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Origin-Destination Estimation using Sparsity
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Abstract— For origin-destination (OD) estimation problem, we
show promise of using sparse signal processing algorithms in
this report. We evaluated performance on a simulated dataset
for Stockholm city.

Index Terms— Sparse representations, mobility pattern, OD
estimation.

I. INTRODUCTION

The origin/destination (OD) matrix estimation problem is to
estimate an OD matrix describing flows from all source nodes
to all sink nodes in a network. The data available for this
consists of noisy observations of arc flows on that network.
Variations of several standard statistical methods have been
tried out on the OD matrix estimation problem. Examples of
existing methods are based on entropy maximization and infor-
mation minimization [1], Bayesian estimation [2], generalized
least squares [3], [4], [5], and maximum likelihood estimation
[6]. A time dimension into the problem was first introduced
in [7].

The OD estimation problem is, however, far from being
solved. The key difficulty in the OD matrix estimation problem
is its under-determinedness, which is usually constructed away
by the inclusion of a “prior OD matrix” that is taken for
instance from an outdated survey and included like a supple-
mentary set of measurements in the estimation problem. The
arbitrariness of this approach, however, is widely acknowl-
edged.

A key observation from a signal processing point of view is
that the involved OD estimation problem is inherently sparse.
This means OD estimation variables in a vector form contain
a small number of high value elements; other way we can
say most elements are either very small or zero. A single
individual faces literally a myriad of possible mobility plans
(being essentially a sequence of route/mode/time-annotated
trips that connect activity locations) to implement at any point
in time [8]. However, only a single one is actually chosen.
On an aggregate level, the superposition of these individual
OD mobility plans results in mobility patterns (which repre-
sent, at an aggregate scale, how individuals intend to travel
over some time span up to an entire day) where sparsity is
preserved. Sparse signal processing [9], such as compressed
sensing [10], [11] has recently received significant attention as
key breakthroughs have been achieved. While existing sparse
signal processing algorithms and theoretical results may not be
directly applicable to an OD estimation problem in a setup of
urban mobility sensing due to the enormous size and complex
(non-standard) structure of the involved mathematical system,
we provide an initial result in this technical report on a toy
size model.

II. SYSTEM SETUP FOR OD ESTIMATION

In OD matrix estimation problem, the system setup is

y = Ax+w ∈ Rm, (1)

where y is a measurement vector representing arc flows, A is
the system matrix usually called assignment matrix, x ∈ Rn

being the OD matrix (in vector form), and w is an error
(noise) term that represents unexplained deviations between
model predictions and observations, including measurement
errors. The observations y comprise counting processes (i.e.
number of people or vehicles during some time at some place),
while the unknowns x represent the occurrence of aggregate
mobility patterns in the population. Mathematically speaking,
we are interested in instantaneously estimation from y, i.e.
from a limited set of observations of individuals and vehicles,
about the current mobility patterns x and from this predicting
the spatio-temporal evolution of the city-wide presence of
individuals and vehicles. It is important to note that as we
are only operating on aggregate counting data y, the approach
is privacy-preserving.

A. Role of Sparsity

We already mentioned that x is sparse. Typically the di-
mension of x is also very large compared to the dimension of
y as the number of measurements of arcs are limited. In that
case m� n, and the problem (1) is under-determined, having
no conclusive (unique) mathematical solution. Recently the
area of sparse signal processing, such as compressed sensing
[10], [11] shown that it is possible to get good solution
of the problem (1). The existing sparse signal processing
approach will be tested in this report by recovering a synthetic
OD matrix for the city of Stockholm from simulated link
flows. The synthetic OD matrix is derived from an activity-
based travel demand model, resulting in a realistic (sparsity)
structure. We will use some existing computationally efficient
algorithms from the area of sparse signal processing, such as
subspace pursuit (SP) [12], orthogonal matching pursuit [13]
for the experiments reported in the next section.

III. RESEARCH METHODS

A. Simulated Data for Stockholm

This study uses a system specification (A matrix and w
noise) that are generated by a detailed simulation model
system of the greater Stockholm region. The considered road
network representation has approximately 104 links. The city
is divided into approximately 103 zones. For each origin r and
each destination s, the corresponding OD path is denoted by
xrs. A morning rush hour consisting of approximately 105

vehicle trips is simulated in the system, using an existing
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origin/destination vector x = [xrs] and realistic assumptions
about route choice and traffic flow propagation.

