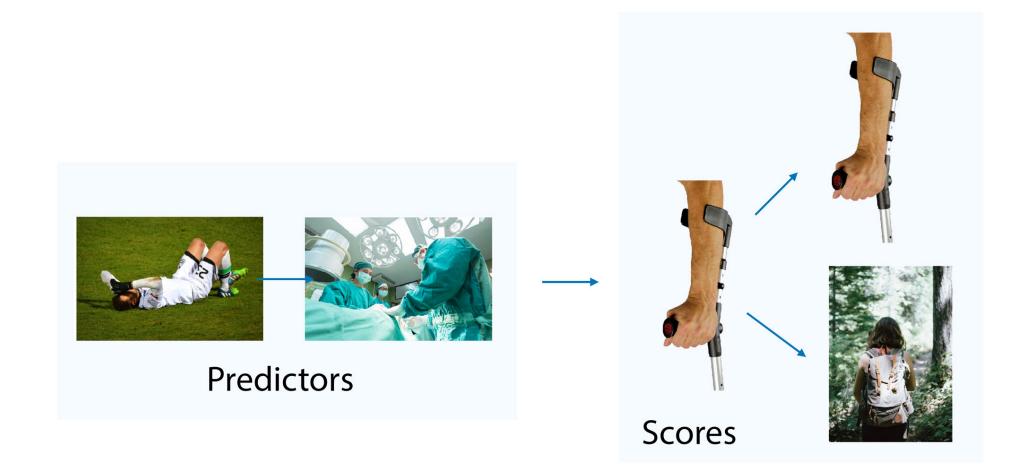
Simultaneous Measurement Imputation and Outcome Prediction for

ACHILLES TENDON RUPTURE REHABILITATION

Charles Hamesse^{1,2}, Ruibo Tu², Paul Ackermann³, Hedvig Kjellström¹, Cheng Zhang⁴

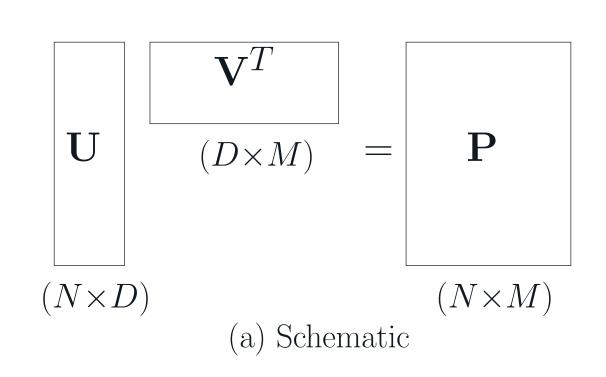

¹KTH Royal Institute of Technology ²Royal Military Academy ³Karolinska University Hospital ⁴Microsoft Research

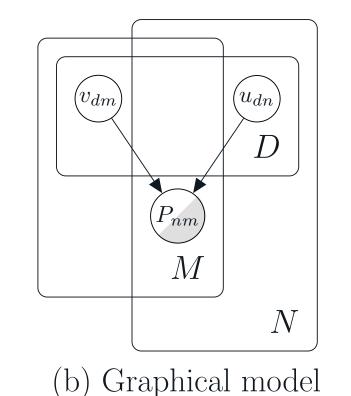
Achilles Tendon Rupture Rehabilitation

• ATR is a **complete** tear through the Achilles tendon.

- Hard to collect data (costly, painful measurements)
- Lengthy healing process with abundant complications
- Lack of understanding of the healing process
 and hard to predict healing outcome
- Typical soft tissue injury: method developed for ATR can be applied to all other soft tissue injuries
- A patient journey

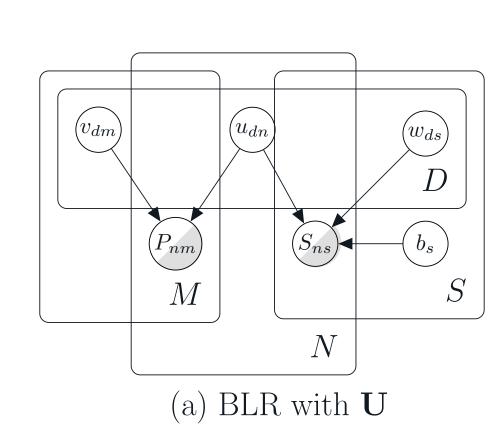
• End-to-end probabilistic framework:
Missing data **imputation** and rehabilitation outcome **prediction**

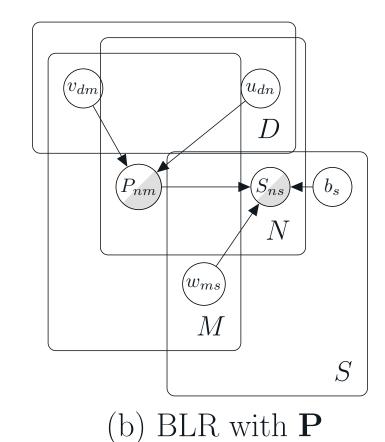

Cohort


	Length	Weight		DVT_2		ATRS_3_pain	• • •	ATRS_12_stiff
1	172	79.8		×		6		8
2	×	76.5		0	• • •	4		×
3	×	×		1	• • •	8	• • •	10
Predictors						Scores		
\rightarrow Data imputation						\rightarrow Prediction		

