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Motivation of the course

1 The necessity of linear set of equations

2 Elementary problem: Sparse solution of an under-determined
linear set of equations

Figure: An example image with blurring



Under-determined setup (Our interest in

the tutorial)

b = Ax, (1)

where

b ∈ R
n×1, x ∈ R

m×1, A ∈ R
n×m

and most importantly

n < m.

♠ Reference book: “Sparse and Redundant Representations”, By
Michael Elad, Springer.



Regularization

(PJ) : arg min
x∈Rm

J(x) subject to b = Ax. (2)

If, we are interested for the minimum norm solution, then
J(x) = ‖x‖22. So, we solve

argmin
x∈Rm

‖x‖22 subject to b = Ax. (3)

Solution of the above is right Pseudo-inverse:

x⋆ = A†b = AT
(

AAT
)−1

b.
Proof: ? Homework



Convexity

Definition
Convex set: A set Ω is convex if ∀ x1, x2 ∈ Ω and ∀t ∈ [0, 1], the
convex combination x = tx1 + (1− t)x2 ∈ Ω.

Definition
Convex function: A function J(x) : Ω→ R is convex if
∀ x1, x2 ∈ Ω and ∀t ∈ [0, 1], the convex combination
x = tx1 + (1− t)x2 ∈ Ω satisfies

J(tx1 + (1− t)x2) ≤ tJ(x1) + (1− t)J(x2). (4)

Remark
Convex function: If ∇2J(x) is positive definite. In fact, for
J(x) = ‖x‖22, ∇2‖x‖22 = 2I ≥ 0 is strictly positive definite.



Convex Vs. Non-convex

Remark
Carefully chosen J(x) allows battery of convex optimization
algorithms in use, leading to globally optimum solutions. But that
does not make an impression that we should never seek non-convex
solutions. We should never think that non-convex
solutions/approaches do not have any value. The engineering
choice resides in the problem.



Special interest

The lp norm

J(x) = ‖x‖pp =
∑

i

|xi |p, (5)

where p ≥ 1. In system identification, p =∞ is used. We are
mainly interested in p = 1.



l1-norm minimization

(P1) : argmin
x∈Rm

‖x‖1 subject to b = Ax. (6)

Some remarks:

1 l1 norm is not strictly convex. Example.

2 So, there may be multiple global solutions

Important claims:

1 The solutions are gathered in a set that is bounded and convex

2 Among the solutions, there exists at-least one with at-most n
non-zeros (i.e. the number of constraints)

Proof: ? Please see the reference

Remark
The l1-norm minimization promotes sparsity



Conversion of (P1) to linear program

The standard form LP:

minimize cT z subject to Az = b and z ≥ 0. (7)

Support set notation: Ix = {i : xi 6= 0}
Proof sketch: Please see reference for details

1 Let u, v ≥ 0 such that x = u− v.

2 Note uT v = 0 or Iu ∩ Iv = ∅
3 Define z =

[

uT vT
]T

and hence z ≥ 0

4 Show that ‖x‖1 = 1T z and b = Ax = [A − A] z

5 Then show that LP is equivalent to (P1) by proving that
solution of LP never violates uT v = 0



Promoting sparse solutions

1 Moving from l2 to l1 regularization leads to promoting sparsity

2 By this rationale, we can consider lp norms where p < 1

3 But then the norms are not strictly norms (they do not satisfy
triangular inequality) and things are not convex

Question
Does the norm with p < 1 leads to sparse solution? Yes it is.

A case study: Let x satisfies ‖x‖0 = a, ‖x‖qq = 1 and x ≥ 0. Let
p < q and the problem is:

min
x∈Rm

‖x‖pp subject to ‖x‖qq = 1 and ‖x‖0 = a. (8)

Proof: Using Lagrangian, we will get min‖x‖pp = a
(1− p

q
)



Question
What we get from the proof?
Since p < q, this means that the shortest ℓp-norm is obtained for
a = 1, having only one non-zero element in x.



