Analytical Mechanics

Michael A Raadu
Space and Plasma Physics, KTH

Brief Overview

- Generalised coordinates
- Newton's second law
- Lagrange equations
- Generalised momenta; Legendre transformation
- Hamilton formulation
- Particle motion including E \& B forces

Generalised coordinates

Introduce a set of general (space) coordinates (for one particle):

$$
\left\{q_{1}, q_{2}, q_{3}\right\}
$$

Write particle position vector in terms of these and time, t :

$$
\mathbf{r}=\mathbf{r}\left(q_{1}, q_{2}, q_{3}, t\right)
$$

The particle velocity is then given by:

$$
\mathbf{v}=\dot{\mathbf{r}}=\sum_{j} \frac{\partial \mathbf{r}}{\partial q_{j}} \dot{q}_{j}+\frac{\partial \mathbf{r}}{\partial t}
$$

NB treat time derivative of the q's as independent variables e.g.:

$$
\mathbf{v}=\mathbf{v}\left(q_{1}, q_{2}, q_{3}, \dot{q}_{1}, \dot{q}_{2}, \dot{q}_{3}, t\right)
$$

From the equation for the particle velocity note cancelation of dots!

$$
\frac{\partial \dot{\mathbf{r}}}{\partial \dot{q}_{j}}=\frac{\partial \mathbf{r}}{\partial q_{j}}
$$

Generalised Force

Generalised force components Q are defined by considering the (virtual) work $d W$ done by the force \mathbf{F} for a spatial displacement:

$$
d W=\mathbf{F} \cdot \delta \mathbf{r}=\sum_{j} \mathbf{F} \cdot \frac{\partial \mathbf{r}}{\partial q_{j}} \delta q_{j} \equiv \sum_{j} Q_{j} \delta q_{j}
$$

So that.

$$
Q_{j} \equiv \mathbf{F} \cdot \frac{\partial \mathbf{r}}{\partial q_{j}}
$$

NB If the force is given by a potential V it then follows that:

$$
Q_{j} \equiv-\nabla V \cdot \frac{\partial \mathbf{r}}{\partial q_{j}}=-\sum_{\alpha} \frac{\partial V}{\partial r_{\alpha}} \frac{\partial r_{\alpha}}{\partial q_{j}}=-\frac{\partial V}{\partial q_{j}}
$$

Newton's Second Law

Write Newton's second law:

$$
m \frac{d^{2} \mathbf{r}}{d t^{2}} \equiv m \ddot{\mathbf{r}}=\mathbf{F}
$$

in terms of general forces:

$$
m \ddot{\mathbf{r}} \cdot \frac{\partial \mathbf{r}}{\partial q_{j}}=\mathbf{F} \cdot \frac{\partial \mathbf{r}}{\partial q_{j}}=Q_{j}
$$

Rewrite the left hand as follows (using 'un-cancellation' of dots):

$$
\begin{gathered}
m \ddot{\mathbf{r}} \cdot \frac{\partial \mathbf{r}}{\partial q_{j}}=\frac{d}{d t}\left\{m \dot{\mathbf{r}} \cdot \frac{\partial \mathbf{r}}{\partial q_{j}}\right\}-m \dot{\mathbf{r}} \cdot \frac{\partial \dot{\mathbf{r}}}{\partial q_{j}}=\frac{d}{d t}\left\{m \dot{\mathbf{r}} \cdot \frac{\partial \dot{\mathbf{r}}}{\partial \dot{q}_{j}}\right\}-m \dot{\mathbf{r}} \cdot \frac{\partial \dot{\mathbf{r}}}{\partial q_{j}} \\
=\frac{d}{d t}\left\{\frac{1}{2} m \frac{\partial|\dot{\mathbf{r}}|^{2}}{\partial \dot{q}_{j}}\right\}-\frac{1}{2} m \frac{\partial|\dot{\mathbf{r}}|^{2}}{\partial q_{j}}
\end{gathered}
$$

Lagrange’s Equation

Using T the particle kinetic energy

$$
T \equiv \frac{1}{2} m|\mathbf{v}|^{2}=\frac{1}{2} m|\dot{\mathbf{r}}|^{2}
$$

Newton's second law becomes.

$$
m \ddot{\mathbf{r}} \cdot \frac{\partial \mathbf{r}}{\partial q_{j}}=\frac{d}{d t}\left\{\frac{\partial T}{\partial \dot{q}_{j}}\right\}-\frac{\partial T}{\partial q_{j}}=Q_{j}\left\{=-\frac{\partial V}{\partial q_{j}}\right\}
$$

