1)
JSPC(t) = arg max

Q∈SJSPC

φ(1)(Q, t) (25)

for a given t, where φ(1)(Q, t) = hH
r Qhr − thH

e Qhe.

Proposition 3. For mink(P̂k) ≤ Ptot ≤
∑Nt

k=1 P̂k, the
optimal solution for the MISO wiretap channel with joint
sum and per-antenna power constraints problem can be
achieved when the transmit strategy uses full power Ptot, i.e.,
tr(Q(1)

JSPC(t)) = Ptot.

Proof: The proof of Proposition 3 is in Appendix G.
This proposition permits us to consider only transmit strate-

gies which allocate full power Ptot. If the solution of the sum
power constraint only problem does not violate the per-antenna
power constraints, then it is also the solution of the joint sum
and per-antenna power constraints problem. However, this is
not always the case. In such cases, the maximum per-antenna
power will be allocated to those antennas for which the

sum power constraint only optimal solution violates the per-
antenna power constraints. For arbitrary number of transmit
antennas, the following theorem will show that if there exists
any antenna for which the optimal power allocation of the
optimization problem with sum power constraint only exceeds
the per-antenna power constraints, then for those antennas
the optimal power allocation is equal the per-antenna power
constraints and (25) reduces to a new optimization problem
with a smaller total transmit power and a reduced number of
channel coefficients.

Theorem 6. For mink(P̂k) ≤ Ptot ≤
∑Nt

k=1 P̂k, let Q(1)
SPC(t)

be the optimal transmit strategy under the sum power con-
straint only, A = hrhH

r − thehH
e =

∑2
l=1 λluluH

l and P :=

{k ∈ I : eTk Q(1)
SPC(t)ek > P̂k} where I := {1, . . . , Nt}. If

P = ∅ then Q(1)
JSPC(t) = Q(1)

SPC(t), else eTk Q(1)
JSPC(t)ek = P̂k,

∀k ∈ P and the remaining optimal powers can be computed
by solving a reduced optimization problem

arg max
q′∈Q′

2∑
l=1

λl|q′Hu′l|2 (26)

where Pc = I \ P and Q′ := {q′ :
∑

k∈Pc |qk|2 ≤ Ptot −∑
k∈P P̂k, |qk|2 ≤ P̂k,∀k ∈ Pc} and u′l = [ulk]k∈Pc .

Proof: The proof of Theorem 6 is in Appendix H
For a special case where the transmitter has two transmit

antennas only, a closed-form solution of the optimal transmit
strategy can be shown in the following theorem.

Theorem 7. For mink(P̂k) ≤ Ptot ≤
∑2

k=1 P̂k, let QSPC(t)
be the optimal transmit strategy under the sum power con-
straint only. Let P := {k ∈ {1, 2} : eTk QSPC(t)ek > P̂k}.
Then, for the optimization problem with joint sum and per-
antenna power constraints, we have
• If P = ∅, Q(1)

JSPC(t) = Q(1)
SPC(t)

• Otherwise QJSPC(t) has diagonal elements{
eTk Q(1)

JSPC(t)ek = P̂k,
eTl Q(1)

JSPC(t)el = Ptot − P̂k,
(27)

and off-diagonal elements

qkl(t) =
h∗rkhrl − th∗ekhel
|h∗rkhrl − th∗ekhel|

√
P̂k(Ptot − P̂k), (28)

for k ∈ P , l 6= k.

Proof: Since the case with P = ∅ is obvious, we
focus to prove the remaining case. Consider a scalar function
φ(1)(Q, t) := hH

r Qhr− thH
e Qhe. From [28, Lemma 3.10], we

know that for a given t the scalar function φ(1)(Q, t) : Q →
R+ is matrix-monotone in Q. Therefore, if any k-th optimal
power of the sum power constraint only solution violates a
per-antenna power constraint, then it has to be set equal to the
maximal individual power P̂k, k ∈ {1, 2}. Due to Proposition
3, the remaining optimal transmit power has to set equal to
Ptot−P̂k and the off-diagonal elements of the optimal transmit
strategy for the wiretap channel with joint sum and per-antenna
power constraints are then calculated using Theorem 5 with the
corresponding optimal transmit powers eTk QJSPC(t)ek = P̂k

and eTl QJSPC(t)el = Ptot − P̂k, k ∈ P , l 6= k.
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V. FINDING OPTIMAL TRANSMIT STRATEGY USING
ITERATIVE ALGORITHMS

