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Achilles Tendon Rupture Rehabilitation

• ATR is a complete tear through the Achilles tendon.

– Hard to collect data (costly, painful measure-
ments)

– Lengthy healing process with abundant com-
plications

– Lack of understanding of the healing process
and hard to predict healing outcome

– Typical soft tissue injury: method developed
for ATR can be applied to all other soft tissue
injuries

• A patient journey

• End-to-end probabilistic framework:
Missing data imputation and rehabilitation outcome prediction

Cohort

Length Weight . . . . . . DVT 2 . . . ATRS 3 pain . . . ATRS 12 stiff
1 172 79.8 . . . . . . × . . . 6 . . . 8
2 × 76.5 . . . . . . 0 . . . 4 . . . ×
3 × × . . . 1 . . . 8 . . . 10︸ ︷︷ ︸ ︸ ︷︷ ︸

Predictors Scores
→ Data imputation → Prediction

• Real dataset aggregated from previous studies [1, 2]

• N = 442 patients, M = 297 predictors (measurements) and S = 63 scores

• Missing entries: 69.5% in predictors, 64.2% in scores

• Several data types: integers, categories, real numbers, strings

Model
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• Simultaneous Data Imputation and Outcome Prediction

– Graphical models
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(a) BLR with U
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(b) BLR with P
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– Schematics

(a) BNN with P

Experiments

MAE of Two-stage and
End-to-end Methods

Simultaneous Measurement Imputation and Outcome Prediction for ATR

Component 2 Input BLR P BLR S BLR SATRS

P̂ 2-stage (mean) 0.228 ± 0.0014 0.230± 0.008 0.200 ± 0.010

P̂ 2-stage (OptSpace) 0.224± 0.0028 0.207 ± 0.009 0.193 ± 0.010

P̂ 2-stage (SoftImpute) 0.2049 ± 0.002 0.206 ± 0.008 0.192 ± 0.010

P̂ 2-stage (SVP) 0.316 ± 0.003 0.205 ± 0.012 0.200 ± 0.014

P̂ 2-stage (IALM) 0.237 ± 0.008 0.201 ± 0.011 0.201 ± 0.010

P̂ 2-stage (PMF) 0.164 ± 0.002 0.220 ± 0.006 0.201 ± 0.007

Û 2-stage (PMF) 0.164 ± 0.002 0.237 ± 0.006 0.208 ± 0.006

P̂ EE (proposed) 0.181 ± 0.001 0.202± 0.003 0.195± 0.005

Û EE (proposed) 0.178± 0.001 0.164± 0.004 0.146±0.005

Component 2 Input BNN P BNN S BNN SATRS

P̂ 2-stage (mean) 0.228 ± 0.0014 0.233 ± 0.005 0.202 ± 0.005

P̂ 2-stage (OptSpace) 0.224± 0.0028 0.203 ± 0.008 0.187± 0.009

P̂ 2-stage (SoftImpute) 0.2049 ± 0.002 0.201 ± 0.007 0.186 ± 0.008

P̂ 2-stage (SVP) 0.316 ± 0.003 0.194 ± 0.010 0.187 ± 0.010

P̂ 2-stage (IALM) 0.237 ± 0.008 0.187± 0.011 0.187 ± 0.009

P̂ 2-stage (PMF) 0.164 ± 0.002 0.207 ± 0.007 0.190 ± 0.007

Û 2-stage (PMF) 0.164 ± 0.002 0.208± 0.007 0.190 ± 0.007

P̂ EE (proposed) 0.158 ± 0.001 0.152±0.004 0.143±0.004

Û EE (proposed) 0.167±0.001 0.174±0.003 0.152± 0.003

Table 1: Mean Absolute Error (MAE) and standard deviation over 5 runs for outcome
prediction. Each time, we use random splits of the data with 80% data for training
and 20% data for testing. “EE” indicates end-to-end which is our proposed model.
“2-stage” is the baseline model where data imputation and rehabilitation outcome
prediction are performed in a sequential manner. BLR stands for Bayesian Linear
Regression and BNN stands for Bayesian Neural Network. For the 2-stage models,
the error on P remains the same because the matrix P is imputed once with the
mean imputation or the matrix factorization based methods. In addition, we
report the MAE for the ATRS separately. The target is that the MAE of SATRS

gets smaller than 0.1, because only a di↵erence larger than 0.1 is considered to be
clinical di↵erent.