For forces given by a potential V Lagrange's equation follows:

$$
\frac{d}{d t}\left\{\frac{\partial L}{\partial \dot{q}_{j}}\right\}-\frac{\partial L}{\partial q_{j}}=0 \text { with Lagrangian } L: \quad L=T-V
$$

Lagrangian

The Lagrangian for a particle mass m in a potential V is given by

$$
L=T-V=\frac{1}{2} m|\mathbf{v}|^{2}-V(\mathbf{r})
$$

Writing \mathbf{r} and \mathbf{v} in terms of q's and q-dot's gives the general Lagrangian:

$$
L=L\left(q_{1}, q_{2}, q_{3}, \dot{q}_{1}, \dot{q}_{2}, \dot{q}_{3}, t\right)
$$

The equations of motion are given (for $\mathrm{j}=1,2,3$) by Lagrange's equations

$$
\frac{d}{d t}\left\{\frac{\partial L}{\partial \dot{q}_{j}}\right\}-\frac{\partial L}{\partial q_{j}}=0
$$

Generalised Momenta

In the Lagrange equation generalised momenta p can be defined by:

$$
p_{j} \equiv \frac{\partial L}{\partial \dot{q}_{j}} \quad ; \text { giving for Cartesian coordinates: } \quad \mathbf{p}=m \mathbf{v}
$$

Then from the Lagrange equation:

$$
\dot{p}_{j} \equiv \frac{d p_{j}}{d t}=\frac{d}{d t}\left\{\frac{\partial L}{\partial \dot{q}_{j}}\right\}=\frac{\partial L}{\partial q_{j}}
$$

Legendre Transformation

To transform the Lagrangian look at its differential:

$$
d L=\sum_{j}\left[\frac{\partial L}{\partial q_{j}} d q_{j}+\frac{\partial L}{\partial \dot{q}_{j}} d \dot{q}_{j}\right]+\frac{\partial L}{\partial t} d t
$$

Using the definition of the generalised momenta p this becomes:

$$
d L=\sum_{j}\left[\frac{\partial L}{\partial q_{j}} d q_{j}+p_{j} d \dot{q}_{j}\right]+\frac{\partial L}{\partial t} d t
$$

The Legendre transformation uses the p 's and q 's as independent variables with a Hamiltonian function derived from the Lagrangian.

$$
H \equiv \sum_{j} p_{j} \dot{q}_{j}-L
$$

where

$$
H=H\left(p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, t\right)
$$

Hamiltonian

The Hamiltonian function is:

$$
H \equiv \sum_{j} p_{j} \dot{q}_{j}-L \quad=\frac{1}{2} m|\mathbf{v}|^{2}+V(\mathbf{r}) \text { for Cartesians }
$$

The differential of the Hamiltonian H is:

$$
\begin{aligned}
d H & =\sum_{j}\left[\dot{q}_{j} d p_{j}+p_{j} d \dot{q}_{j}\right]-d L \\
& =\sum_{j}\left[\dot{q}_{j} d p_{j}-\frac{\partial L}{\partial q_{j}} d q_{j}\right]-\frac{\partial L}{\partial t} d t
\end{aligned}
$$

Using Lagrange's equation with generalised momenta:

$$
d H=\sum_{j}\left[\dot{q}_{j} d p_{j}-\dot{p}_{j} d q_{j}\right]-\frac{\partial L}{\partial t} d t
$$

Hamilton's Equations

From the differential of the Hamiltonian,

$$
d H=\sum_{j}\left[\dot{q}_{j} d p_{j}-\dot{p}_{j} d q_{j}\right]-\frac{\partial L}{\partial t} d t
$$

It follows that the Hamiltonian is a function of the p 's, q 's and time.
Comparing with the equation (from the chain rule):

$$
d H=\sum_{j}\left[\frac{\partial H}{\partial p_{j}} d p_{j}+\frac{\partial H}{\partial q_{j}} d q_{j}\right]+\frac{\partial H}{\partial t} d t
$$

We find Hamilton's equations:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}} \text { and } \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}} \\
\text { and note that: } \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}
\end{array}, l
\end{aligned}
$$

Electro Magnetic Forces

Now look for a Lagrangian including electrical and magnetic forces.
Use vector potential \mathbf{A}, electrostatic potential ϕ and Maxwell's equations:

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}=-\frac{\partial \nabla \times \mathbf{A}}{\partial t} \Rightarrow \mathbf{E}=-\nabla \phi-\frac{\partial \mathbf{A}}{\partial t}
$$

Write magnetic force on a particle with charge q as:

$$
\mathrm{q} \mathbf{v} \times \mathbf{B}=\mathrm{q} \mathbf{v} \times(\nabla \times \mathbf{A})=\mathrm{q}\{\nabla(\mathbf{v} \cdot \mathbf{A})-\mathbf{v} . \nabla \mathbf{A}\}
$$

