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Abstract

Missing data are ubiquitous in many domains
such as healthcare. When these data entries are
not missing completely at random, the (condi-
tional) independence relations in the observed
data may be different from those in the complete
data generated by the underlying causal process.
Consequently, simply applying existing causal
discovery methods to the observed data may lead
to wrong conclusions. In this paper, we aim at de-
veloping a causal discovery method to recover the
underlying causal structure from observed data
that are missing under different mechanisms, in-
cluding missing completely at random (MCAR),
missing at random (MAR), and missing not at
random (MNAR). With missingness mechanisms
represented by missingness graphs (m-graphs),
we analyze conditions under which additional
correction is needed to derive conditional inde-
pendence/dependence relations in the complete
data. Based on our analysis, we propose Miss-
ing Value PC (MVPC), which extends the PC
algorithm to incorporate additional corrections.
Our proposed MVPC is shown in theory to give
asymptotically correct results even on data that
are MAR or MNAR. Experimental results on both
synthetic data and real healthcare applications il-
lustrate that the proposed algorithm is able to find
correct causal relations even in the general case
of MNAR.

1 Introduction

Determining causal relations plays a pivotal role in many
disciplines of science, especially in healthcare. In particular,
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understanding causality in healthcare can facilitate effective
treatments to improve quality of life. Traditional approaches
(Domeij-Arverud et al., 2016) to identify causal relations
are usually based on randomized controlled trails, which are
expensive or even impossible in certain domains. In con-
trast, owing to the availability of purely observational data
and recent technological developments in computational
and statistical analysis, causal discovery from observational
data is potentially widely applicable (Spirtes et al., 2001;
Peters et al., 2017). In recent years, causal discovery from
observational data has become popular in medical research
(Sokolova et al., 2017; Klasson et al., 2017).

Most existing algorithms for causal discovery are designed
for complete data (Pearl, 2000; Peters et al., 2017), such
as the widely used PC algorithm (Spirtes et al., 2001). Un-
fortunately, missing data entries are common in many do-
mains. For example, in healthcare, missing entries may
come from imperfect data collection, compensatory medical
instruments, and fitness of the patients etc. (Robins, 1986).

All missing data problems fall into one of the following
three categories (Rubin, 1976): Missing Completely At
Random (MCAR), Missing At Random (MAR), and Miss-
ing Not At Random (MNAR). Data are MCAR if the cause
of missingness is purely random, e.g., some entries are
deleted due to a random computer error. Data are MAR
when the direct cause of missingness is fully observed. For
example, a dataset consists of two variables: gender and
income, where gender is always observed and income has
missing entries. MAR missingness would occur when men
are more reluctant than women to disclose their income (i.e.,
gender causes missingness). Data that are neither MAR
nor MCAR fall under the MNAR category. In the example
above, MNAR would occur when gender also has missing
entries. These missingness mechanisms can be represented
by causal graphs as introduced in Section 2. While it might
be tempting to remove samples corrupted by missingness
and perform analysis solely with complete cases, it will
reduce sample size and, more importantly, bias the outcome
especially when data are MAR or MNAR (Rubin, 2004;
Mohan et al., 2013; Shpitser, 2016).

This paper is concerned with how to find the underlying
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Algorithm 1 Missing-value PC

1: Skeleton search with deletion-based PC :

a Graph initialization: Build a complete undirected graph

G on the node set V.

b Causal skeleton discovery : Remove edges in G with the

same procedure as the PC algorithm with the test-wise

deleted data.

2: Detecting direct causes of missingness indicators:
For each variable Vi 2 V containing missing values and for each

j that j 6= i, test the CI relation of Ri and Vj . If they are

independent given a subset of V \ {Vi, Vj}, Vj is not a direct

cause of Ri.

3: Detecting potential extraneous edges:
For each i 6= j, if Vi and Vj are adjacent and have at least one

common adjacent variable or missingness indicator, the edge

between Vi and Vj is potentially extraneous.

4: Recovering the true causal skeleton:

Perform correction methods for removing the extraneous edges

in G.

5: Determining the orientation:

Orient edges in G with the same orientation procedure as the

PC algorithm.
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DELETION-BASED PC
o List-wise deletion and Test-wise deletion

o Deletion might produce errors in the skeleton search step.
Observed data distribution vs Full data distribution

o PC Recap
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Figure 1: Exemplar missingness graphs in MCAR, MAR, MNAR, and self-masking missingness. X , Y , Z, and W are
random variables. In m-graphs, gray nodes are partially observed variables, and white nodes are fully observed variables.
Rx, Ry, and Rw are the missingness indicators of X , Y , and W .

Assumption 3 and 4 guarantee the recoverability of a joint
distribution of substantive variables, as shown in (Mohan
et al., 2013). As discussed in Appendix A.1, in the lin-
ear Gaussian case, the "self-masking" only affects causal
discovery results when Rx has direct causes other than X .

In the end, we assume linear Gaussian causal models in
this work. Thus, one can check CI relations with the partial
correlation test, a simple CI test method. Note that our
proposed algorithm also works well for general situations.
In the non-linear case, we can use a suitable non-linear or
non-parametric one (Zhang et al., 2011).

Effect of missing data on the deletion-based PC. In the
presence of missing data, the list-wise deletion PC algorithm
deletes all records that have any missing value and then
applies the PC algorithm to the remaining data. In contrast,
the test-wise deletion PC algorithm only deletes records with
missing values for variables involved in the current CI test
when performing the PC algorithm (which can be seen as the
PC algorithm realization of (Strobl et al., 2017)). Test-wise
deletion is more data-efficient than list-wise deletion. In
this paper, we focus on the Test-wise Deletion PC algorithm
(TD-PC).