The concrete A matrix used in this study is obtained by
studying a snapshot of this simulation system at the peak of
the simulated rush hour. The number nrsl of vehicles traveling
from r to s and using link l is counted. The total flow on link
l, denoted by yl, then follows

yl =
∑
rs

nrsl (2)

=
∑
rs

nrsl
xrs

xrs. (3)

The system matrix is hence defined by

A = [arsl ] (4)

arsl =
nrs
l

xrs
. (5)

This arsl can be interpreted as the probability that a randomly
selected vehicle traveling in OD relation rs can be observed
on link l.

The idealized setting described so far does not include any
error terms w = [wrs], and their detailed characterization is in-
deed a delicate issue that depends on rather subtle assumptions
made in the simulation model system. It is, however, generally
true that all elements of y, A and x are non-negative. Further,
the elements of y have an upper bound that depends on the
capacity of the respective link. These error distributions are
difficult to characterize explicitly but simple to simulate: For
a given x and A simulate some zero-mean w and truncate the
resulting Ax+w at zero and its upper bounds.

B. Sparse Processing Algorithms

In this section, we briefly describe two sparse signal
processing algorithms which are greedy in nature. Greedy
algorithms are computationally simple and hence attractive
for large systems. However, in signal processing field, it is
typically used for a system with dense A matrix. Here we will
check their performance large and non-ideal system matrices.

First we summarize the main steps of the OMP in Algo-
rithm 1 (see Algorithm 3 of [13]). Here K is the sparsity level
of x. Note that, in each iteration, the OMP performs a matched
filter operation and an orthogonal projection. Using block-
wise matrix inversion, the orthogonal projection operations
can be performed recursively. Considering the worst case
scenario that k = K, the necessary computation for each
orthogonal projection is approximately 7K2 + 4KM . So, the
total computation for each matched filter and each orthogonal
projection is O(MN + K2 + KM). Now, considering K
iterations, the total complexity is O(K(MN +K2 +KM)).

Then we summarize the main steps of the SP algorithm
in Algorithm 2 (see Algorithm 1 of [12]). The SP algorithm
starts with an initial K-element support set I0 and an initial
residual r0 = y − AI0A

†
I0y. At the k’th iteration stage, it

forms the ‘matched filter’ Atrk−1, identifies the K highest
amplitude coordinates, forms a dummy support set I(u) =
Ik−1 ∪ I(p), refines out K-element support set Ik from
I(u), solves a LS problem with the selected indices in Ik,
subtracts the LS fit and produces a new residual. Given the

Algorithm 1 : OMP for CS Recovery
Input:

1: A, y, K;
Initialization:

1: Iteration counter k ← 0;
2: r0 ← y, I0 ← ∅;

Iterations:
1: repeat
2: k ← k + 1;
3: ik ← index of the highest amplitude of Atrk−1;
4: Ik ← Ik−1 ∪ ik; (Note: |Ik| = k)
5: rk ← y −AIkA

†
Iky; (Orthogonal projection)

6: until ((‖rk‖2 > ‖rk−1‖2) or (k > K))
7: k ← k − 1; (Previous iteration)

Output:
1: x̂ ∈ RN , satisfying x̂Ik = A†Iky and x̂Ik = 0.

Algorithm 2 : SP for CS Recovery
Input:

1: A, y, K;
Initialization:

1: Iteration counter k ← 0;
2: I0 ← indices of the K highest amplitudes of Aty;
3: r0 ← y −AI0A

†
I0y;

Iterations:
1: repeat
2: k ← k + 1;
3: I(p) ← {indices of K highest amplitudes of Atrk−1};
4: I(u) ← Ik−1 ∪ I(p); (K ≤ |I(u)| ≤ 2K)
5: x̂I(u)

← A†I(u)
y; x̂I(u)

← 0; (Orthogonal projection)
6: Ik ← {indices of the K highest amplitudes of x̂};
7: rk ← y −AIkA

†
Iky; (Orthogonal projection)