In this section, we aim to find the solutions of the op-
timal transmit strategy for a given s of the weighted rate
sum optimization problem for the MISO wiretap channel
under a given set of power constraints. Since the equivalent
problem in (18) is convex, it allows optimal solutions to
be found numerically using convex optimization tools [29].
However more tailored approaches have lower computational
complexity and are therefore more interesting for practical
systems. We provide in the following an algorithmic solution
based on the semi-definite programming (SDP) framework
with significantly lower complexity.

Let us consider the optimization problem for a given s

max
Q

φ(2)(Q, s) s. t.Q ∈ S(p̂), (29)

where φ(2)(Q, s) = log(1 + hH
r Qhr)− shH

e Qhe.
The Lagrangian for the problem (29) is given by

L = φ(2)(Q, s)−tr(D(Q− P̂))−µ(tr(Q)− Ptot)+tr(MQ),

where dual variable D = diag{νi} is a diagonal matrix of
Lagrangian multipliers for the per-antenna power constraints,
dual variable µ is the Lagrangian multiplier for the sum power
constraint, dual variable M is the Lagrangian multiplier for the
positive semi-definite constraint, and P̂ = diag{P̂i}, ∀i ∈ I
is a diagonal matrix of the per-antenna power constraints.

Taking the first derivative of the Lagrangian above and
setting it equal to zero, we obtain

∂L
∂Q

= hr(1 + hH
r Qhr)−1hH

r − shehH
e − D− µI + M

= hr(1 + hH
r Qhr)−1hH

r −K + M !
= 0, (30)

with K = shehH
e + D + µI.

The KKT conditions then can be derived as

hr(1 + hH
r Qhr)−1hH

r = K−M (31)

tr(Q) ≤ Ptot eTk Qek ≤ P̂k,∀k ∈ I Q � 0

µ ≥ 0 D � 0 M � 0

µ(tr(Q)− Ptot) = 0 tr(D(Q− P̂)) = 0 MQ = 0.

Since (29) is a convex optimization problem, the solution for
the optimal transmit strategy Q corresponding to a given set of
power constraints can be found from above equations. Based
on the KKT conditions, we obtain a set of optimality condi-
tions corresponding to a given s and a set of power constraints
as well as establish the optimal value of Q as an explicit
function of the dual variables. As a result, in the following
we can design iterative algorithms to find the optimal dual
variables and optimal transmit strategies corresponding to sets
of power constraints above. Since K is invertible, we have the
following lemma.

Lemma 2. The optimality condition for the optimization
problem (18) with a given set of power constraints is

hH
r Ǩhr − hH

r Qhr = 1, (32)

with Ǩ = K−1.

Proof: The proof of Lemma 2 is in Appendix I
Next, we establish the optimal transmit strategy Q in terms

of dual variables D and µ. Similarly as in [11], to approach the
solution, we first need to decompose channel hH

r as follows.

hH
r = [σ 01,n−1][v1 V2]H = σvH1 , (33)

where n = Nt, σ is a singular value, v1 is the first column
which contains the basis for the row space of hH

r and V2 is the
last n− 1 columns of the right singular vector which contains
the basis for the null space of hH

r .

Theorem 8. Let ȟH

r = v1σ−1. For a given dual variable
R = D + µI � 0, the optimal transmit strategy Q for a given
s satisfying the optimality condition (32) is given by

Q(2)
opt(p̂, s) = R−1 − ȟH

r ȟr − X− Y, (34)

with Hermitian matrices

X = V2AVH
2 + v1BVH

2 + V2BHvH1 , (35)

A =
(

In−1−BHvH1 (R+shehH
e )V2

)(
VH
2 (R + shehH

e )V2

)−1
,

(36)

B =
(

vH1 ȟH

r ȟr(R + shehH
e )V2

)(
VH
2 (R + shehH

e )V2

)−1
,

(37)