TD-PC gives asymptotically correct results when data are
MCAR since {Vm,Vo} ??dR is satisfied. Consider Figure
1a as an example. Ry ??d{X ,Y,Z} holds; thus, we have
X ??dY | Z () X ??dY | {Z,Ry}. With the faithfulness
assumption on m-graphs, X ?? Y | Z () X ?? Y | {Z,Ry}.
Furthermore, with the faithful observability assumption, we
conclude X ?? Y | Z () X ?? Y ⇤ | {Z,Ry = 0}. When ap-
plying the CI test to the test-wise deleted data of concerned
variables X , Y , and Z, we test whether X ?? Y ⇤ | {Z,Ry =
0} holds. Therefore, CI results imply d-separation/d-
connection relations of concerned variables in m-graphs
when data are MCAR, which guarantees the asymptotic
correctness of TD-PC.

In cases of MAR and MNAR, TD-PC may produce erro-
neous edges because {Vm,Vo} ??dR does not hold. There-
fore, in what follows in this section, we mainly address the
problems of TD-PC in cases of MAR and MNAR.

Erroneous edges produced by TD-PC. Since TD-PC
may produce erroneous edges when data are MAR and
MNAR, in the following propositions (proofs are given in
Appendix A.2.), we first show that the causal skeleton (undi-
rected graph) given by TD-PC has no missing edges, but
may contain extraneous edges. We then determine the con-
ditions under which extraneous edges occur in the output of
TD-PC.

Proposition 1. Under Assumptions 1⇠4, the CI relation in
test-wise deleted data, X ?? Y | {Z,Rx = 0,Ry = 0,Rz = 0},
implies the CI relation in complete data, X ?? Y | Z, where
X and Y are random variables and Z ✓ V\{X ,Y}.

Proposition 1 shows that CI relations in test-wise deleted
data implies the true corresponding d-separation relations
in a m-graph. However, dependence relations in test-wise
deleted data may imply the wrong corresponding relations
in the m-graph because X 6?? Y | {Z,Rx = 0,Ry = 0,Rz =
0} 6=) X 6?? Y | Z. In other words, TD-PC may wrongly
treat some d-separation relations of concerned variables
as to be not d-separated in a m-graph. Thus, TD-PC pro-
duces extraneous edges in the causal skeleton result rather
than missing edges. For example, in Figure 1b, we have
X 6?? Y ⇤ | {Z,Ry = 0} in the test-wise deleted data, but the
true d-separation relation is X ??dY | Z instead of X 6??dY | Z.
Thus, TD-PC produces an extraneous edge between X and
Y . Fortunately, such extraneous edges appear only under
special circumstances, as shown in the following proposi-
tion.

Proposition 2. Suppose that X and Y are not adjacent
in the true causal graph and that for any variable set
Z ✓ V\{X ,Y} such that X ?? Y | Z, it is always the case
that X 6?? Y | {Z,Rx = 0,Ry = 0,Rz = 0}. Then under As-
sumptions 1⇠4, for at least one variable in {X}[{Y}[Z ,
its missingness indicator is either the direct common effect
or a descendant of the direct common effect of X and Y .

Proposition 2 indicates that extraneous edges can be iden-
tified from the output of TD-PC. For example, in Figure
1b and Figure 1c, W is the direct common effect of X and
Y and the missingness indicator Ry is a descendant of W .
Thus, the extraneous edge occurs between X and Y in the
causal skeleton produced by TD-PC.
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FCI combined with test-wise deletion is still sound when
one aims to estimate the PAG for the variables including the
effect of missingness. Data missingness is usually different
from selection bias, because in the selection bias case we
only have the distribution of the selected samples but no clue
about the population. However, in the missing data case, we
may be able to check the (conditional) independence relation
between two variables given others by making use of the
available data for the involved variables. In the case where
the missingness mechanisms to be known, this problem is
closely related to the recoverability of models with missing
data. Gain and Shpitser (2018) utilize Inverse Probability
Weight (IPW) for each CI test, assuming the missing data
model is known, which may not be realistic in many real-life
applications. When the missing data model is unknown, they
choose the sparest resulting graph considering all possible
missingness structures, which is usually computationally
expensive.

3 Deletion-based PC: A first proposal and
its behavior

We assume that there is no confounder or selection bias
relative to the set of observed variables. When the available
dataset has missing values, one may apply the PC algorithm
for causal discovery by performing CI tests on those records
which do not have missing values for the variables involved
in the tests. We term this first proposal deletion-based PC.
In this section, we discuss the influence of missing data on
the result of deletion-based PC.

Primarily, we investigate the situations where errors occur
to the output of deletion-based PC due to the missingness.
Firstly, we utilize m-graphs and summarize the assump-
tions that we need for properly dealing with missingness.
We then present the aforementioned deletion-based PC algo-
rithm. Our analysis focuses on properties of the results given
by this naive extension, and provides the conditions under
which the deletion-based PC produces erroneous edges.