belonging to the training set is imputed to all their missing measurements. We also apply
traditional matrix factorization based methods: OptSpace (Keshavan et al., 2010), Soft-
Impute (Mazumder et al., 2010), Singular Value Projection (Jain et al., 2010) and Inexact
Augmented Lagrange Multiplier (Lin et al., 2010), to missing values. The predicted values
based on observations are imputed to all the missing values. We then use the imputed data
to predict rehabilitation outcomes using Bayesian linear regression and Bayesian neural
network.
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Simulation Experiments:
Recovered and True Traits

Simultaneous Measurement Imputation and Outcome Prediction for ATR
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Figure 3: Synthetic data experiment. The
plot demonstrates the learned la-
tent traits with respect to the
ground-truth. For a point in the
figure, its x-coordinate is the true
trait value, and y-coordinate is
the corresponding recovered trait
value. Di↵erent colors represent
di↵erent latent traits. For brevity,
we don’t show all the recovered la-
tent traits.

By comparing the inferred latent variables with their ground-truth values, we see that
we can recover all of them. As an example, we show the ability of our end-to-end model
with linear regression on P (Figure 2(b)) to recover the patients’ latent traits and to predict
missing values in P and S. Figure 3 depicts examples of the recovered patient traits. We
can see that recovered values are close to true values because points in Figure 3 are close to
the diagonal of the square figure. Additionally, we evaluate the training and testing error
with the Mean Absolute Error (MAE). We obtain an average training error of 0.042 for P
and 0.027 for S, and an average testing error of 0.056 and 0.037 in the same order. These
results validate our model and inference algorithm. Next, we evaluate our model on the
real-life ATR dataset.

5.2. Preprocessing of the Achilles tendon rupture rehabilitation cohort

The cohort comes from clinical records with various formats, thus preprocessing is needed
before we evaluate our method. First, we convert the whole dataset to numerical values, for
example we convert the starting and ending time of the surgery to surgery duration. This
process is done under the supervision of medical experts and the whole list of variables that
we use are presented in the appendix. The ranges of measurements di↵er significantly due
to the various units in use. We normalize every variable to be in the range of [0, 1]. These
are a�ne transformations and the original value can be easily recovered. We do not fill in
the missing data in the preprocessing steps as it is one of the goals of our model.

5.3. Baselines

We compare our proposed method with seven variations of our proposed model with two
types of baselines. The first type of baseline uses traditional data imputation methods
to impute the missing values in P and predict S. The second one is a two-stage version
of our proposed model where data imputation and rehabilitation outcome prediction are
performed in a sequential manner.

Traditional data imputation. We first consider imputing the per-patient mean (Schef-
fer, 2002) to all missing values. For each patient, the mean value of their observations
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Outcome Prediction at Various Timestamps

Simultaneous Measurement Imputation and Outcome Prediction for ATR

improve the performance without overfitting. The optimal network we found has 1 hidden
layer with P (the number of columns of S) hidden units and a hyperbolic tangent activation.

Our proposed method shows clear improvement on the rehabilitation outcome prediction
over baselines. We can also see that latent variable models have a good performance on the
missing value imputation. Our proposed model is trained for the rehabilitation outcome
prediction, so SVP and IALM could have the better performance on the missing value
imputation than ours.

