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We report the realization and performance of a distributed feedback channel waveguide laser in erbium-doped alu-
minum oxide on a standard thermally oxidized silicon substrate. The diode-pumped continuous-wave laser demon-
strated a threshold of 2:2 mW absorbed pump power and a maximum output power of more than 3 mWwith a slope
efficiency of 41.3% versus absorbed pump power. Single-longitudinal-mode and single-polarization operation was
achieved with an emission linewidth of 1:70� 0:58 kHz (corresponding to a Q factor of 1:14 × 1011), which was cen-
tered at a wavelength of 1545:2 nm. © 2010 Optical Society of America
OCIS codes: 130.0130, 140.3570, 140.3490, 140.3500.

The ever-increasing demand for data bandwidth capacity
in telecommunication networks necessitated the imple-
mentation of dense wavelength division multiplexing
(DWDM). Because of their high-quality emission proper-
ties and broad wavelength tunability within the telecom-
munication C band (1525–1565 nm), single-frequency
erbium-doped dielectric waveguide lasers offer a capable
and competitive alternative to semiconductor distri-
buted feedback (DFB) lasers for use in future DWDM
networks [1].
Monolithic,single-frequency,dielectric lasershavebeen

demonstrated in the form of DFB and distributed-Bragg-
reflector cavities in a variety of erbium-doped dielectric
materials, including silica [2], lithium niobate [3], as well
as ion-exchanged [4] and femtosecond-laser-written [5]
phosphate glass waveguides. Erbium-doped aluminum
oxide (Al2O3:Er3þ) as a gainmedium offers several advan-
tages compared to thesematerials. It has a larger emission
bandwidth thansilica,whichprovidesgreaterpotential for
wavelength tunability [6]. The relatively high refractive in-
dex of 1.65 and, hence, high refractive-index contrast be-
tweenwaveguide and cladding allow for the fabrication of
more compact integrated optical structures and smaller
waveguide cross sections. Al2O3:Er3þ can be deposited
onanumber of substrates, including thermally oxidized si-
licon. This opportunity allows for integrationwith existing
silicon-on-insulator waveguide technology. Recently,
Al2O3:Er3þ waveguides have been demonstrated with
low background losses and an internal net gain over a
wavelength range of 80 nm (1500–1580 nm), with a peak
gain of 2:0 dB=cm at 1533 nm [7] and an Al2O3:Er3þ inte-
grated laser in a ring resonator geometry [8] has been
shown to operate on several wavelengths in the range
1530–1557 nm.
In this Letter, we report a monolithic single-frequency

DFB channel waveguide laser in Al2O3:Er3þ. The laser

output power surpasses that of the previously demon-
strated ring laser by more than two orders of magnitude,
while also providing the additional feature of single-
polarization, single-longitudinal-mode emission with a
linewidth as low as 1:70� 0:58 kHz.

The 1 μm thick channel waveguides were fabricated in
an Al2O3:Er3þ layer with an erbium concentration of
3 × 1020 cm−3, which was deposited onto an 8 μm thick
thermallyoxidized, 10 cmdiameter standard siliconwafer
by means of reactive cosputtering [9]. The ridge wave-
guides were 1 cm long, 3 μm wide, and were etched
0:1 μm deep via standard lithography and a reactive ion
etching process [10]. A 650 nm thick SiO2 cladding layer
wasdepositedontopoftheridgewaveguidesbyuseofplas-
ma-enhanced chemical vapor deposition. This waveguide
geometry was designed to support only single transverse-
mode operation at the 1480 nmpump and 1545:2 nm laser
wavelengths forbothTEandTM-polarizedmodes.Theend
facets of the optical chip were prepared by dicing.

Optical feedback inthecavitywasprovidedbyasurface-
relief Bragg grating, which extended over the entire 1 cm
length of the cavity. The grating pattern was defined in a
120 nm thick negative resist layer on top of the SiO2 clad-
ding by means of laser interference lithography. Finally,
the grating pattern was etched into the SiO2 layer by use
of a CHF3:O2 reactive ion plasma, after which the residual
resist was removed by an O2 plasma. The resultant Bragg
grating had an etch depth of ∼150 nm with a period of
488 nm and a duty cycle of ∼50%. Figure 1 shows a top-
view scanning electron microscope (SEM) image of the
realizedBragggrating.Toensuresingle-longitudinal-mode
laseroperation, aquarter-wavephase shiftwas introduced
to the DFB cavity. The phase shift was implemented by
means of a 2 mm long adiabatic sinusoidal tapering of
the waveguide width in the center region of the cavity
[11,12]. Inside the phase-shift region, thewaveguidewidth
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