Missingness graph. We utilize the notation of the m-
graph (Mohan et al., 2013). A m-graph is a causal DAG
G(V,E) where V = V[U[V⇤ [R. U is the set of unob-
servable nodes; in this paper, we assume causal sufficiency,
so U is an empty set. V is the set of substantive nodes
(observable nodes) containing Vo and Vm. Vo ✓ V is the
set of fully observed variables, denoted by white nodes in
our graphical representation. Vm ✓ V is the set of partially
observed variables that are missing in at least one record,
which is shadowed in gray. R is the set of missingness
indicators that represent the status of missingness and are
responsible for the values of proxy variables V⇤. For exam-
ple, the proxy variable Y ⇤ 2 V⇤ is introduced as an auxiliary
variable for the convenience of derivation. Ry = 1 means
that the corresponding record value of Y is missing and Y ⇤

corresponds to a missing entry; Ry = 0 indicates that the
corresponding record value of Y is observed and Y ⇤ takes
the value of Y .

In this work we adopt the CI-based definitions of miss-
ingness categories as stated in (Mohan et al., 2013). We
denote an independent relation in a dataset by "??" and
d-separation in a m-graph by "??d". As shown in Figure
1, data are MCAR if {Vm,Vo} ??dR holds in the m-graph,
MAR if Vm ??dR | Vo holds, and MNAR otherwise.

Assumptions for dealing with missingness. Apart from
the assumptions for the asymptotic correctness of the PC
algorithm (including the causal Markov condition, faithful-
ness, and no confounding or selection bias), we introduce
some additional assumptions that we make use of to deal
with missingness.
Assumption 1 (Missingness indicators are not causes). No
missingness indicator can be the cause of any substantive
(observed) variable.

This assumption is employed in most related work using
m-graphs (Mohan et al., 2013; Mohan and Pearl, 2014a).
Consequently, under this assumption, if variables of interest
X and Y are not d-separated by a variable set Z✓V\{X ,Y},
they are not d-separated by Z together with their missing-
ness indicators. Under the faithfulness assumption, this
means that if they are conditionally independent given Z
together with the their missingness indicators, they are con-
ditionally independent given only Z. Now the problem is
that generally speaking, we cannot directly verify whether
they are conditionally independent given Z and their miss-
ingness variables because we do not have the records for the
considered variables when their missingness indicators take
value one. We then need the following assumptions.
Assumption 2 (Faithful observability). Any conditional in-
dependence relation in the observed data also holds in the
unobserved data; formally, X ?? Y | {Z,RK = 0} ()
X ?? Y | {Z,RK = 1}. Here RK is the missingness in-
dicator set {Rx,Ry,Rz}. RK = 0 means all the missingness
indicators in RK taking the value zero; RK = 1 means at
least one missingness indicator in RK taking the value one.

This implies X ?? Y | {Z,RK = 0}() X ?? Y | {Z,RK},
which means that conditional independence relations in the
observed data also hold in the complete data, i.e., there is
no accidental conditional independence relation caused by
missingness.
Assumption 3 (No causal interactions between missingness
indicators). No missingness indicator can be a deterministic
function of any other missingness indicators.
Assumption 4 (No self-masking missingness). Self-
masking missingness refers to missingness in a variable
that is caused by itself. In the m-graph this is depicted by
an edge from X to Rx, for X 2 Vm (as shown in Figure 1d).
We assume that there is no such edges in the m-graph.
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Proposition 1. Under Assumptions 1⇠4, the CI relation in test-
wise deleted data, X ?? Y {Z, Rx = 0, Ry = 0,Rz = 0}, implies the
CI relation in complete data, X ?? Y Z, where X and Y are random
variables and Z ✓ V \ {X,Y }.

Proposition 2. Suppose that X and Y are not adjacent in the
true causal graph and that for any variable set Z ✓ V \{X,Y } such
that X ?? Y Z, it is always the case that X 6?? Y {Z, Rx = 0, Ry =
0,Rz = 0}. Then under Assumptions 1⇠4, for at least one variable
in {X} [ {Y } [ Z , its missingness indicator is either the direct
common effect or a descendant of the direct common effect of X
and Y .

X 6?? Y | {Z, Rx = 0, Ry = 0,Rz = 0} 6=) X 6?? Y | Z
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Figure 4: Performance of different methods on CogUSA
study. Lower cost is better. The cost is the count of errors
comparing with known causal constrains from experts.

We use the same 16 variables of interest in the CogUSA
study as in (Strobl et al., 2017). Since the missingness indi-
cators of the 16 variables can be caused by other variables,
we utilize the rest variables when applying MVPC to the
dataset. We use the BIC score for CI test (likelihood ra-
tio test with the BIC penalty as the threshold). Figure 4
shows the performance evaluated using the known causal
constraints: 1) Variables are in two groups with no inter-
group causal relation; 2) there are causal relations between
two pairs of variables given by the domain expertise. Each
violation of these known causal relations adds 1 in the cost
shown in Figure 4. Our proposed method obtains the best
performance (lowest cost) comparing with deletion-based
PC and deletion-based FCI (Strobl et al., 2017). This demon-
strates the capabilities of our method in real life applications.

5.3 Achilles Tendon Rupture study

In the end, we perform causal discovery on a Achilles Ten-
don Rupture (ATR) study dataset (Praxitelous et al., 2017;
Hamesse et al., 2018), collected in multiple hospitals 1. ATR
is a type of soft tissue injury involving a long rehabilitation
process. Understanding causal relations among various fac-
tors and healing outcomes is essential for practitioners. The
list-wise deletion method is not applicable for this case
because about 70% of the data entries are missing, which
means that very rare patients have complete data. Thus,
we apply our method and TD-PC to this dataset. We ran
experiments on the full dataset with more than 100 variables.
Figure 5a shows part of the causal graph.

