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Brief Overview 

• Generalised coordinates 
• Newton’s second law 
• Lagrange equations 
• Generalised momenta; Legendre 

transformation 
• Hamilton formulation 
• Particle motion including E & B forces 
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Generalised coordinates 

Write particle position vector in terms of these and time, t: 

{ }1 2 3, ,q q q
Introduce a set of general (space) coordinates (for one particle): 

( )1 2 3, , ,q q q t=r r
The particle velocity is then given by: 

j
j j

q
q t
∂ ∂

= = +
∂ ∂∑ r rv r 

NB treat time derivative of the q’s as independent variables e.g.: 

( )1 2 3 1 2 3, , , , , ,q q q q q q t=v v   

From the equation for the particle velocity note cancelation of dots! 

j jq q
∂ ∂

=
∂ ∂

r r
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Generalised Force 
Generalised force components Q are defined by considering the 
(virtual) work dW done by the force F for a spatial displacement: 

. . j j j
j jj

dW q Q q
q

δ δ δ∂
= = ≡

∂∑ ∑rF r F

So that. 

.j
j

Q
q
∂

≡
∂

rF

NB If the force is given by a potential V it then follows that: 

.j
j j j

rV VQ V
q r q q

α

α α

∂∂ ∂ ∂
≡ −∇ = − = −

∂ ∂ ∂ ∂∑r
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Newton’s Second Law 
Write Newton’s second law: 

2

2

dm m
dt

≡ =
r r F

in terms of general forces : 

. . j
j j

m Q
q q
∂ ∂

= =
∂ ∂

r rr F

Rewrite the left hand as follows (using ‘un-cancellation’ of dots): 

. . . . .
j j j j j

d dm m m m m
q dt q q dt q q

   ∂ ∂ ∂ ∂ ∂   = − = −   ∂ ∂ ∂ ∂ ∂      

r r r r rr r r r r
  

    



2 2
1 1
2 2j j

d m m
dt q q

 ∂ ∂ = − ∂ ∂  

r r 
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Lagrange’s Equation 
Using T the particle kinetic energy 

2 21 1
2 2

T m m≡ =v r

Newton’s second law becomes. 

. j
j j j j

d T T Vm Q
q dt q q q

   ∂ ∂ ∂ ∂   = − = = −   ∂ ∂ ∂ ∂      

rr


For forces given by a potential V Lagrange’s equation follows: 

0
j j

d L L
dt q q
 ∂ ∂ − = ∂ ∂  

with Lagrangian L : L T V= −
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Lagrangian 
The Lagrangian for a particle mass m in a potential V is given by 

( )21
2

L T V m V= − = −v r

Writing r and v in terms of q’s and q-dot’s gives the general Lagrangian: 

( )1 2 3 1 2 3, , , , , ,L L q q q q q q t=   

The equations of motion are given (for j=1,2,3) by Lagrange’s equations 

0
j j

d L L
dt q q
 ∂ ∂ − = ∂ ∂  
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Generalised Momenta 

j
j

Lp
q
∂

≡
∂ 

In the Lagrange equation generalised momenta p can be defined by: 
 

; giving for Cartesian coordinates: m=p v

Then from the Lagrange equation: 

j
j

j j

dp d L Lp
dt dt q q

 ∂ ∂ ≡ = = ∂ ∂  
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Legendre Transformation 

Using the definition of the generalised momenta p this becomes: 

To transform the Lagrangian look at its differential: 

j j
j j j

L L LdL dq dq dt
q q t

 ∂ ∂ ∂
= + + 

∂ ∂ ∂  
∑ 



j j j
j j

L LdL dq p dq dt
q t

 ∂ ∂
= + + 

∂ ∂  
∑ 

The Legendre transformation uses the p’s and q’s as independent 
variables with a Hamiltonian function derived from the Lagrangian. 