Some pictorial understanding

Let us assume q = 2 and p = 1.
Illustration: We work out by diagrams

Figure: The Figure is copied from Reference book by Micheal Elad. It
may be copyright violation.



The l0-norm and implications

The l0 norm

‖x‖0 = lim
p→0
‖x‖pp = lim

p→0

m
∑

i=1

|xi |p = |Ix|. (9)

Definition: Ix is called support-set, defined as Ix = {i : xi 6= 0}
Remark
We check the norm properties as follows:

1 ‖u+ v‖0 ≤ ‖u‖0 + ‖v‖0. So triangular inequality satisfies.

2 ‖tu‖0 = ‖u‖0 6= t‖u‖0. Homogeneity does not hold

3 The problem of scaling will haunt us



The (P0) problem

(P0) : argmin
x∈Rm

‖x‖0 subject to b = Ax. (10)

Remark
While we have a clear understanding of (P2) and a better
understanding of (P1), the (P0) is difficult. Mainly because of its
discrete nature.

1 Can uniqueness of a solution be claimed? Under what
conditions?

2 If a candidate solution is available, can we perform a simple
test to verify that the solution is actually the global minimizer
of (P0)?

Comments: On exhaustive search complexity



Question around the (P0) problem

Remark
The complexity of exhaustive serach is exponential in m, and
indeed, it has been proven that (P0) is NP-hard in general. Thus,
a mandatory and crucial set of questions arise:

1 Can (P0) be efficiently solved by some other means?

2 Can approximate solutions be accepted?

3 How accurate can those solutions be?

4 What kind of approximations will work?



Uniqueness via Spark

♠ To characterize the null space of a general A using l0 norm
♠ Donoho and Elad coined and defined ‘spark’ in 2003

Definition
Spark (Rank): The spark (rank) of a matrix A is the smallest
(largest) number of linearly dependent (independent) columns

spark(A) = min
x∈Rm

‖x‖0 subject to Ax = 0, x 6= 0. (11)

Note: By definition, the non-zero vectors in the null space of A,
i.e., {x : Ax = 0, x 6= 0}, must satisfy ‖x‖0 ≥ spark(A)



Uniqueness via Spark

Theorem
Uniqueness via Spark: For Ax = b, if a candidate solution x

satisfies ‖x‖0 < 1
2 spark(A), then it is necessarily the sparsest.

Proof: Consider an alternative solution y satisfying Ax = b. So
Ax−Ay = A(x− y) = 0; (x− y) is in null space and (x− y) 6= 0.
‖x‖0 + ‖y‖0 ≥ ‖x− y‖0 ≥ spark(A). So, if ‖x‖0 < 1

2spark(A)
then ‖y‖0 > 1

2spark(A). Implies x is the sparsest.

Remark
Range of Spark: 2 ≤ spark(A) ≤ n + 1

Proof: We discuss



♠ Finding ‘spark’ is again NP hard. So comes mutual coherence.

Definition
Mutual coherence: Denoting the i -th column by ai

µ (A) = max
1≤i ,j≤m,i 6=j

|aTi aj |
‖ai‖2 ‖aj‖2

(12)

1 For an orthogonal matrix, µ (A) = 0

2 For two-ortho case: 1√
n
≤ µ (A) ≤ 1

3 For a general A ∈ R
n×m, we desire for a low µ (A) such that

it exhibits a close behavior of an orthogonal matrix

4 Donoho and Huo’s Work: For randomly constructed

A ∈ R
n×m with full rank n, we have µ (A) ≥

√

m−n
n(m−1) .

• When m = n, µ (A) = 0



Lemma
For a matrix A ∈ R

n×m, spark(A) ≥ 1 + 1
µ(A)

Proof: We work out (by using Gersh-gorin disk theorem). We learn
the Gersh-gorin disk theorem and its relation with positive-definite
property. Then we proceed with formal proof.