We find that age, gender, BMI (body mass index), and LSI
(Limb Symmetry Index) in the causal graph given by MVPC
do not affect the healing outcome measured by Foot Ankle
Outcome Score (FAOS). This result is consistent with (Prax-
itelous et al., 2017; Domeij-Arverud et al., 2016). To test the

1In the ATR study experiment, only Paul Ackermann and Ruibo
Tu get access to the ATR dataset.

effectiveness of MNAR, we further introduce an auxiliary
variable S which is generated from two variables: Operation
time (OPtime) and FAOS. This variable further causes the
missingness indicator of FAOS. Figure 5b and 5c show the
results of these variables using TD-PC and our proposed
method. Our proposed MVPC is able to correctly remove
the extraneous edge between Operation time and FAOS.
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(a) Consistent results

OPtime FAOS

S

(b) Test-wise deletion PC

Optime FAOS

S

(c) MVPC (proposed)

Figure 5: Causal discovery results in the ATR study. Exper-
iments were run over all variables. We show only a part of
the whole causal graph. Panel (a) shows the relations among
five variables given by MVPC. The relations are consistent
with medical studies. Panel (b) and (c) show an example
where MVPC is able to correct the error of TD-PC.

6 Discussion

In this work, we address the problem of causal discovery in
the presence of missing data. We first provide theoretical
analysis to identify possible errors in the results given by a
simple extension of PC. We then show that erroneous causal
edges occur only in particular graph structures. Based on our
analysis, we propose a novel algorithm MVPC, which cor-
rects erroneous edges under mild assumptions. We demon-
strate the asymptotic correctness and the effectiveness of
our method on both synthetic data and real-world applica-
tions. As future work, we will explore the possibility of
further relaxing the assumptions in MVPC, as well as work
jointly with practitioners on causal analysis of large-scale
healthcare applications in the presence of missing data.
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Hamesse et al., 2018), collected in multiple hospitals 1. ATR
is a type of soft tissue injury involving a long rehabilitation
process. Understanding causal relations among various fac-
tors and healing outcomes is essential for practitioners. The
list-wise deletion method is not applicable for this case
because about 70% of the data entries are missing, which
means that very rare patients have complete data. Thus,
we apply our method and TD-PC to this dataset. We ran
experiments on the full dataset with more than 100 variables.
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We find that age, gender, BMI (body mass index), and LSI
(Limb Symmetry Index) in the causal graph given by MVPC
do not affect the healing outcome measured by Foot Ankle
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effectiveness of MNAR, we further introduce an auxiliary
variable S which is generated from two variables: Operation
time (OPtime) and FAOS. This variable further causes the
missingness indicator of FAOS. Figure 5b and 5c show the
results of these variables using TD-PC and our proposed
method. Our proposed MVPC is able to correctly remove
the extraneous edge between Operation time and FAOS.
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6 Discussion

In this work, we address the problem of causal discovery in
the presence of missing data. We first provide theoretical
analysis to identify possible errors in the results given by a
simple extension of PC. We then show that erroneous causal
edges occur only in particular graph structures. Based on our
analysis, we propose a novel algorithm MVPC, which cor-
rects erroneous edges under mild assumptions. We demon-
strate the asymptotic correctness and the effectiveness of
our method on both synthetic data and real-world applica-
tions. As future work, we will explore the possibility of
further relaxing the assumptions in MVPC, as well as work
jointly with practitioners on causal analysis of large-scale
healthcare applications in the presence of missing data.
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is a type of soft tissue injury involving a long rehabilitation
process. Understanding causal relations among various fac-
tors and healing outcomes is essential for practitioners. The
list-wise deletion method is not applicable for this case
because about 70% of the data entries are missing, which
means that very rare patients have complete data. Thus,
we apply our method and TD-PC to this dataset. We ran
experiments on the full dataset with more than 100 variables.
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effectiveness of MNAR, we further introduce an auxiliary
variable S which is generated from two variables: Operation
time (OPtime) and FAOS. This variable further causes the
missingness indicator of FAOS. Figure 5b and 5c show the
results of these variables using TD-PC and our proposed
method. Our proposed MVPC is able to correctly remove
the extraneous edge between Operation time and FAOS.

Age Gender

BMILSI FAOS

(a) Consistent results

OPtime FAOS

S

(b) Test-wise deletion PC

Optime FAOS

S

(c) MVPC (proposed)