Y = R−1shehH
e (In + RshehH

e )−1R−1. (38)

Proof: The proof of Theorem 8 is in Appendix J
Theorem 8 suggests an iterative algorithm to find the dual

variables D and µ for the optimization problem (18), which
correlate to the optimal transmit strategy Q(2)

opt(p̂, s). The
algorithm is initialised with an arbitrary starting point D � 0
and µ ≥ 0 such that R = D + µI � 0. At the i-th iteration,
we obtain Ri, and can compute

Xi = V2AiVH
2 + v1BiVH

2 + V2BH
i vH1 (39)

Yi = R−1i shehH
e (In + RishehH

e )−1R−1i (40)

Q(2)
i (p̂, s) = R−1i − ȟH

r ȟr − Xi − Yi. (41)

The covariance matrix Q(2)
i (p̂, s) as computed in (41) has rank

one, but it is not guaranteed that Q(2)
i (p̂, s) will satisfy all

power constraints. To satisfy all power constraints, the dual
variables in (31) have to be updated such that duality gaps
between them and primal variables, i.e., power constraints,
approach to zero. Since the optimization problem to find
the optimal transmit strategy with sum power constraint only
can be done using closed-form solution in Theorem 4, in
the following, it is only interesting for us to show how the
dual variables are updated in two remaining power constraint
settings: per-antenna power constraints only and joint sum and
per-antenna power constraints.

A. Per-antenna Power Constraints Only

For the per-antenna power constraints only problem, i.e.,
Ptot >

∑Nt

k=1 P̂k, we have the dual variable of the sum power
constraint µ = 0 while the dual variable of per-antenna power
constraints D � 0. This implies that at the i-th iteration we
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have Ri = Di, so that the optimal transmit strategy of (29)
with per-antenna power constraints only can be written as

Q(2)
PAPC,i(s) = D−1i − ȟH

r ȟr − XPAPC,i − YPAPC,i. (42)

However, for Q(2)
PAPC,i(s) as computed in (42), it is not

guaranteed that diag{Q(2)
PAPC,i(s)} = P̂. Therefore, the dual

variable has to be updated to Di+1 as follows

D−1i+1 = D−1i + P̂− diag(Q(2)
PAPC,i(s)). (43)

The algorithm stops when diag{Q(2)
PAPC,i(s)} is close to P̂

within an acceptable tolerance, i.e., the duality gap is suffi-
ciently small. For a given D, the duality gap for the equivalent
optimization problem with per-antenna power constraints only
is defined as

G(D) = − tr(D(Q(2)
PAPC(s)− P̂)). (44)

Since (18) is convex and Slater’s condition holds, it is guar-
anteed that the duality gap will converge to zero [29], i.e., the
algorithm will converge to the optimum. The detail analysis
of the duality gap is shown in Proposition 4, which ensures
that algorithm converges.

B. Joint Sum and Per-antenna Power Constraints

From Proposition 3, we know that the optimal transmit
strategy can be achieved when full power Ptot is used. This
allows us to consider only transmit strategies which allocate
full power Ptot. Furthermore, from Theorem 6, we know that
if the solution of the sum power constraint only problem does
not violate the per-antenna power constraints, then it is also
the solution of the joint sum and per-antenna power constraints
problem. Otherwise, the maximum power will be allocated
to those antennas for which the sum power constraint only
optimal solution violates the per-antenna power constraints.
Therefore, for mink(P̂k) ≤ Ptot ≤

∑Nt

k=1 P̂k, we have the
dual variable of the sum power constraint µ > 0 and the
dual variable of per-antenna power constraints D � 0. Then,
Q(2)

JSPC,i(s) can be computed as

Q(2)
SJPC,i(s) = R−1i − ȟH

r ȟr − XSJPC,i − YSJPC,i. (45)

The dual variables are updated as

µ−1i+1 = µ−1i + Ptot − tr(Q(2)
JSPC,i(s)), (46)

D−1i+1 = D−1i + P̂− diag(Q(2)
JSPC,i(s)), (47)

R−1i+1 = (µi+1I + Di+1)−1. (48)

The algorithm stops when tr(Q(2)
SJPC,i(s)) = Ptot and the

diagonal elements of Q(2)
JSPC,i(s) are smaller or equal to P̂k

∀k, i.e., P̂− diag{Q(2)
JSPC,i(s)} � 0.