- Real dataset aggregated from previous studies [1, 2]
- N=442 patients, M=297 predictors (measurements) and S=63 scores
- Missing entries: 69.5% in predictors, 64.2% in scores
- Several data types: integers, categories, real numbers, strings

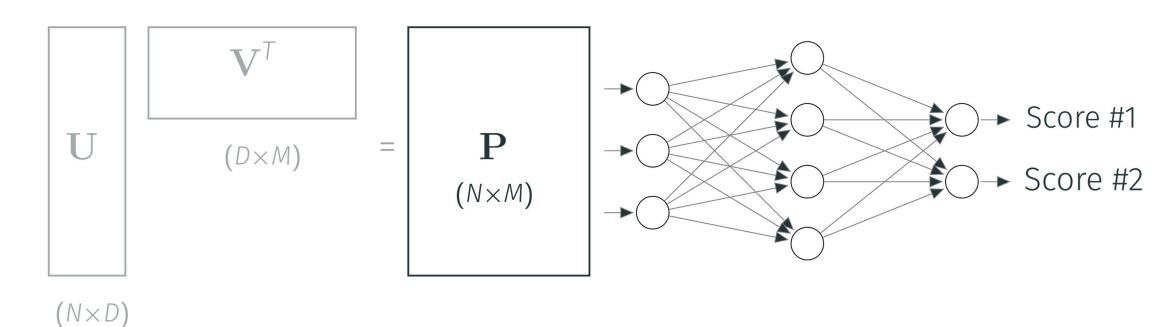
Model


• Data Imputation



$$p(\mathbf{P}|\mathbf{U}, \mathbf{V}, \sigma_{\mathbf{P}}^2) = \prod_{n=1}^{N} \prod_{m=1}^{M} \left[\mathcal{N}(P_{nm}|\mathbf{u}_n \mathbf{v}_m^T, \sigma_{\mathbf{P}}^2) \right]^{\mathbf{I}(n,m)}$$

- Simultaneous Data Imputation and Outcome Prediction
 - Graphical models

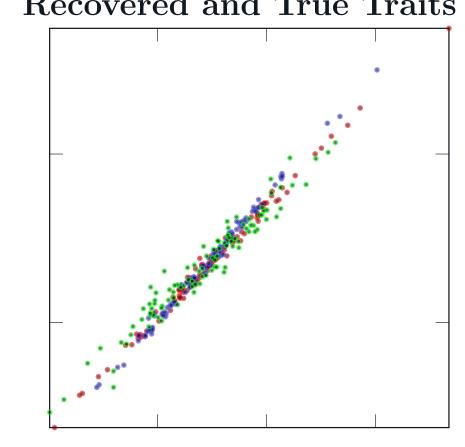


 $p(S|\mathbf{W}, \mathbf{b}, \mathbf{X}) = \prod_{n=1}^{N} \prod_{s=1}^{S} \left[\mathcal{N}(S_{ns} \mid \mathbf{x}_{n} \mathbf{w}_{s} + b_{s}, \sigma_{\mathbf{S}}^{2}) \right]^{\mathbf{I}'_{ns}}, \quad \mathbf{W} \sim \mathcal{N}(\mathbf{W} \mid \mathbf{0}, \sigma_{\mathbf{w}}^{2} \mathbf{1}), \quad \mathbf{b} \sim \mathcal{N}(\mathbf{b} \mid \mathbf{0}, \sigma_{\mathbf{b}}^{2})$

 $\mathbf{w}_{lij} \sim \mathcal{N}(w_{lij} \mid 0, \sigma_{w_{lij}}^2), \quad \sigma_{w_{lij}}^2 = \frac{2}{n_{li,in} + n_{li,out}}$

 $p(S|\theta, \mathbf{X}) = \prod_{n=1}^{N} \prod_{s=1}^{S} \left[\mathcal{N}(S_{ns} \mid \mathbf{NN}(\mathbf{x}_n; \theta), \sigma_{\mathbf{S}}^2) \right]^{\mathbf{I}'_{ns}}, \quad \mathbf{H}_l = \tanh(\mathbf{H}_{l-1}\mathbf{W}_l + \mathbf{b}_l) \quad \text{for } l = 1, ..., L$