Figure 5: Causal discovery results in the ATR study. Exper-
iments were run over all variables. We show only a part of
the whole causal graph. Panel (a) shows the relations among
five variables given by MVPC. The relations are consistent
with medical studies. Panel (b) and (c) show an example
where MVPC is able to correct the error of TD-PC.
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In this work, we address the problem of causal discovery in
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analysis to identify possible errors in the results given by a
simple extension of PC. We then show that erroneous causal
edges occur only in particular graph structures. Based on our
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strate the asymptotic correctness and the effectiveness of
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process. Understanding causal relations among various fac-
tors and healing outcomes is essential for practitioners. The
list-wise deletion method is not applicable for this case
because about 70% of the data entries are missing, which
means that very rare patients have complete data. Thus,
we apply our method and TD-PC to this dataset. We ran
experiments on the full dataset with more than 100 variables.
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effectiveness of MNAR, we further introduce an auxiliary
variable S which is generated from two variables: Operation
time (OPtime) and FAOS. This variable further causes the
missingness indicator of FAOS. Figure 5b and 5c show the
results of these variables using TD-PC and our proposed
method. Our proposed MVPC is able to correctly remove
the extraneous edge between Operation time and FAOS.
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In this work, we address the problem of causal discovery in
the presence of missing data. We first provide theoretical
analysis to identify possible errors in the results given by a
simple extension of PC. We then show that erroneous causal
edges occur only in particular graph structures. Based on our
analysis, we propose a novel algorithm MVPC, which cor-
rects erroneous edges under mild assumptions. We demon-
strate the asymptotic correctness and the effectiveness of
our method on both synthetic data and real-world applica-
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further relaxing the assumptions in MVPC, as well as work
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Figure 2: Performance comparison using structural Hamming distance. Lower value is better. Panel (a) shows the
performance for MAR with 20 variables. Panel (b) and (c) show the performance for MNAR with 20 and 50 variables.
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Figure 3: Precision and recall for adjacencies and orientation comparison (Higher is better). All experiments above use 20
nodes with 10000 data samples.

Aging USA (CogUSA) study (McArdle et al., 2015) (Sec-
tion 5.2), and the second is about Achilles Tendon Rupture
(ATR) rehabilitation research study (Praxitelous et al., 2017;
Domeij-Arverud et al., 2016). MVPC demonstrates superior
performance compared to multiple baseline methods.

5.1 Synthetic data evaluation

To best demonstrate the behavior of different causal discov-
ery methods, we first perform the evaluation on synthetic
data where the ground truth of causal graphs is known.

Baselines. Our baseline methods include deletion-based
PC algorithms (as mentioned in Section 3): TD-PC and
List-wise Deletion PC (LD-PC). Additionally, we apply
the PC algorithm to the oracle data (without missing data),
denoted by "ideal". Finally, to decouple the effect of sample
size, we construct virtual datasets in MCAR with the same
sample size as in each CI test of TD-PC. PC with such
virtual MCAR data as a reference is denote by "target" .

Data Generation. We follow the procedures in (Colombo
et al., 2012; Strobl et al., 2017) to randomly generate Gaus-
sian DAG and sample data based on the given DAG. Addi-
tionally, we include at least two collider structures in the
random Gaussian DAG, in order for deletion-based PC to
have erroneous edges, as implied by Proposition 2. We
generate two groups of synthetic data to show the scala-

bility of our methods: One group has 20 variables (with
6-10 partially observed variables), and the other is with 50
variables (with 10-14 partially observed variables) for MAR
and MNAR. Note that in MNAR case, we assume that the di-
rect causes of missingness indicators are partially observed.
This is different from (Strobl et al., 2017), which assumes
that the cause is a hidden variable. For each group of the
experiments, we generate 400 DAGs with sample size of
100, 1000, 5000, and 10000, respectively.

Result. In all different experimental settings, we compare
the results of different algorithms with structural Hamming
distance from the ground truth, shown in Figure 2, and with
the precision and recall of their adjacency and orientation,
given in Figure 3. Across both metrics, as seen from Figure
2 and Figure 3, our proposed algorithm consistently has
superior performance compared to both TD-PC and LD-PC,
and is very close to the "target" performance. Similar to
(Strobl et al., 2017), TD-PC also performs better than LD-
PC in the context of PC. Additionally, our proposed method
benefits from large volume of data samples as shown in
Figure 2, in contract to (Strobl et al., 2017).

5.2 The Cognition and aging USA (CogUSA) study

In this experiment, we aim to discovery causal relations
in the CogUSA study as in (Strobl et al., 2017). This is a
typical survey based healthcare dataset with a large amount
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Figure 2: Performance comparison using structural Hamming distance. Lower value is better. Panel (a) shows the
performance for MAR with 20 variables. Panel (b) and (c) show the performance for MNAR with 20 and 50 variables.
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Aging USA (CogUSA) study (McArdle et al., 2015) (Sec-
tion 5.2), and the second is about Achilles Tendon Rupture
(ATR) rehabilitation research study (Praxitelous et al., 2017;
Domeij-Arverud et al., 2016). MVPC demonstrates superior
performance compared to multiple baseline methods.

5.1 Synthetic data evaluation

To best demonstrate the behavior of different causal discov-
ery methods, we first perform the evaluation on synthetic
data where the ground truth of causal graphs is known.

Baselines. Our baseline methods include deletion-based
PC algorithms (as mentioned in Section 3): TD-PC and
List-wise Deletion PC (LD-PC). Additionally, we apply
the PC algorithm to the oracle data (without missing data),
denoted by "ideal". Finally, to decouple the effect of sample
size, we construct virtual datasets in MCAR with the same
sample size as in each CI test of TD-PC. PC with such
virtual MCAR data as a reference is denote by "target" .

Data Generation. We follow the procedures in (Colombo
et al., 2012; Strobl et al., 2017) to randomly generate Gaus-
sian DAG and sample data based on the given DAG. Addi-
tionally, we include at least two collider structures in the
random Gaussian DAG, in order for deletion-based PC to
have erroneous edges, as implied by Proposition 2. We
generate two groups of synthetic data to show the scala-

bility of our methods: One group has 20 variables (with
6-10 partially observed variables), and the other is with 50
variables (with 10-14 partially observed variables) for MAR
and MNAR. Note that in MNAR case, we assume that the di-
rect causes of missingness indicators are partially observed.
This is different from (Strobl et al., 2017), which assumes
that the cause is a hidden variable. For each group of the
experiments, we generate 400 DAGs with sample size of
100, 1000, 5000, and 10000, respectively.