j j
j

H p q L≡ −∑ 

1 2 3 1 2 3( , , , , , , )H H p p p q q q t=where 
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Hamiltonian 
The Hamiltonian function is: 

j j
j

H p q L≡ −∑ 

The differential of the Hamiltonian H is: 

j j j j
j

dH q dp p dq dL = + − ∑  

j j j
j j

L Lq dp dq dt
q t

 ∂ ∂
= − − 

∂ ∂  
∑ 

Using Lagrange’s equation with generalised momenta: 

j j j j
j

LdH q dp p dq dt
t

∂ = − −  ∂∑  

( )21
2

m V= +v r for Cartesians 
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Hamilton’s Equations 
From the differential of the Hamiltonian, 

j j j j
j

LdH q dp p dq dt
t

∂ = − −  ∂∑  

It follows that the Hamiltonian is a function of the p’s,q’s and time. 

Comparing with the equation (from the chain rule): 

j j
j j j

H H HdH dp dq dt
p q t

 ∂ ∂ ∂
= + + 

∂ ∂ ∂  
∑

We find Hamilton’s equations: 

j
j

Hq
p
∂

=
∂



j
j

Hp
q
∂

= −
∂



and note that: 
H L
t t

∂ ∂
= −

∂ ∂

and 
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Electro Magnetic Forces 
Now look for a Lagrangian including electrical and magnetic forces. 

Use vector potential A, electrostatic potential φ and Maxwell’s equations: 

t t t
φ∂ ∂∇× ∂

∇× = − = − ⇒ = −∇ −
∂ ∂ ∂
B A AE E

Write magnetic force on a particle with charge q as: 

( ) ( ){ }q q q . .× = × ∇× = ∇ − ∇v B v A v A v A
Equation of motion for a particle with Cartesian coordinates is then: 

[ ] { }q + q - . .m q
t

φ ∂ = × = − ∇ − + ∇ ∂ 
Av E v B v A v A

The last two terms give the total time derivative following the particle 

. d
t dt

∂ + ∇ = ≡ ∂ 
A Av A A
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Lagrangian with Electromagnetic terms 
The equation of motion is now in the form  

{ }q q - .m φ+ = − ∇v A v A



The corresponding Lagrange equations (in Cartesian form) are: 

21 q . q
2

L m φ≡ + −v v A
The equations of motion are then given by Lagrange’s equations 

0d L L
dt

∂ ∂ − = ∂ ∂ v x
The generalised momentum is now: 

qL m∂
≡ = +
∂

p v A
v
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The Hamiltonian 
The Hamiltonian including electromagnetic forces follows from L: 

( ) 21. q . q . q
2

H L m m φ = − = + − + − 
 

p v v A v v v A
21 q

2
m φ= +v

The Hamiltonian is given by the sum of kinetic and potential energy. 

The Hamilton function in terms of momentum and position is 

2q
q

2
H

m
φ

−
= +

p A
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Properties of the Hamiltonian 

j j

j j j

dp dqdH H H H
dt p dt q dt t

 ∂ ∂ ∂
= + + 

∂ ∂ ∂  
∑

j j j j j

H H H H H
p q q p t

    ∂ ∂ ∂ ∂ ∂   = − + +    ∂ ∂ ∂ ∂ ∂        
∑

dH H
dt t

∂
=

∂
The Hamiltonian is then a constant following particle motions if 
the electric and magnetic fields are constant 

Consider the total time derivative of a Hamiltonian 

From Hamilton’s equations 

so that: 
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Properties of the Lagrangian 
Consider the action integral of the Lagrangian over a time interval: 

( )1

0

, ,
t

t
S L t dt≡ ∫ r r

Variation of the path followed by the position r gives 
1

0

. .
t

t

L LS dtδ δ δ∂ ∂ = + ∂ ∂ ∫ r r
r r




Introducing the generalised momentum p and integrating by parts, 

[ ] 11

0 0

. .
tt

t t

d LS dt
dt

δ δ δ∂ = + − + ∂ ∫
pp r r

r
For fixed end points S has an extreme value (δS=0) if Lagrange’s 
equations are satisfied: 

d L d L
dt dt

∂ ∂  = = ∂ ∂ 
p

r r
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