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INTRODUCTION PROPOSITIONS
e Missing Data Problem: e What is the relationship e Proposition 1: The erroneous edges are extraneous edges
Analyze the influence of the between IQ and gender? XUY|{Z,R,=0,Ry=0,R, =0} =X 1LY |Z
missing data on the constraint- XWY|{Z,R, =0,Ry,=0,R, =0} =~ X LY |Z
based causal discovery 1Q Gender  College e Proposition 2: Determine circumstances where the extraneous
algorithms Propositions high female in edges happen. If there is an extraneous edge between X and Y, under the
e Solution: Propose a framework medium  female not in Sfour assumptions there is at least a missingness indicator of X, Y, and Z is
MVPC and two correction low female not in either the direct common effect or a descendant of the direct common effect
methods for correcting the high male in of X and Y. ( Z: any variable set which satisfies that given Z, X is
. ; ; independent of Y
results of the deletion-based PC ~ medium  male n independent of Y)
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o List-wise deletion and Test-wise deletion
MVPC

o Deletion might produce errors in the skeleton search step.

Observed data distribution vs Full data distribution e Skeleton Search (PC)
1. Detecting direct causes of missingness indicators
o PC Recap 2. Detecting potential extraneous edges
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o o e Get access to the data from the joint distribution P(X, ¥, Z)
Initialization Skeleton search Orientation of edges

(A) Permutation-based correction:
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o Missingness Graphs: missingness indicators and proxy variables
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Experiments
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o MCAR MAR, MNAR: e Synthetic data

Q{k@_, . ideal BB target MVPC == TD-PC LD-PC
Missing data in MAR Missing data in MNAR
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ASSUMPTIONS e Real-world datasets

Cognition and Aging USA  ATR rehabilitation Study
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Test-wise deletion PC MVPC (proposed)

o Recoverability of joint distributions

o Faithful observability i v
X 1Y |{Z,Rk=0}<—= X ILY|{ZRg=1} RN

TR N N

REFERENCES

* Mohan, Karthika, Judea Pearl, and Jin Tian. "Graphical models for inference with missing data." Advances in neural information processing systems. 2013.
* Strobl, Eric V., Shyam Visweswaran, and Peter L. Spirtes. "Fast causal inference with non-random missingness by test-wise deletion." International Journal of Data
Science and Analytics (2017): 1-16.