Result. In all different experimental settings, we compare
the results of different algorithms with structural Hamming
distance from the ground truth, shown in Figure 2, and with
the precision and recall of their adjacency and orientation,
given in Figure 3. Across both metrics, as seen from Figure
2 and Figure 3, our proposed algorithm consistently has
superior performance compared to both TD-PC and LD-PC,
and is very close to the "target" performance. Similar to
(Strobl et al., 2017), TD-PC also performs better than LD-
PC in the context of PC. Additionally, our proposed method
benefits from large volume of data samples as shown in
Figure 2, in contract to (Strobl et al., 2017).

5.2 The Cognition and aging USA (CogUSA) study

In this experiment, we aim to discovery causal relations
in the CogUSA study as in (Strobl et al., 2017). This is a
typical survey based healthcare dataset with a large amount
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Figure 2: Performance comparison using structural Hamming distance. Lower value is better. Panel (a) shows the
performance for MAR with 20 variables. Panel (b) and (c) show the performance for MNAR with 20 and 50 variables.
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Aging USA (CogUSA) study (McArdle et al., 2015) (Sec-
tion 5.2), and the second is about Achilles Tendon Rupture
(ATR) rehabilitation research study (Praxitelous et al., 2017;
Domeij-Arverud et al., 2016). MVPC demonstrates superior
performance compared to multiple baseline methods.

5.1 Synthetic data evaluation

To best demonstrate the behavior of different causal discov-
ery methods, we first perform the evaluation on synthetic
data where the ground truth of causal graphs is known.

Baselines. Our baseline methods include deletion-based
PC algorithms (as mentioned in Section 3): TD-PC and
List-wise Deletion PC (LD-PC). Additionally, we apply
the PC algorithm to the oracle data (without missing data),
denoted by "ideal". Finally, to decouple the effect of sample
size, we construct virtual datasets in MCAR with the same
sample size as in each CI test of TD-PC. PC with such
virtual MCAR data as a reference is denote by "target" .

Data Generation. We follow the procedures in (Colombo
et al., 2012; Strobl et al., 2017) to randomly generate Gaus-
sian DAG and sample data based on the given DAG. Addi-
tionally, we include at least two collider structures in the
random Gaussian DAG, in order for deletion-based PC to
have erroneous edges, as implied by Proposition 2. We
generate two groups of synthetic data to show the scala-

bility of our methods: One group has 20 variables (with
6-10 partially observed variables), and the other is with 50
variables (with 10-14 partially observed variables) for MAR
and MNAR. Note that in MNAR case, we assume that the di-
rect causes of missingness indicators are partially observed.
This is different from (Strobl et al., 2017), which assumes
that the cause is a hidden variable. For each group of the
experiments, we generate 400 DAGs with sample size of
100, 1000, 5000, and 10000, respectively.

Result. In all different experimental settings, we compare
the results of different algorithms with structural Hamming
distance from the ground truth, shown in Figure 2, and with
the precision and recall of their adjacency and orientation,
given in Figure 3. Across both metrics, as seen from Figure
2 and Figure 3, our proposed algorithm consistently has
superior performance compared to both TD-PC and LD-PC,
and is very close to the "target" performance. Similar to
(Strobl et al., 2017), TD-PC also performs better than LD-
PC in the context of PC. Additionally, our proposed method
benefits from large volume of data samples as shown in
Figure 2, in contract to (Strobl et al., 2017).

5.2 The Cognition and aging USA (CogUSA) study

In this experiment, we aim to discovery causal relations
in the CogUSA study as in (Strobl et al., 2017). This is a
typical survey based healthcare dataset with a large amount
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A Appendix

A.1 Violation of "no self-masking missingness"

X Y

ViRx

Figure 6: Self-masking missingness indicator with multiple
direct causes: TD-PC produces an extra edge between X
and Y , but such self-masking missingness does not affect
the other edges in the causal skeleton results, such as the
edge between X and Vi 2 V\{X ,Y}.

In this section, we discuss challenges of the SelF-masking
Missingness (SFM), and its influences on MVPC.

We note that in the linear Gaussian cases SFM does not af-
fect MVPC, when the SFM indicator Rx only has one direct
cause X , such as in Figure 1d. In this case, the result of
the CI test of X and Y in test-wise deleted data implies the
correct d-separation relation in the m-graph. With the faith-
fulness assumption on the m-graph, we have X ?? Y ()
X ?? Y | Rx; furthermore, under the faithful observability
assumption, we have X ?? Y | Rx () X⇤ ?? Y | Rx = 0 and
X⇤ ?? Y | Rx = 0 is what we test in the test-wise deleted
data of X and Y .

SFM affects MVPC results when the SFM indicator Rx has
multiple direct causes. For example, as the m-graph in
Figure 6 shown, conditioning on the missingness indicator
which is the direct common effect of two variables in a CI
test produces an extraneous edge between them in the re-
sult given by MVPC. Removing such extraneous edges is
challenging, because our correction methods are not appli-
cable to the self-masking missingness scenario. However,
such self-masking missingness indicator does not affect the
other edges between X and variables in V \ {X ,Y} in the
causal skeleton resulted by MVPC. Therefore, we specify in
the output that edges between the self-masking variable and
other direct causes of the self-masking missingness indicator
are uncertain.