Discharge P̂ 3 Month P̂3 6 Month P̂6

MAE S3 0.177 ± 0.006
MAE SATRS�3 0.173 ± 0.005
MAE S6 0.172± 0.007 0.178± 0.006
MAE SATRS�6 0.167 ± 0.009 0.169±0.010
MAE S12 0.138 ± 0.006 0.140 ± 0.006 0.132± 0.006
MAE SATRS�12 0.111 ± 0.003 0.114 ± 0.004 0.108±0.003

Table 2: Rehabilitation outcome prediction performance comparison at various timestamps.
Our proposed model with Bayesian neural network is used for this evaluation. We
show that the final rehabilitation outcome prediction accuracy increases with time
and our model can be used for the rehabilitation outcome prediction at various
rehabilitation stages. SATRS is evaluated only with ATRS.

Evaluation of the rehabilitation outcome prediction at di↵erent timestamps.
Here we evaluate the ability of our model to predict scores at di↵erent timestamps when
we extend P to include scores at 3 months (yielding P3) and 6 months (yielding P6). We
report the performance per-timestamp of our model with P, P3 and P6 in Table 2.

We observe that including future measurements helps predicting the final scores. In-
cluding all the previously observed data in the predictors helps improving the accuracy of
future score predictions. Moreover, results of the ATRS prediction at 12 months are close
to 0.1 which is our target value.

Per-variable analysis. We further evaluate the prediction accuracy of our best perform-
ing model by looking the mean error for each variable. Taking the model with P̂ with BNN
as an example, Figures 4 and 5 display the errors and the number of data points available
for each variable.

In Figure 5, we show that the number of scores per period varies. In fact, each period
has at least 11 ATRS (10 criteria and the sum in blue) and 5 FAOS scores (in red). On top
of that, scores at 6 and 12 months both include additional tests such as the evaluation of the
heel rise angle (in green). The clinical practice uses scores at 12 months more because they
can reflect rehabilitation states better. Figure 5 shows that our model is able to predict the
rehabilitation outcome at 12 months better comparing to 3 and 6 months.
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Predictors P: Per-variable MAE and Number of Data
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Figure 4: Per-variable mean MAE and number of data points available for training for the
predictors P.
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Figure 5: Per-variable mean absolute error (MAE) and number of data points available for
training for di↵erent compoents of scores at di↵erent rehabilitation time. Blue
bars represent ATRS. Red bars represent FAOS. Green bars represent other test
scores.

6. Conclusions

We developed a probabilistic end-to-end framework to simultaneously predict the rehabil-
itation outcome and impute the missing entries in data cohort in the context of Achilles
Tendon Rupture (ATR) rehabilitation. We evaluated our model and compared its perfor-
mance with multiple baselines. We demonstrated a clear improvement in the accuracy of
the predicted outcomes in comparison with traditional data imputation methods. Addi-
tionally, the performance of our method on rehabilitation outcome prediction is close to the
ideal clinical result.
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Per-variable MAE and Number of Data
Scores: ATRS, FAOS, and other scores
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Figure 5: Per-variable mean absolute error (MAE) and number of data points available for
training for di↵erent compoents of scores at di↵erent rehabilitation time. Blue
bars represent ATRS. Red bars represent FAOS. Green bars represent other test
scores.

6. Conclusions

We developed a probabilistic end-to-end framework to simultaneously predict the rehabil-
itation outcome and impute the missing entries in data cohort in the context of Achilles
Tendon Rupture (ATR) rehabilitation. We evaluated our model and compared its perfor-
mance with multiple baselines. We demonstrated a clear improvement in the accuracy of
the predicted outcomes in comparison with traditional data imputation methods. Addi-
tionally, the performance of our method on rehabilitation outcome prediction is close to the
ideal clinical result.

14

References

[1] E Domeij-Arverud et al. “Ageing, deep vein thrombosis and male gender predict poor outcome
after acute Achilles tendon rupture”. In: Bone Joint J (2016).

[2] Kars P Valkering et al. “Functional weight-bearing mobilization after Achilles tendon rupture
enhances early healing response: a single-blinded randomized controlled trial”. In: Knee Surgery,
Sports Traumatology, Arthroscopy (2017).