Theorem
Uniqueness via Mutual Coherence: For Ax = b, if a candidate
solution x satisfies ‖x‖0 < 1

2 (1 +
1

µ(A)), then it is necessarily the
sparsest.

Proof: By simple arguments



Constructing Grassmannian matrices

Definition
A Grassmannian (real) matrix A ∈ R

n×m with m ≥ n and
normalized columns satisfies that its Gram matrix G = ATA has
the following property

∀i 6= j , |Gi ,j | =
√

m − n

n(m − 1)
. (13)

For a Grassmannian matrix, µ (A) =
√

m−n
n(m−1) .



1 Grassmannian is special as the angle between each and every
pairs of columns is same and smallest possible.

2 It has strong connection with packing vectors/subspaces in
R
n.

3 Important in channel coding and wireless communication.

4 Hard to construct such matrix. A numerical method was
proposed by Joel Tropp et al. The paper: “Designing
structured tight frames via an alternating projection method,”
IEEE Trans Information Theory, January 2005

Home Work: Read the paper and simulate the algorithm.
Reproduce the experimental and/or numerical results in the paper.



Algorithms : Attempt to Solve (P0)

(P0) : argmin
x∈Rm

‖x‖0 subject to b = Ax. (14)

1 Finding support: Estimation of support is a discrete problem.
As the support is discrete in nature, algorithms that seek it
are discrete as well. This line of reasoning leads to greedy
algorithms.

2 Smoothing penalty: Most talked about algo is l1 norm
minimization.



Greedy Algorithm

Let ‖x‖0 = k0 < n. Then what is our system?

b = Ax =
∑

t∈Ix
atxt = AIxxIx (15)

where Ix is the support. Then we can do ‘m choose k0’ subspace
searches (all possibilities) and can find the solution.

1 Greedy Strategy: A greedy strategy abandons exhaustive
search in favor of a series of locally optimal single-term
updates.

2 Generally two types: serial identification of atoms or parallel
identification.



Greedy methods:

1 Serial: Mathcing pursuit (MP), Orthogonal MP (OMP),
Weak MP, LS-OMP

2 Parallel: CoSaMP, Subspace pursuit (SP)

Normalization: Is there any difference between using A and its
normalized version Ã where each column l2 norm is one?

We can express Ã = AW where W = diag{ 1
‖ai‖2 }

Theorem
The greedy algorithms (OMP, MP and Weak MP) produce the
same solution using either original matrix A or its normalized
version Ã.

Proof: Please see reference
Question: Is this theorem holds true for other greedy algorithms?
Such as CoSaMP and SP? Possibly yes (still check it out).



Orthogonal matching pursuit

Input: A, b, k0;
Initialization: Iteration counter k ← 0; r0 ← b, I0 ← ∅;
repeat

k ← k + 1;
ik ← index of the highest amplitude of Atrk−1;
Ik ← Ik−1 ∪ ik ; (Note: |Ik | = k)

rk ← b− AIkA
†
Ikb; (Orthogonal projection)

until ((‖rk‖2 > ‖rk−1‖2) or (k > k0))
k ← k − 1; (Previous iteration)

Output: x̂ ∈ R
N , satisfying x̂Ik = A

†
Iky and x̂Ik

= 0.



Spbspace Pursuit

A, b, k0;
Initialization: Iteration counter k ← 0;
I0 ← indices of the k0 highest amplitudes of Atb;
r0 ← b− AI0A

†
I0b;

repeat

k ← k + 1;
I(p) ← {indices of k0 highest amplitudes of Atrk−1};
I(u) ← Ik−1 ∪ I(p); (k0 ≤ |I(u)| ≤ 2K )

x̂I(u) ← A
†
I(u)b; x̂I(u)

← 0; (Orthogonal projection)

Ik ← {indices of the k0 highest amplitudes of x̂};
rk ← y − AIkA

†
Ikb; (Orthogonal projection)

until (‖rk‖2 > ‖rk−1‖2)
k ← k − 1; (Previous iteration)

Output: x̂ ∈ R
N , satisfying x̂Ik = A

†
Ikb and x̂Ik

= 0.