A.2 Proofs of the propositions

Proof. Proposition 1
X ?? Y |{Z,Rz = 0,Rx = 0,Ry = 0}) X ?? Y |Z: We have
X ?? Y |{Z,Rz = 0,Rx = 0,Ry = 0}, where some of the in-
volved missingness indicators may only take value 0 (i.e.,
the corresponding variables do not have missing values).
With the faithful observability assumption, the above con-
dition implies X ?? Y |{Z,Rz,Rx,Ry}. Because of the faith-
fulness assumption on m-graphs, we know that X and Y
are d-separated by {Z,Rz,Rx,Ry}; furthermore, with As-
sumption 1, 3, and 4, the missingness indicators can only be

leaf nodes in the m-graph. Therefore, conditioning on these
nodes will not destroy the above d-separation relation. That
is, in the m-graph, X and Y are d-separated by Z. Hence,
we have X ?? Y | Z.

Proof. Proposition 2
The condition of Proposition 2 implies that for nodes X , Y
and any node set Z ✓ V \ {X ,Y} in a m-graph, condition-
ing on Z and missingness indicators Rx, Ry, and Rz, there
always exists an undirected path U between X and Y that is
not blocked. Furthermore, to satisfy such constraint of U ,
at least a missingness indicator Ri 2 {Rx,Ry,Rz} satisfies
either one of the following two conditions: (1) Ri is the only
vertex on U ; (2) A cause of Ri is the only vertex on U as a
collider. In Condition (1), if Ri is on U , it is a collider be-
cause under Assumptions 1⇠4, missingness indicators are
the leaf nodes in m-graphs. Then, suppose that Ri is not the
only vertex on U , and that another node Vj 2V\{X ,Y,Z} is
also on U . Conditioning on Vj and Ri, U is blocked, which
is not satisfied the constraint of U . Thus, Ri should be the
only vertex on U . The same reason also applies to Condition
(2). In summary, we conclude that under the condition of
Proposition 2, there is at least one missingness indicator
Ri 2 {Rx,Ry,Rz} such that Ri is the direct common effect or
a descendant of the direct common effect of X and Y .

A.3 Detection of direct causes of missingness
indicators

In Step 2 of Algorithm 1, detecting direct causes of miss-
ingness indicators is implemented by the causal skeleton
discovery procedure of TD-PC. For each missingness in-
dicator Ri, the causal skeleton discovery procedure checks
all the CI relations between Ri and variables in V\Vi, and
tests whether Ri is conditionally independent of a variable
Vj 2 V\Vi given any variable or set of variables connected
to Ri or Vj. If they are conditionally independent, the edge
between Ri and Vj is removed. Under Assumptions 1⇠4, no
extra edge is produced by the causal skeleton discovery pro-
cedure because according to Proposition 2, an extraneous
edge only occurs when Ri and Vj have at least one direct
common effect. Therefore, all the variables adjacent to Ri
are its direct causes because Ri is either an effect or a cause,
and we assume that Ri cannot be a cause in Assumption 1.

Causal Discovery in the Presence of Missing Data
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(a) A MCAR graph
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(b) A MAR graph
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(d) Self-masking missingness

Figure 1: Exemplar missingness graphs in MCAR, MAR, MNAR, and self-masking missingness. X , Y , Z, and W are
random variables. In m-graphs, gray nodes are partially observed variables, and white nodes are fully observed variables.
Rx, Ry, and Rw are the missingness indicators of X , Y , and W .

Assumption 3 and 4 guarantee the recoverability of a joint
distribution of substantive variables, as shown in (Mohan
et al., 2013). As discussed in Appendix A.1, in the lin-
ear Gaussian case, the "self-masking" only affects causal
discovery results when Rx has direct causes other than X .

In the end, we assume linear Gaussian causal models in
this work. Thus, one can check CI relations with the partial
correlation test, a simple CI test method. Note that our
proposed algorithm also works well for general situations.
In the non-linear case, we can use a suitable non-linear or
non-parametric one (Zhang et al., 2011).

Effect of missing data on the deletion-based PC. In the
presence of missing data, the list-wise deletion PC algorithm
deletes all records that have any missing value and then
applies the PC algorithm to the remaining data. In contrast,
the test-wise deletion PC algorithm only deletes records with
missing values for variables involved in the current CI test
when performing the PC algorithm (which can be seen as the
PC algorithm realization of (Strobl et al., 2017)). Test-wise
deletion is more data-efficient than list-wise deletion. In
this paper, we focus on the Test-wise Deletion PC algorithm
(TD-PC).

TD-PC gives asymptotically correct results when data are
MCAR since {Vm,Vo} ??dR is satisfied. Consider Figure
1a as an example. Ry ??d{X ,Y,Z} holds; thus, we have
X ??dY | Z () X ??dY | {Z,Ry}. With the faithfulness
assumption on m-graphs, X ?? Y | Z () X ?? Y | {Z,Ry}.
Furthermore, with the faithful observability assumption, we
conclude X ?? Y | Z () X ?? Y ⇤ | {Z,Ry = 0}. When ap-
plying the CI test to the test-wise deleted data of concerned
variables X , Y , and Z, we test whether X ?? Y ⇤ | {Z,Ry =
0} holds. Therefore, CI results imply d-separation/d-
connection relations of concerned variables in m-graphs
when data are MCAR, which guarantees the asymptotic
correctness of TD-PC.