The details of the algorithm to find the optimal transmit
strategy with two different power constraint settings, per-
antenna power constraints only and joint sum and per-antenna
power constraints only, are summarized in Algorithm 1. Next,
we analyse the convergence properties of the algorithm. The
convergence of the algorithm is guaranteed due to the follow-
ing proposition.

Algorithm 1: Qopt(s) = OptimalQ(s,hr,he, P̂, Ptot)

1 Initialize i = 1, ε > 0, µ1 > 0, D1 � 0.
2 Compute v1, V2 by decomposing hH

r as in (33).
// Per-antenna Power Constraints Only

3 if Ptot >
∑Nt

k=1 P̂k then
4 repeat
5 Compute BPAPC,i, APAPC,i, XPAPC,i,

YPAPC,i, and QPAPC,i(s) from (37), (36), (39),
(40), and (42) with Ri = Di

6 Update Di+1 using (43)
7 i← i+ 1.
8 until | tr(Di(QPAPC,i(s)− P̂)| < ε;
9 Return Qopt(s) = QPAPC(s)

10 end if
// Joint Sum and Per-antenna Power

Constraints

11 if mink(P̂k) ≤ Ptot ≤
∑Nt

k=1 P̂k then
12 repeat
13 Set Ri = Di + µiI
14 Compute BSJPC,i, ASJPC,i, XSJPC,i, YSJPC,i,

and QSJPC,i(s) from (37), (36), (39), (40), and
(45)

15 Update Ri+1 using (46), (47) and (48)
16 i← i+ 1.
17 until |µi(tr(QJSPC,i(s))− Ptot)| < ε,

diag(QJSPC,i(s)) ≤ P̂;
18 Return Qopt(s) = QJSPC(s)
19 end if

Proposition 4 ( [11]). Let Π be a set of matrices with diagonal
elements +1 or -1. There exists a π ∈ Π and K such that R−1i π
is decreasing in i for some π and for all iterations k ≥ K,
and
(1) if Ptot >

∑Nt

k=1 P̂k then (diag(Q(2)
k (p̂, s))− P̂)π � 0,

(2) if mink(P̂k) ≤ Ptot ≤
∑Nt

k=1 P̂k then (tr(Q(2)
k (p̂, s) −

Ptot)π � 0 and (diag(Q(2)
k (p̂, s))− P̂)π � 0.

From Proposition 4, we obtain that since R−1i π is decreasing
in i, Algorithm 1 always converges to the optimum.

The trade-off between transmission rate and secrecy rate as
denoted in (10) is then characterized. The curved section of
the boundary of the rate region is parametrized by s, 0 ≤ s ≤
smax. A specific rate pair on the boundary then can be found
by performing a line search.

VI. NUMERICAL EXAMPLES

In this section, illustrative numerical examples for the
optimization problems with sum power constraint only and
per-antenna power constraint only with two antennas at the
transmitter, and one antenna at legitimate receiver and eaves-
dropper each are shown. We first provide a MISO wiretap
channel with two transmit antennas. The complex channel co-
efficients corresponds to legitimate receiver and eavesdropper
are given as hr = [0.3737 + 0.8912i, 0.9795 + 1.2926i]T and
he = [0.4387 + 0.7655i, 0.3816 + 0.7952i]T . The powers on
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Fig. 3: The optimal regions between the transmission rates and
the secrecy rate with sum power constraint only Ptot = 15 and
per-antenna power constraints only P̂1 = 5 and P̂2 = 10

maximum transmit power on antennas are set as P̂1 = 5 and
P̂2 = 10. The sum power constraint Ptot = 15.

