Energy transfer processes in Er³⁺-doped and Er³⁺,Pr³⁺-codoped ZBLAN glasses

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau*

Laser Photonics Group, Schuster Laboratory, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

(Received 26 October 1999; revised manuscript received 10 February 2000)

We present a detailed characterization of energy transfer processes in Er^{3+} -doped and $\text{Er}^{3+}, \text{Pr}^{3+}$ -codoped ZBLAN bulk glasses. For several Er^{3+} (0.25–8.75 mol%) and Pr^{3+} (0.25–1.55 mol%) concentrations, we investigate energy transfer upconversion (ETU) and cross relaxation in Er^{3+} as well as energy transfer (ET) from Er^{3+} to the Pr^{3+} codopant. The measured parameters of ETU from the $\text{Er}^{3+} 4I_{13/2}$ and $4I_{11/2}$ levels are comparable to those of $\text{LiYF}_4:\text{Er}^{3+}$. ETU from ${}^4I_{13/2}$, in particular, possesses a factor of 3 larger probability than ETU from ${}^4I_{11/2}$. The parameters of ET from the $\text{Er}^{3+} 4I_{13/2}$ and $4I_{11/2}$ levels to the Pr^{3+} codopant are larger than the corresponding ETU parameters. ET effectively quenches the ${}^4I_{13/2}$ intrinsic lifetime of 9 ms down to 20 μ s for the highest Er^{3+} and Pr^{3+} concentrations investigated, and is more efficient than ET from ${}^4I_{11/2}$, because the corresponding absorption transition in Pr^{3+} has a large oscillator strength and back transfer is inhibited by fast multiphonon relaxation from the corresponding Pr^{3+} level. In both cases, the ET parameters depend on Er^{3+} concentration in a similar way as the ETU parameters but depend only weakly on Pr^{3+} concentration. This shows that energy migration within the $\text{Er}^{3+} {}^4I_{13/2}$ and ${}^4I_{11/2}$ levels is fast. The presented results are important for the choice of the appropriate operational regime of the erbium 3- μ m fiber laser.