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Sorting and sizing of DNA molecules by capillary electrophoresis (CE) within the human genome 

project have enabled the genetic mapping of various illnesses. By the use of miniaturized lab-on-a-

chip devices, on-chip-integrated DNA sequencing and genetic diagnostics have become feasible. The 

inherent advantages of microfluidic CE separation of differently sized DNA molecules, high-speed 

operation and low reagent volumes, in combination with laser-induced fluorescence detection, result 

in optofluidic integration toward on-chip bio-analysis tools which aim at solving real-life challenges 

in medicine, e.g. identification of genomic deletions or insertions associated with genetic illnesses. 

 

 

1. Optofluidic integration in an electrophoretic microchip 

 

The lay-out of our optofluidic chip is presented in Fig. 1. Chips were fabricated in a two-step 

procedure. Firstly, the microfluidic channel network and microfluidic reservoirs were patterned 

photolithographically and wet-etched in fused silica glass and then sealed off by bonding another 

piece of fused silica glass on top (LioniX BV). The chip has dimensions of 55 mm  5.5 mm  1 mm 

and the microfluidic channels have a cross section of ~110 µm width and ~50 µm depth. 

In a second step, the optical waveguide was inscribed into the bulk of such a fused silica chip by 

fs-laser writing using a Ti:Sapphire laser [1]. Employing astigmatic beam shaping, an elliptical cross 

section of the written waveguide was obtained, with a major diameter of ~50 µm in the vertical 

direction, in order to excite the maximum possible volume of the microfluidic channel, while the 

minor diameter in the horizontal direction is ~12 µm in order to retain a high spatial resolution along 

the direction of DNA flow and separation [2]. This 3-dimensional writing technique also allows for 

the fabrication of Mach-Zehnder interferometers in an optofluidic chip [3]. 

 
Fig. 1. Schematic of the optofluidic chip; indicated are reservoirs 1-4, sample injection channel (reservoir 1  

reservoir 2) and CE separation channel (reservoir 3  reservoir 4), as well as the integrated optical waveguide 

and detection window [4]. 

 

 

2. Fluorescence monitoring of on-chip DNA separation 

 

By applying integrated waveguide laser excitation to the optofluidic chip, fluorescence from static 

dye solutions [5] as well as migrating labeled DNA molecules [6] could be monitored through a 

microscope. Integrated waveguide excitation of the 12-µm narrow microfluidic segment (Fig. 2) 

provides a spatio-temporal resolution that would, in principle, allow for a 20-fold better accuracy 

than is currently supported by state-of-the-art electrophoretic separation in microchips, thereby 

demonstrating the potential of this integrated optical approach to fulfill the resolution demands of 

future electrophoretic microchips [4]. 

When optimizing the microchannel wall coating and sieving gel matrix, a DNA ladder consisting 

of molecules with 17 different base-pair sizes was separated by capillary electrophoresis with high 



 

operating speed and low sample consumption of ~ 600 picoliters (Fig. 3, left). When detecting the 

fluorescence signals of migrating DNA molecules with a photomultiplier tube, the limit of detection 

was as low as 2.1 picomolar. In the diagnostically relevant size range of ~150–1000 base-pairs, the 

molecules were separated with reproducibly high sizing accuracy of > 99% (Fig. 3, right) [4]. When 

calibrating the system with a known set of DNA fragments, the sizing accuracy for an unknown 

sample could be improved to 4  10
4
, which represents sub-base-pair resolution [7]. 

Numerical or mechanical lock-in amplification of the fluorescent signal from the labeled DNA 

molecules provided an improvement in signal-to-noise ratio by a factor of ~10, resulting in a record-

low limit of detection of 210 fM, which equals merely 8 DNA molecules in the detection volume, 

thus approaching the goal of single-molecule detection [8]. Inscribing two parallel optical 

waveguides into the microfluidic chip allows for excitation and monitoring of differently labeled 

DNA molecules [9]. 
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Fig. 2. Snapshots from a movie recorded with a CCD camera showing transient fluorescence from a molecule 

plug formed by CE separation of a DNA ladder as this plug passes by the point of integrated-waveguide laser 

excitation at 488 nm [4]. 

 

      
 

Fig. 3. (left) Electropherogram depicting the normalized fluorescence intensity vs. migration time from a DNA 

ladder consisting of 17 double-stranded molecules with integrated-waveguide laser excitation; (right) migration 

time (left-hand-ordinate) and electrophoretic mobility (right-hand ordinate) vs. base-pair size for the measured 

electropherogram [4]. 

 

 

3. Modulation-frequency encoded multi-color fluorescent DNA analysis 

 

Then we introduced a principle of parallel optical processing [10] to our optofluidic lab-on-a-chip. 

During electrophoretic separation, the ultra-low limit of detection achieved with our set-up allowed 

us to record fluorescence from covalently end-labeled DNA molecules. Different sets of exclusively 

color-labeled DNA fragments – otherwise rendered indistinguishable by spatio-temporal coincidence 

– were traced back to their origin by modulation-frequency-encoded multi-wavelength laser 

excitation, fluorescence detection with a single ultrasensitive, albeit color-blind photomultiplier, and 

Fourier analysis decoding (Fig. 4). As a proof of principle, fragments obtained by multiplex ligation-

dependent probe amplification from independent human genomic segments, associated with genetic 

predispositions to breast cancer and anemia, were simultaneously analyzed (Fig. 5) [10]. 



 

 
 

Fig. 4. Modulation-frequency encoded multi-wavelength sensing [10]: Schematic showing plugs of 

exclusively fluorescence-labeled molecules migrating through the microfluidic separation channel, 

intersecting the excitation waveguide that guides laser light of different wavelengths and modulation 

frequencies, and a plug containing DNA molecules with two different labels emitting fluorescence with the 

signatures of the two modulation frequencies while crossing the excitation waveguide. 

 

(a)          (c)  

(b) (d)  

 
Fig. 5. Multi-color fluorescence DNA analysis in an optofluidic chip [10]: (a) fluorescence signal from 35 

end-labeled DNA molecules (consisting of 12 and 23 DNA molecules from two chromosome regions) vs. 

migration time, as detected by a color-blind photomultiplier. (b) Fourier spectrum of the fluorescence signal 

and applied transfer functions (indicated by the dashed line). Individual signals separated by Fourier analysis 

of (c) 12 DNA molecules from a breast cancer gene and (d) 23 DNA molecules from a Diamond-Blackfan 

anemia gene. Several fluorescence peaks are below the noise level in (a), but are resolved in (c) or (d) by 

Fourier analysis. 
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