Fig. 3 depicts optimal regions between the transmission rate
and the secrecy rate of the wiretap channel with two different
sets of power constraints: sum power constraint only and per-
antenna power constraints only. The figure shows that the
regions are fully characterized by the curved sections which
can be obtained from the optimal solutions in Sections IV. A,
IV. B, and V. A. It also shows the optimal trade-off between the
transmission rate and the secrecy rate. For instance, we can see
that the strategies that maximize the secrecy rates, t = 2C

SPC
s

with CSPC
s = 1.5783 for the case with sum power constraint

only and t = 2C
PAPC
s with CPAPC

s = 1.4182 for the case
with per-antenna power constraints only. These respectively
correspond to sSPC

max = 0.3349 and sPAPC
max = 0.3742.

VII. CONCLUSIONS

In this paper, we studied the trade-off between the transmis-
sion rate and the secrecy rate of the Gaussian MISO wiretap
channels considering different power constraint settings. The
optimization problem is non-convex, thus difficult. However,
using equivalent convex reformulations allow the character-
ization of the boundary of the rate region on which then
the optimal rate pair can be found by a simple line search.
In particular, for the optimization problem with sum power
constraint only, the optimal transmit strategy is character-
ized by a simple closed-form solution. For the optimization
problem with per-antenna power constraints only, a relaxed
optimization problem can be used to compute a strategy that
is optimal if the transmit covariance matrix is rank one, which
always hold for Nt ≤ 2. Since the optimality for Nt > 2
cannot be established, an efficient optimization algorithm
based on primal-dual approach and semi-definite programming
framework has been provided. The extension to the joint sum
and per-antenna power constraints is similar as in [19]. Lastly,
we are convinced that studies on optimal transmit strategies

including more advanced power constraint settings are highly
relevant for future wireless networks, in particular for massive
MIMO setups.

APPENDIX

A. Proof of Proposition 1

To prove the proposition, we need to show the necessity and
sufficiency . For the necessary part, we need to show that for
Rs(Q) > 0, hrhH

r −hehH
e has at least one positive eigenvalue.

The secrecy rate can be written as

Rs(Q) = log(1 + hH
r Qhr)− log(1 + hH

e Qhe)

= log

(
1 +

tr{(hrhH
r − hehH

e )Q}
1 + hH

e Qhe

)
> 0. (49)

Since 1 + hH
e Qhe > 0, it follows that tr(AQ) > 0 with A =

hrhH
r −hehH

e . Since tr(AQ) =
∑Nt

i=1 λi(Q)vHi Avi > 0, there
must exist an î ∈ {1, . . . , Nt} such that vH

î
Avî > 0. Thus, we

have

λmax(A) = max
‖vi‖=1

vHi Avi ≥ vH
î

Avî > 0. (50)

For the sufficient part, we need to show that if A = hrhH
r −

hehH
e has a positive eigenvalue, then there exists Q ∈ S(p̂)

such that Rs(Q) > 0.
Since A has a positive eigenvalue, there exist a vector

v : ‖v‖ = 1 such that vHAv > 0. This implies that we
can construct Q = ξvvH , ξ > 0, such that Q ∈ S(p̂) and
tr(AQ) > 0. Then we have

Rs(Q) = log(1 + hH
r Qhr)− log(1 + hH

e Qhe)

= log

(
1 +

tr(AQ)

1 + hH
e Qhe

)
> 0.

�

B. Proof of Theorem 1

First, we show that for every w ∈ [0, 1] there exists a t ∈
[0, tmax] with tmax = 2Cs(p̂) such that Q(1)

opt(p̂, t) is an optimal
transmit strategy, i.e., R∑(p̂, w) = R∑(Q(1)

opt(p̂, t), w).
For a given w ∈ [0, 1] we assume that there exist no t ∈

[0, tmax] such that Q(1)
opt(p̂, t) is optimal. This implies that there

exist a Q? so that R∑(p̂, w) = R∑(Q?, w) and

R∑(Q?, w) > R∑(Q(1)
opt(p̂, t), w) ∀t ∈ [0, tmax]. (51)

Following Lemma 1 we know that for an optimal Q? the
corresponding values D?

r and D?
e are computed as

D?
r = (1 + hH

r Q?hr)−1, (52)

D?
e = (1 + hH

e Q?he)
−1. (53)

Then for w ∈ [0, 1] we have:

R∑(Q?, w) = D?
r(1 + hH

r Q?hr)− log(D?
r)− 1

+ w(−D?
e(1 + hH

e Q?he) + log(D?
e) + 1)

≤ max
Q∈S(p̂)

D?
r(hH

r Qhr − w
D?

e

D?
r

hH
r Qhr) +D?

r

− log(D?
r)− 1− wD?

e − w log(D?
r)− w. (54)
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Following (15) and (16) we know that the optimal solution
for the latter of (54) is computed as

Q? = arg max
Q∈S(p̂)

hH
r Qhr − w

D?
e

D?
r

hH
r Qhr

= Q(1)
opt(p̂, w

D?
e

D?
r

) = Q(1)
opt(p̂, t), (55)

where 0 ≤ t = w
D?

e

D?
r
≤ tmax. This implies that

R∑(Q?, w) ≤ R∑(Q(1)
opt(p̂, t), w), (56)

for t = w
D?

e

D?
r
∈ [0, tmax]. However, this contradicts with (51).

Thus, it follows that for every w ∈ [0, 1] there exists a t ∈
[0, tmax] such that Q(1)

opt(p̂, t) is an optimal transmit strategy.
Next, we show that for every t ∈ [0, tmax] there exists a

w ∈ [0, 1] such that Q(1)
opt(p̂, t) is an optimal transmit strategy,

i.e., R∑(p̂, w) = R∑(Q(1)
opt(p̂, t), w). Suppose that Q? is an

optimal solution of (16), then from Lemma 1 we know that
for a given Q? the corresponding values t ∈ [0, tmax] is given
by t = w

D?
e

D?
r

with

D?
r = (1 + hH

r Q?hr)−1, (57)

D?
e = (1 + hH

e Q?he)
−1, (58)

and Q? must satisfy the KKT condition of (18) which is given
as follows.

∂

∂Q
φ(1)(Q, t) = D + µI−M (59)

tr(Q) ≤ Ptot eTk Qek ≤ P̂k,∀k ∈ I Q � 0

µ ≥ 0 D � 0 M � 0

µ(tr(Q)− Ptot) = 0 tr(D(Q− P̂)) = 0 MQ = 0.

On the other hand, we have

∂

∂Q
φ(1)(Q, t)

∣∣∣∣
Q=Q?, t=t

= D?
rhrhH

r − wD?
ehehH

e

= hr(1 + hH
r Q?hr)−1hH

r − whe(1 + hH
e Q?he)

−1hH
e

=
∂

∂Q
R∑(Q, w)

∣∣∣∣
Q=Q?, w=t

D?
r

D?
e

. (60)

Therefore, we can conclude from (59) and (60) that the optimal
transmit strategy Q? is also an optimal solution of (11) with
0 ≤ w = t

D?
r

D?
e
≤ 1. �

C. Proof of Theorem 3

From Theorem 1, we obtained that every optimal transmit
strategy obtained from (18) is the same as the optimal transmit
strategy obtained from (16) and is the optimal transmit strategy
of (11). This implies that, for a given w, at the optimum we
have s = wD?

e , t = w
D?

e

Dr?
and

Q(2)
opt(p̂, s) = Q(1)

opt(p̂, t) = Qopt(p̂, w). (61)

Thus, it is sufficient to find the rank of the optimal transmit
strategy by considering the following optimization problem

max
Q

φ(2)(Q, s), s. t.Q ∈ S(p̂). (62)

The Lagrangian for problem (62) is given by

L = log(1 + hH
r Qhr)− shH

e Qhe − tr(D(Q− P̂))

− µ(tr(Q)− Ptot) + tr(MQ), (63)

where D = diag{νk} is a diagonal matrix of Lagrangian
multiplier for the per-antenna power constraints, µ is the
Lagrangian multiplier for the sum power constraint, M is the
Lagrangian multiplier for the positive semi-definite constraint,
and P̂ = diag{P̂k}, ∀k ∈ I = {1, . . . , Nt}, is a diagonal
matrix of the per-antenna power constraints.

Taking the first derivative of the Lagrangian above and set
equal to zero, we have

∂L
∂Q

= hr(1 + hH
r Qhr)−1hH

r − shehH
e − D− µI + M

= hr(1 + hH
r Qhr)−1hH

r −K + M !
= 0, (64)

where K = shehH
e + D + µI.