8: until (‖rk‖2 > ‖rk−1‖2)
9: k ← k − 1; (Previous iteration)

Output:
1: x̂ ∈ RN , satisfying x̂Ik = A†Iky and x̂Ik = 0.

sparsity level K, the algorithm estimates a support set of
cardinality K in each iteration and runs until the residual
norm minimization condition is violated. Note that, unlike in
the case of serial atom selection based OMP algorithm, here
the support set cardinality is not increased one-by-one through
iterations. Rather, a K-element support set is refined through
iterations by addition of potential new atoms and deletion of
unnecessary atoms. An important point is to note how the K-
element support set Ik is chosen from the dummy support
set I(u) through using the orthogonal projection that invokes
LS solution. The dummy support set I(u) is formed through
unionizing the previously estimated support set Ik−1 with
the set of K new atoms’ indices. Then the observation y is
orthogonally projected on the span of atoms that are indexed
in I(u) followed by picking up K indices corresponding
to the highest amplitude coefficients of the solution vector.
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Normally, the SP algorithm converges less than K iterations.
Assuming the worst case scenario that the SP algorithm runs
at most K iterations, it performs K matched filtering and
2K orthogonal projection operations. Note that, like OMP
and OLS, the orthogonal projections can not be performed
recursively. Hence, the total complexity for each iteration is
O(MN + K2M). Therefore, considering K iterations, the
overall complexity of SP algorithm is O(K(MN +K2M)).

C. Numerical Experiments

We used OMP and SP algorithms to evaluate the OD esti-
mation performance. We first mention about the performance
measure, called signal-to-reconstruction-noise ratio (SRNR),
defined as

SRNR =
E{‖x‖22}
E{‖x− x̂‖22}

Here x̂ is the estimated OD signal vector. The estimation is
better when SRNR is higher.

Next we will discuss the experimental setups. The raw data
could be divided into three parts: origins, destinations and the
measurements, which is in the format as shown in Table I.

TABLE I
RAW DATA

NUMBER ORIGIN DESTINATION LINK
1 origin1 destination1 linka, linkb, ..., linkc
2 origin2 destination2 linkd, linke, ..., linkf
3 origin3 destination3 linkg, linkh, ..., linki
... ... ... ...

4227 origin4227 destination4227 linkj, linkk, ..., linkm

The measurements here correspond to the quantity of the
vehicles that appear in some path and also appear in some link,
which are identified with combination of numbers and letters.
There are 974 different origins and 824 different destinations
in the data. There is some overlap between the origins and
destinations. Considering the overlaps, we found that we have
1158 different locations in total. There are 20201 different
links. For this data, the dimensions of x, y and A are
1340964× 1, 20201× 1 and 20201× 1340964, respectively.

We use fraction of sampling (or fraction of measurements)
to show the estimation performance under different sampling
levels. The fraction of sampling is defined as

α =
M ′

M
,

where M ′ ≤ M , and M = 20201. Note that α ∈ (0, 1].
Further, Gaussian noise in different levels are added to the true
measurement vector to evaluate the estimation performance in
noisy environment (with the constraint of positiveness). The
signal-to-measurement-noise-ratio (SMNR) is defined as

SMNR =
E{‖x‖22}
E{‖w‖22}

.

The OD estimation performance using OMP and SP algo-
rithms are shown in Figure 1 and Figure 2. The x-axis shows
the fraction of measurements. The y-axis shows the SRNR
performance with noisy conditions with SMNR = 10, 20, 30

dB. We always used K as the half of M ′. It is noted that
performance deteriorates significantly with decrease in link
measurements.

Fig. 1. OD estimation performance of OMP algorithm at varying SMNR.

Fig. 2. OD estimation performance of SP algorithm at varying SMNR.

We observe that OMP and SP provide similar results. For
execution of algorithms, the cpu running time of OMP is
10441 seconds , and the running time of SP is 477 seconds.

IV. CONCLUSIONS

From our experimental study, we conclude that sparse
processing has a high promise for OD estimation problem in
a setup of urban mobility sensing. The future question is what
happens for highly under-detrmined system where number of
link measurements is very limited and the system size is very
large in the sense that number of OD pairs is very large.
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