Smoothing Penalty

1 FOCUSS, Iteratively reweighted least squares
Difficult to analyze

2 Using l1 norm: Basis Pursuit (BP)

(P1) : argmin
x∈Rm

‖x‖1 subject to b = Ax. (16)

Candes and Tao: If A holds Restricted Isometry Property
(RIP), then we need n = O(‖x‖0 logm) for perfect recovery.



Evaluating Some Algorithms

1 Write the codes for some algorithms and experiment with
them. Find by your own that it really works.

2 Design a formal experiment setup and evaluate the algorithms.

3 The project is assigned through the tutorial website.



Theory - The Guarantee Question

Remark
Question: Assume that Ax = b has a sparse solution with k0
non-zeros, i.e., ‖x‖0 = k0. Furthermore, assume that
k0 <

1
2 spark(A). Will OMP, BP succeed in recovering the sparsest

solution?

1 Note that, such success for any k0 and A is not possible due
to the known conflict of NP-hardness.

2 However, if the solution is “sufficiently sparse”, the success of
the some algos is guaranteed.



OMP Performance Guarantee

Theorem
Equivalence - OMP : For Ax = b where A is full row rank, if a
solution x exists such that

‖x‖0 <
1

2

(

1 +
1

µ (A)

)

, (17)

OMP is guaranteed to find the solution. That means the solution is
both the unique solution of OMP and the unique solution of (P0)

Proof: We work out.



Proof: w.l.o.g let the true x be in such a way that all its k0
non-zero elements are at the beginning of the vector, in decreasing
order of the values xj .
First iteration: to choose one from k0 entries in the vector, also we
assumed that x1 is the highest. So it should choose 1st entry.
That means, we must need

∀i > k0, |aT1 b| > |aTi b|

|
k0
∑

t=1

xta
T
1 at | > |

k0
∑

t=1

xta
T
i at |

Proof technique: A game of using lower bound and upper bound
judiciously.



L.H.S = |∑k0
t=1 xta

T
1 at |

≥ |x1| −
∑k0

t=2 |xt ||aT1 at | Use|a + b| ≥ |a| − |b|
≥ |x1| −

∑k0
t=2 |xt | µ (A) Use|aT1 at | ≤ µ (A)

≥ |x1| − |x1| (k0 − 1) µ (A)

R .H.S = |∑k0
t=1 xta

T
i at | ≤

∑k0
t=1 |xt ||aTi at | ≤

∑k0
t=1 |xt | µ (A)

≤ |x1| k0 µ (A)

So if the lower bound > upper bound, then we get

‖x‖0 , k0 <
1
2

(

1 + 1
µ(A)

)

. Equivalence of OMP proved.



BP Performance Guarantee

Theorem
Equivalence - BP : For Ax = b, if a solution x exists such that

‖x‖0 <
1

2

(

1 +
1

µ (A)

)

, (18)

then that solution is both the unique solution of (P1) and the
unique solution of (P0).

Proof: We skip it for now, if time permits we come back.

1 Note: In general case, both OMP and BP have same worst
case bounds. This is not alright.

2 Can we do something more? Different kind of tools and
analysis? Yes, we can, like the Tropp’s Exact Recovery
Condition. But, we mostly skip them. More interested readers
should go by themselves.



Exact to Approximate (with Noise) -

General Motivation

1 The exact constraint Ax = b is often relaxed, with a
quadratic penalty Q(x) = ‖Ax− b‖22.

2 Such relaxation allows us to
• define a quasi-solution in case no exact solution exists (even in

the case of an over-determined setup),
• exploit ideas from optimization theory, and
• measure the quality of a candidate solution.

