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Brief Overview

Generalised coordinates
Newton’'s second law
Lagrange equations

Generalised momenta; Legendre
transformation

Hamilton formulation
Particle motion including E & B forces



Generalised coordinates

Introduce a set of general (space) coordinates (for one particle):

{0,,0,,05}

Write particle position vector in terms of these and time, t:

r=r(q,d,,0st)

The particle velocity is then given by'

8q j 8t
NB treat time derivative of the g’'s as independent variables e.g.:

V= V(ql,qz1q3’q1’Q21q3’t)

From the equation for the particle velocity note cancelation of dots!

or or




Generalised Force

Generalised force components Q are defined by considering the
(virtual) work dW done by the force F for a spatial displacement:

dW =F.5r —ZF 550" > Q.49
J

J

So that.

or
Qj =F. a—
d;
NB If the force is given by a potential V it then follows that:
Q =-w. I - Z@V o, oV
aq j or, oq; oq,



Newton’s Second Law

Write Newton’s second law:

d’r .
Mm—-=mr=F
dt
in terms of general forces :
m'r'.ﬂz F.E:Qj
aq, aq,

Rewrite the left hand as follows (using ‘un-cancellation’ of dots):

. or d . or .o d . or . or
mr'. = mfr.— > —mr. = mr.——mr.—
aq; dt aq; aq; dt aq; aq;

d 1 alif| 1 _olf
=—<—MN—7——M—
dt |2 a4, | 2 og

.




Lagrange’s Equation
Using T the particle kinetic energy

1 > 1 .
Loy =L
2 2

Newton’s second law becomes.

-

or deT| ot rva
aqj dt \aqj) aqj

For forces given by a potential V Lagrange’s equation follows:

-

d J oL >—i20 with Lagrangian L : L:T—V

dt aq; | 0q;




Lagrangian
The Lagrangian for a particle mass m in a potential V is given by
1 2
L=T-V==mlv[ -V (r)
2
Writing r and V in terms of g's and g-dot’s gives the general Lagrangian:

L = L(ql’q21q31Q1’CI2’q3’t)

The equations of motion are given (for j=1,2,3) by Lagrange’s equations

r )

: 3 oL >—i20

dt aq; | oq




Generalised Momenta

In the Lagrange equation generalised momenta p can be defined by:

of Ei ; giving for Cartesian coordinates: [0 = MV
J .
aq,
Then from the Lagrange equation:
o dp, dfeL] aL
P; = =T\~ (T
dt dt aq; | 09




Legendre Transformation

To transform the Lagrangian look at its differential:

oL oL oL
dL=Y"| —dq, +—dq, |+—=dt
;qu o q’} ot

Using the definition of the generalised momenta p this becomes:

oL oL
dL = —dg. +p.dg. |+—dt
;{aq,- a; + P, q,} ~

The Legendre transformation uses the p’'s and g’'s as independent
variables with a Hamiltonian function derived from the Lagrangian.

HEZm%—L
J

where H :H(p11p21p31q11q21q31t)



Hamiltonian

The Hamiltonian function is:

H = Z quj —L =%m|v|2 +V (I’) for Cartesians
]

The differential of the Hamiltonian H is:

dH =>"| d,dp; + p;dq; |-dL

. oL oL
:Z qjdpj _@_q_dqj —Edt

Using Lagrange’s equation with generalised momenta:

. . oL
dH =] 4;dp; - p;da; |-—=dt

J
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Hamilton’s Equations

From the differential of the Hamiltonian,

. . oL
dH :Z[qjdpj - pjdqj}—adt
J

It follows that the Hamiltonian is a function of the p’s,q’s and time.

Comparing with the equation (from the chain rule):

dH =) a—Hdpj+a—quj + M g
,- _8pj aq, ] ot
We find Hamilton’s equations:
qj — oH and pj :_@_H
ap; aq;
oH oL

and note that:

ot ot
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Electro Magnetic Forces

Now look for a Lagrangian including electrical and magnetic forces.

Use vector potential A\, electrostatic potential ¢and Maxwell’'s equations:

VXEz—a—B——aVXA:E:_v¢_a_A

ot ot ot

Write magnetic force on a particle with charge ( as:
qvxB=qvx(VxA)=q{V(V.A)-Vv.VA}
Equation of motion for a particle with Cartesian coordinates is then:

mv =q|[E+vxB|=-qV{¢-v.A} —q {%—? + v.VA}

The last two terms give the total time derivative following the particle

{a—A—I—V.VA} = d—A =A
ot dt
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Lagrangian with Electromagnetic terms
The equation of motion is now in the form
mv+gA =—qV {¢-v.A}
The corresponding Lagrange equations (in Cartesian form) are:
1
L EEmMZ +QVv.A—Qd
The equations of motion are then given by Lagrange’s equations
d {8L}_ ar_,
dt lov) oOX
The generalised momentum is now:

za—L:mv+qA
oV
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The Hamiltonian

The Hamiltonian including electromagnetic forces follows from L.

H=pv-L :(mV-I—qA).V_{%m‘V‘Z +CIV-A—0I¢}

=5 +ag

The Hamiltonian is given by the sum of kinetic and potential energy.

The Hamilton function in terms of momentum and position is

2
H = \p—qA\ +
2m

q¢
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Properties of the Hamiltonian

Consider the total time derivative of a Hamiltonian

d_H_Z_aH dp; oH do; | oH
op. dt 2q. dt_ ot

J

] j

From Hamilton’s equations

:Z_aH {_ oH }+ oH {8H } oH
,- _Gpj oq; | Aq; | Op; | ot
dH oH
dat ot

The Hamiltonian is then a constant following particle motions if
the electric and magnetic fields are constant

so that:

15



Properties of the Lagrangian

Consider the action integral of the Lagrangian over a time interval:

S = j rrtdt

Variation of the path followed by the position I gives

O0S = {a—L o) 8 +% Oor }dt
or or

Introducing the generalised momentum P and integrating by parts,

5S =[p. 5r] tl{— dp+aL}.5rdt

b Ji dt or

For fixed end points S has an extreme value (85=0) if Lagrange’s
equations are satisfied:

d [8L}_ dp oL

dt|or | dt or
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