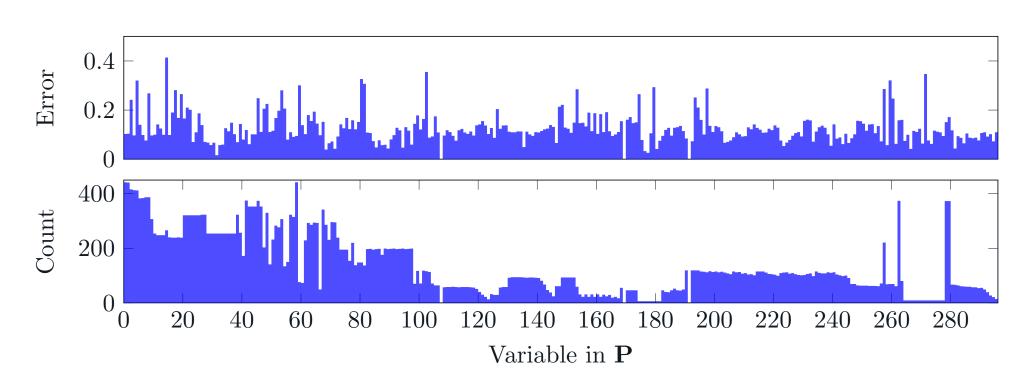
- Schematics

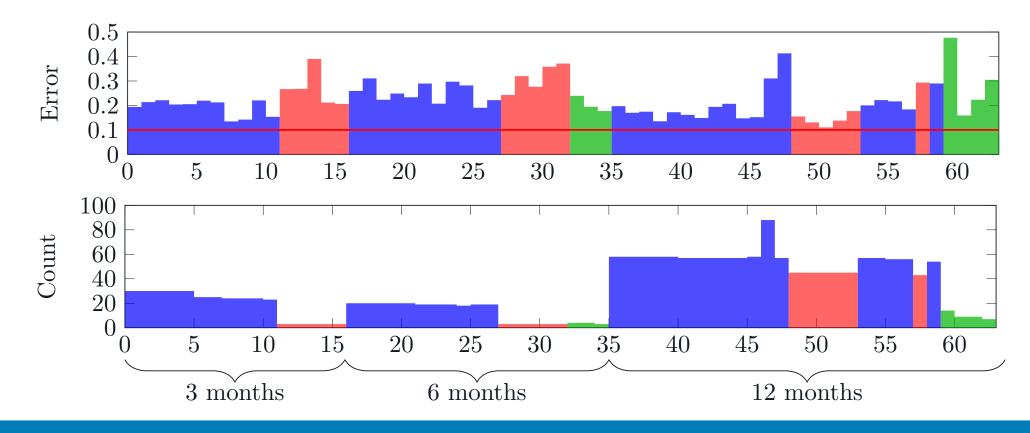

(a) BNN with **P**

Experiments

MAE of Two-stage and End-to-end Methods

Component 2 Input BLR P BLR S BLR S_{ATRS} \hat{P} 2-stage (mean) 0.228 ± 0.0014 0.230 ± 0.008 0.200 ± 0.010 \hat{P} 2-stage (OptSpace) 0.224 ± 0.0028 0.207 ± 0.009 0.193 ± 0.010 \hat{P} 2-stage (SoftImpute) 0.2049 ± 0.002 0.206 ± 0.008 0.192 ± 0.010 \hat{P} 2-stage (SVP) 0.316 ± 0.003 0.205 ± 0.012 0.200 ± 0.014 \hat{P} 2-stage (IALM) 0.237 ± 0.008 0.201 ± 0.011 0.201 ± 0.010 \hat{P} 2-stage (PMF) 0.164 ± 0.002 0.220 ± 0.006 0.201 ± 0.007 \hat{P} 2-stage (PMF) 0.164 ± 0.002 0.202 ± 0.006 0.208 ± 0.006 \hat{P} EE (proposed) 0.181 ± 0.001 0.202 ± 0.003 0.195 ± 0.005 \hat{P} 2-stage (proposed) 0.178 ± 0.001 0.164 ± 0.004 0.146 ± 0.005 \hat{P} 2-stage (mean) 0.228 ± 0.0014 0.233 ± 0.005 0.202 ± 0.005 \hat{P} 2-stage (SoftImpute) 0.2049 ± 0.002 0.203 ± 0.008 0.187 ± 0.009 \hat{P} 2-stage (SVP) 0.316 ± 0.003 0.194 ± 0.010 0.187 ± 0.010 <tr


Simulation Experiments: Recovered and True Traits


Outcome Prediction at Various Timestamps

	Discharge $\hat{\mathbf{P}}$	3 Month $\hat{\mathbf{P_3}}$	6 Month $\hat{\mathbf{P_6}}$
$\overline{\text{MAE }\mathbf{S}_3}$	0.177 ± 0.006		
MAE \mathbf{S}_{ATRS-3}	0.173 ± 0.005		
MAE S_6	$0.172 \pm\ 0.007$	0.178 ± 0.006	
MAE \mathbf{S}_{ATRS-6}	0.167 ± 0.009	0.169 ± 0.010	
MAE \mathbf{S}_{12}	0.138 ± 0.006	0.140 ± 0.006	$0.132 \pm\ 0.006$
MAFS	0.111 ± 0.002	0.114 ± 0.004	0.108 ± 0.003

Predictors P: Per-variable MAE and Number of Data

Per-variable MAE and Number of Data Scores: ATRS, FAOS, and other scores

References

- [1] E Domeij-Arverud et al. "Ageing, deep vein thrombosis and male gender predict poor outcome after acute Achilles tendon rupture". In: $Bone\ Joint\ J\ (2016)$.
- [2] Kars P Valkering et al. "Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial". In: *Knee Surgery, Sports Traumatology, Arthroscopy* (2017).