Therefore, we relax the (P0) problem with the use of an error
tolerance ǫ > 0,

(Pǫ
0) : argmin

x∈Rm

‖x‖0 subject to ‖b− Ax‖2 ≤ ǫ. (19)



Remark
A comment: When (P0) and (Pǫ

0) are applied on the same problem
instance, the error-tolerent problem (Pǫ

0) must always provide
results at-least as sparse as those arising in the exact constrained
problem (P0), since the feasible solution set is wider.

Remark
An alternative interpretation: Interpreting the problem (Pǫ

0) as a
noise removal scheme. Consider a sufficiently sparse vector x0, and
assume that b = Ax0 + e, where e is a nuisance vector of finite
energy ‖e‖22 = ǫ2. Rougly speaking (Pǫ

0) aims to find x0, i.e., to do
rougly the same thing as (P0) would be on noiseless data b = Ax0.



Our rational thought process

1 We can have a rationale that the results for (Pǫ
0) are some

ways parallel to those in the noiseless case (P0).

2 Specifically, we should discuss the uniqueness property -
conditions under which a sparse solution is known to be the
global minimizer of (Pǫ

0) and hence the true solution.



Stability of the sparsest solution

Remark
A fundamental question: Suppose that a sparse vector x0 is
pre-multiplied by A, and we obtain a noise version as b = Ax0 + e

with ‖b− Ax‖2 ≤ ǫ. Let

xǫ0 = argmin
x

‖x‖0 subject to ‖b− Ax‖2 ≤ ǫ. (20)

1 How good shall this approximation be?

2 How its accuracy is affected by the sparsity of x0?

These questions are the natural extension from the uniqueness
porperty of (P0).



Uniqueness versus stability - Gaining

intuition
A question: Can we have the sparsest solution for (Pǫ

0) unique?
Answer: No, we can not claim uniqueness for the solution of(Pǫ

0).

Figure: Note ANSWER. (The figure is copied from the reference book by
Michael Elad. Possibly this is a copyright violation)

1. A different support solution with same sparsity level.
2. Even null solution can be a solution.



Theoretical Study of stability of (Pǫ
0)

• Instead of claiming uniqueness of a sparse solution, we try to
be happy with a notion of stability - a claim that if a
sufficiently spase solution is found, then all alternative
solutions necessarily resides (very) close to it.

• Starting point: Extending the notion of ’spark’ by considering
a relaxed notion of linear dependency.

• Recall that spark(A) is the minimum number of linearly
dependent columns. Mathematically, it was defined as

spark(A) = min
x∈Rm

‖x‖0 subject to Ax = 0, x 6= 0. (21)

• If x1 and x2 are two solutions for noiseless case Ax = b, then
we can have d = x1 − x2 and Ad = 0. This motivates the null
space characterization.



• Following the same rationale, if there exists two feasible
solutions x1 and x2 satisfying ‖Axi − b‖2 ≤ ǫ, i = 1, 2, then
we can have d = x1 − x2 and ‖Ad‖2 = ‖A(x1 − x2)‖2 ≤ 2ǫ.

• Therefore, we may generalize the spark to allow for
ǫ-proximity to the null-space.



Definition
Given a matrix A ∈ R

n×m, we consider all possible sub-sets of s
columns, each such set forrms a sub-matrix As ∈ R

n×s . We define
sparkη(A) as the smallest possible s (number of columns) that
guarantees

min
s

σs(As) ≤ η. (22)

In Words: This is the smallest (integer) number of columns that
can be gathered from A, such that the smallest singular-value of
As is no larger than η.

Question: How this new stuff is connected with the spark
definition? For η = 0, spark0(A) = spark(A).