Equation of motion for a particle with Cartesian coordinates is then:

$$
m \dot{\mathbf{v}}=\mathrm{q}[\mathbf{E}+\mathbf{v} \times \mathbf{B}]=-\mathrm{q} \nabla\{\phi-\mathbf{v} \cdot \mathbf{A}\}-q\left[\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{A}\right]
$$

The last two terms give the total time derivative following the particle

$$
\left[\frac{\partial \mathbf{A}}{\partial t}+\mathbf{v} . \nabla \mathbf{A}\right]=\frac{d \mathbf{A}}{d t} \equiv \dot{\mathbf{A}}
$$

Lagrangian with Electromagnetic terms

The equation of motion is now in the form

$$
m \dot{\mathbf{v}}+\mathrm{q} \dot{\mathbf{A}}=-\mathrm{q} \nabla\{\phi-\mathbf{v} \cdot \mathbf{A}\}
$$

The corresponding Lagrange equations (in Cartesian form) are:

$$
L \equiv \frac{1}{2} m|\mathbf{v}|^{2}+\mathrm{q} \mathbf{v} \cdot \mathbf{A}-\mathrm{q} \phi
$$

The equations of motion are then given by Lagrange's equations

$$
\frac{d}{d t}\left\{\frac{\partial L}{\partial \mathbf{v}}\right\}-\frac{\partial L}{\partial \mathbf{x}}=0
$$

The generalised momentum is now:

$$
\mathbf{p} \equiv \frac{\partial L}{\partial \mathbf{v}}=m \mathbf{v}+\mathrm{qA}
$$

The Hamiltonian

The Hamiltonian including electromagnetic forces follows from L :

$$
\begin{aligned}
H=\mathbf{p} \cdot \mathbf{v} & -L=(m \mathbf{v}+\mathrm{q} \mathbf{A}) \cdot \mathbf{v}-\left\{\frac{1}{2} m|\mathbf{v}|^{2}+\mathrm{q} \mathbf{v} \cdot \mathbf{A}-\mathrm{q} \phi\right\} \\
& =\frac{1}{2} m|\mathbf{v}|^{2}+\mathrm{q} \phi
\end{aligned}
$$

The Hamiltonian is given by the sum of kinetic and potential energy.
The Hamilton function in terms of momentum and position is

$$
H=\frac{|\mathbf{p}-\mathrm{q} \mathbf{A}|^{2}}{2 m}+\mathrm{q} \phi
$$

Properties of the Hamiltonian

Consider the total time derivative of a Hamiltonian

$$
\frac{d H}{d t}=\sum_{j}\left[\frac{\partial H}{\partial p_{j}} \frac{d p_{j}}{d t}+\frac{\partial H}{\partial q_{j}} \frac{d q_{j}}{d t}\right]+\frac{\partial H}{\partial t}
$$

From Hamilton's equations

$$
=\sum_{j}\left[\frac{\partial H}{\partial p_{j}}\left\{-\frac{\partial H}{\partial q_{j}}\right\}+\frac{\partial H}{\partial q_{j}}\left\{\frac{\partial H}{\partial p_{j}}\right\}\right]+\frac{\partial H}{\partial t}
$$

so that:

$$
\frac{d H}{d t}=\frac{\partial H}{\partial t}
$$

The Hamiltonian is then a constant following particle motions if the electric and magnetic fields are constant

Properties of the Lagrangian

Consider the action integral of the Lagrangian over a time interval:

$$
S \equiv \int_{t_{0}}^{t_{1}} L(\mathbf{r}, \dot{\mathbf{r}}, t) d t
$$

Variation of the path followed by the position \mathbf{r} gives

$$
\delta S=\int_{t_{0}}^{t_{1}}\left\{\frac{\partial L}{\partial \dot{\mathbf{r}}} \cdot \delta \dot{\mathbf{r}}+\frac{\partial L}{\partial \mathbf{r}} . \delta \mathbf{r}\right\} d t
$$

Introducing the generalised momentum \boldsymbol{p} and integrating by parts,

$$
\delta S=[\mathbf{p} \cdot \delta \mathbf{r}]_{t_{0}}^{t_{1}}+\int_{t_{0}}^{t_{1}}\left\{-\frac{d \mathbf{p}}{d t}+\frac{\partial L}{\partial \mathbf{r}}\right\} \cdot \delta \mathbf{r} d t
$$

For fixed end points S has an extreme value ($\delta S=0$) if Lagrange's equations are satisfied:

$$
\frac{d}{d t}\left[\frac{\partial L}{\partial \dot{\mathbf{r}}}\right]=\frac{d \mathbf{p}}{d t}=\frac{\partial L}{\partial \mathbf{r}}
$$