In cases of MAR and MNAR, TD-PC may produce erro-
neous edges because {Vm,Vo} ??dR does not hold. There-
fore, in what follows in this section, we mainly address the
problems of TD-PC in cases of MAR and MNAR.

Erroneous edges produced by TD-PC. Since TD-PC
may produce erroneous edges when data are MAR and
MNAR, in the following propositions (proofs are given in
Appendix A.2.), we first show that the causal skeleton (undi-
rected graph) given by TD-PC has no missing edges, but
may contain extraneous edges. We then determine the con-
ditions under which extraneous edges occur in the output of
TD-PC.

Proposition 1. Under Assumptions 1⇠4, the CI relation in
test-wise deleted data, X ?? Y | {Z,Rx = 0,Ry = 0,Rz = 0},
implies the CI relation in complete data, X ?? Y | Z, where
X and Y are random variables and Z ✓ V\{X ,Y}.

Proposition 1 shows that CI relations in test-wise deleted
data implies the true corresponding d-separation relations
in a m-graph. However, dependence relations in test-wise
deleted data may imply the wrong corresponding relations
in the m-graph because X 6?? Y | {Z,Rx = 0,Ry = 0,Rz =
0} 6=) X 6?? Y | Z. In other words, TD-PC may wrongly
treat some d-separation relations of concerned variables
as to be not d-separated in a m-graph. Thus, TD-PC pro-
duces extraneous edges in the causal skeleton result rather
than missing edges. For example, in Figure 1b, we have
X 6?? Y ⇤ | {Z,Ry = 0} in the test-wise deleted data, but the
true d-separation relation is X ??dY | Z instead of X 6??dY | Z.
Thus, TD-PC produces an extraneous edge between X and
Y . Fortunately, such extraneous edges appear only under
special circumstances, as shown in the following proposi-
tion.

Proposition 2. Suppose that X and Y are not adjacent
in the true causal graph and that for any variable set
Z ✓ V\{X ,Y} such that X ?? Y | Z, it is always the case
that X 6?? Y | {Z,Rx = 0,Ry = 0,Rz = 0}. Then under As-
sumptions 1⇠4, for at least one variable in {X}[{Y}[Z ,
its missingness indicator is either the direct common effect
or a descendant of the direct common effect of X and Y .

Proposition 2 indicates that extraneous edges can be iden-
tified from the output of TD-PC. For example, in Figure
1b and Figure 1c, W is the direct common effect of X and
Y and the missingness indicator Ry is a descendant of W .
Thus, the extraneous edge occurs between X and Y in the
causal skeleton produced by TD-PC.
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Figure 2: Performance comparison using structural Hamming distance. Lower value is better. Panel (a) shows the
performance for MAR with 20 variables. Panel (b) and (c) show the performance for MNAR with 20 and 50 variables.
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Figure 3: Precision and recall for adjacencies and orientation comparison (Higher is better). All experiments above use 20
nodes with 10000 data samples.

Aging USA (CogUSA) study (McArdle et al., 2015) (Sec-
tion 5.2), and the second is about Achilles Tendon Rupture
(ATR) rehabilitation research study (Praxitelous et al., 2017;
Domeij-Arverud et al., 2016). MVPC demonstrates superior
performance compared to multiple baseline methods.

5.1 Synthetic data evaluation

To best demonstrate the behavior of different causal discov-
ery methods, we first perform the evaluation on synthetic
data where the ground truth of causal graphs is known.

Baselines. Our baseline methods include deletion-based
PC algorithms (as mentioned in Section 3): TD-PC and
List-wise Deletion PC (LD-PC). Additionally, we apply
the PC algorithm to the oracle data (without missing data),
denoted by "ideal". Finally, to decouple the effect of sample
size, we construct virtual datasets in MCAR with the same
sample size as in each CI test of TD-PC. PC with such
virtual MCAR data as a reference is denote by "target" .

Data Generation. We follow the procedures in (Colombo
et al., 2012; Strobl et al., 2017) to randomly generate Gaus-
sian DAG and sample data based on the given DAG. Addi-
tionally, we include at least two collider structures in the
random Gaussian DAG, in order for deletion-based PC to
have erroneous edges, as implied by Proposition 2. We
generate two groups of synthetic data to show the scala-

bility of our methods: One group has 20 variables (with
6-10 partially observed variables), and the other is with 50
variables (with 10-14 partially observed variables) for MAR
and MNAR. Note that in MNAR case, we assume that the di-
rect causes of missingness indicators are partially observed.
This is different from (Strobl et al., 2017), which assumes
that the cause is a hidden variable. For each group of the
experiments, we generate 400 DAGs with sample size of
100, 1000, 5000, and 10000, respectively.

Result. In all different experimental settings, we compare
the results of different algorithms with structural Hamming
distance from the ground truth, shown in Figure 2, and with
the precision and recall of their adjacency and orientation,
given in Figure 3. Across both metrics, as seen from Figure
2 and Figure 3, our proposed algorithm consistently has
superior performance compared to both TD-PC and LD-PC,
and is very close to the "target" performance. Similar to
(Strobl et al., 2017), TD-PC also performs better than LD-
PC in the context of PC. Additionally, our proposed method
benefits from large volume of data samples as shown in
Figure 2, in contract to (Strobl et al., 2017).

5.2 The Cognition and aging USA (CogUSA) study

In this experiment, we aim to discovery causal relations
in the CogUSA study as in (Strobl et al., 2017). This is a
typical survey based healthcare dataset with a large amount