By using the slackness condition MQ = 0, we obtain
hrhH

r Q = (1 + hH
r Qhr)KQ by multiplying (64) with Q from

the right. On the other hand, from the KKT condition of
the convex optimization problem (62), we know that in the
optimum either the sum power constraint is active or all per-
antenna power constraints are active. i.e., we have either µ > 0
or D � 0. This implies that, in the optimum, K has full rank
and

rank(Qopt(p̂, w)) = rank(hrhH
r Q) ≤ rank(hrhH

r ) = 1.

Since rank(Qopt(p̂, w)) = 0 is not optimal, the optimal rank
of Qopt(p̂, w)) is one. This proves Theorem 3. �

D. Proof of Theorem 4

By using singular value decomposition, for a given t, we
have hrhH

r − thehH
e = VΛVH . Let Q̃ = VHQV, we obtain

Q̃ � 0. Then

φ(1)(Q, t) = tr{(hrhH
r − thehH

e )Q} = tr{ΛQ̃}
= tr{Λ diag(Q̃)} ≤ λmaxPtot (65)

with λmax is the largest entry in Λ and tr(Q̃) = tr(Q) = Ptot.
Equation (65) holds with equality if Q̃ is diagonal and has a

unique nonzero entry equal to Ptot corresponding to the largest
entry of Λ. This implies that Q and hrhH

r − thehH
e share the

same eigenvectors and Q has rank one. Therefore, we have
Q(1)

SPC(t) = PtotvvH where v is the eigenvector associated
with the largest eigenvalue of hrhH

r − thehH
e for a given t.

This proves Theorem 4. �

E. Proof of Proposition 2

Consider the optimization problem

max
Q

φ(1)(Q, t), s. t. Q ∈ SPAPC . (66)

The Lagrangian for the problem (66) is given by

L = hH
r Qhr − thH

e Qhe − tr(D(Q− P̂)) + tr(MQ), (67)

where D = diag{νk} is a diagonal matrix of Lagrangian
multiplier for the per-antenna power constraints, M is the
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Lagrangian multiplier for the positive semi-definite constraint,
and P̂ = diag{P̂k}, ∀k ∈ I = {1, . . . , Nt}, is a diagonal
matrix of the per-antenna power constraints. Based on the
KKT conditions, we then obtain a set of optimality conditions
as hrhH

r − thehH
e = D + M,MQ = 0,D � 0, and

Hermitian Q,M � 0.
Since D � 0 has full-rank, at the optimum the power

constraint must be met with equality, i.e., qkk = P̂k, ∀k ∈ I,
otherwise we can always increase the power and get higher
rate. This proves Proposition 2. �

F. Proof of Theorem 5

Consider an optimization problem (23). The Lagrangian for
problem (23) is given by

L = hH
r Qhr − thH

e Qhe

−
∑
k 6=l

λkl(|qkl(t)|2 − P̂kP̂l)−
∑
k

µk(qkk − P̂k), (68)

where λkl and µk are the Lagrange multipliers, and k, l ∈ I.
Taking the first derivative of (68) and set it equal to zero, we
have

∂L
∂qkl

= h∗rkhrl − th∗ekhel − λklqkl(t)
!
= 0, (69)

or equivalently

qkl(t) =
h∗rkhrl − th∗ekhel

λkl
. (70)

Similar to [17], the optimal value of qkl in (70) is obtained
when its constraint is satisfied with equality, i.e., |qkl(t)|2 =
P̂kP̂l. By combining this condition with (70), we have the
value of qkl(t) as in (24). �

G. Proof of Proposition 3

Given function φ(1)(Q, t) = hH
r Qhr − thH

e Qhe : Q→ R+.
From [28], it follows that for any positive semi-definite Her-
mitian matrices Q1 � Q2, we have φ(1)(Q1, t) ≥ φ(1)(Q2, t).
This implies that for (25) the optimal solution is achieved
when the optimal transmit strategy allocates the maximal sum
power Ptot, i.e., tr(Q(1)

JSPC(t)) = Ptot. �

H. Proof of Theorem 6

The case with P = ∅ is obvious, we focus to prove
the remaining case. By applying [19, Lemma 2], we obtain
that if any optimal power of sum power constraint only
solution violated the per-antenna power constraints, it has
to set equal to the maximal individual power, i.e., |qk|2 =

eTk Q(1)
JSPC(t)ek = P̂k, ∀k ∈ P . Therefore, for the rest of this

proof, we focus to show that the remaining optimal power can
be computed by solving a reduce optimization problem.

Since the rank of matrix A = hrhH
r − thehH

e is at most
two, we can express A as A = λ1u1uH

1 + λ2u2uH
2 . Then we

have

arg max
Q∈SJSPC

φ(1)(Q, t) = arg max
q:qqH∈SJSPC

qH(λ1u1uH
1 + λ2u2uH

2 )q

= arg max
q:qqH∈SJSPC

2∑
l=1

λi|qHul|2

= arg max
q:qqH∈SJSPC

2∑
l=1

λl|
n∑

k=1

q∗kulk|2

(a)
= arg max

q′∈Q′

2∑
l=1

λl|
∑
k∈P

√
P̂kulk + q′Hu′l|2

= arg max
q′∈Q′

2∑
l=1

λl|q′Hu′l|2 (71)

where (a) follows from |qk|2 = eTk Q(1)
JSPC(t)ek = P̂k

∀k ∈ P , Pc = I \ P , Q′ := {q′ :
∑

k∈Pc |qk|2 ≤
Ptot −

∑
k∈P P̂k, |qk|2 ≤ P̂k, k ∈ P} and u′l = [ulk]k∈Pc .

This proves Theorem 6. �

I. Proof of Lemma 2

From (31), by multiplying hH
r Ǩ on the left, Qhr on the

right and using slackness condition MQ = 0, we have

hH
r Ǩhr(1 + hH

r Qhr)−1hH
r Qhr = hH

r Qhr. (72)

This is equivalent to

(hH
r Ǩhr − hH

r Qhr − 1)(1 + hH
r Qhr)−1hH

r Qhr = 0 (73)

Since (1 + hH
r Qhr)−1 is scalar and the problem is interesting

only when hH
r Qhr > 0, then we have

hH
r Ǩhr − hH

r QHr = 1. (74)

This proves Lemma 2. �

J. Proof of Theorem 8

Steps of proof of this theorem are similar as in [11]. From
(32), multiplying both sides of the equation with ȟH

r on the
left and ȟr on the right, we have

ȟH
r hH

r (Ǩ−Q)hrȟr = ȟH
r ȟr. (75)

or equivalent to

v1vH1 (Ǩ−Q)v1vH1 = v1σ−2vH1 . (76)

Next, by multiplying (76) with vH1 on the left and v1 on the
right, we get

vH1 (Ǩ−Q)v1 = σ−2. (77)

Since VH
2 v1 = 0, from (77) we can deduce Ǩ − Q as

follows.

Ǩ−Q = [v1 V2]

[
σ−2 B
BH A

] [
vH
1

VH
2

]
= v1σ−2vH1 + X, (78)
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where X = V2AVH
2 + v1BVH

2 + V2BHvH
1 . This implies that

Q = Ǩ− ȟH
r ȟr − X

= (R + shehH
e )−1 − ȟH

r ȟr − X

= R−1 − ȟH
r ȟr − X− Y, (79)

with Y = R−1shehH
e (In + RshehH

e )−1R−1 is obtain from
inversion matrix lemma.

The remaining question is to find the values of A and B
such that the rank condition in Theorem 3 is satisfied. By
multiplying VH

2 on the left and (R + shehH
e )V2 on the right

of the (79), we have

A=
(
In−1 −BHvH

1 (R + shehH
e )V2

)(
VH

2 (R + shehH
e )V2

)−1
.

Similarly, by multiplying VH
1 on the left and (R + shehH

e )V2

on the right of the (79), we have

B =
(

vH1 ȟH
r ȟr(R + shehH

e )V2

) (
VH

2 (R + shehH
e )V2

)−1
.

This proves Theorem 8. �
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