Theorem
Stability of (Pǫ

0): Consider the instance of problem (Pǫ
0) defined by

the triplet (A,b, ǫ). Suppose that a sparse vector x0 ∈ R
m satisfies

that sparsity constraint ‖x0‖0 < 1
2 (1 +

1
µ(A)), and gives a

representation of b within error tolerance ǫ (i.e., ‖b−Ax0‖2 ≤ ǫ).
Every solution xǫ0 of (Pǫ

0) must obey

‖xǫ0 − x0‖22 ≤
4ǫ2

1− µ(A)(2‖x0‖0 − 1)
(23)

Proof: We will see ....

Remark
Note that this result parallels the uniqueness result for (P0)
problem, and indeed it reduces to it exactly for the case of ǫ = 0.



RIP and Stability Analysis

• We now introduce a new measure of quality for a given matrix
A that replaces mutual-coherence and spark.

• The property introduced by Candes and Tao - Restricted
Isometry Property (RIP)

Definition
For a matrix A ∈ R

n×m with l2-normalized columns, and for an
integer scalar s ≤ n, consider sub-matrices As containing
s-columns from A. Define δs as the smallest quantity such that

∀c ∈ R
s , (1− δs)‖c‖22 ≤ ‖Asc‖22 ≤ (1 + δs)‖c‖22 (24)

holds true for any choice of s columns. Then A is said to have an
s-RIP with a constant δs .



• Note: The above definition is only informative when δs < 1.

• Key idea: The key idea is that any subset of ‘s’ columns from
‘A’ behave like an orthogonal transform that loses/gains
almost no energy.

• Explain: What ‘Restricted Isometry’ means? We will have
some pictorial illustration.



Some important points:

• There is a close resemblance between RIP and sparkη(A).

• sparkη(A) is the minimum number of required columns ‘s’
such that the lowest singular value of As is η away from
singularity. This follows from sparkη(A) definition.

• RIP fixes ‘s’ and seeks the maximum of (1− δs), again
implying that any set of ‘s’ columns or the matrix As is
(1− δs) away from singularity.

• However, RIP is richer than sparkη(A) as it is also bounded
from above. That means it is defined by lower and upper
bounds.



Evaluation of RIP constant δs

• Given a matrix A, it is hard or impossible to evaluate δs

• However, just like sparkη(A) was bounded by mutual
coherence µ(A), we can also bound δs

Remark
Important bound: δs ≤ (s − 1)µ(A)

Proof: This proof takes a style of using lower bound and upper
bound. Check reference.
An alternating proof: By Gershgorin Disk Theorem and
Eigenvalues of Gram matrix AT

s As . This proof is more aligned
with System Identification studies.



Coming back to stability of (Pǫ
0):

Theorem
Stability of (Pǫ

0): Consider the instance of problem (Pǫ
0) defined by

the triplet (A,b, ǫ). Suppose that a sparse vector x0 ∈ R
m satisfies

that sparsity constraint ‖x0‖0 < 1
2 (1 +

1
µ(A)), and gives a

representation of b within error tolerance ǫ (i.e., ‖b−Ax0‖2 ≤ ǫ).
Every solution xǫ0 of (Pǫ

0) must obey

‖xǫ0 − x0‖22 ≤
4ǫ2

1− µ(A)(2‖x0‖0 − 1)
(25)

Proof: We now work out. A better style of proving by RIP.
In the proof, illustrate where is the requirement
‖x0‖0 < 1

2(1 +
1

µ(A))?



• Let x0 is the true vector with ‖x0‖0 = s0 and ‖b− Ax0‖2 ≤ ǫ

• Let x̃ is a feasible soln of (Pǫ
0). So ‖x̃‖0 ≤ ‖x0‖0 and

‖b− Ax̃‖2 ≤ ǫ

• Let d = x̃− x0. So ‖Ad‖2 = ‖(Ax̃− b) + (b− Ax0)‖2 ≤ 2ǫ
and ‖d‖0 ≤ 2s0

• Let assume that A satisfies RIP for 2s0, with the constant
δ2s0 < 1. So by LB of RIP, we have (1− δ2s0)‖d‖22 ≤ ‖Ad‖22
and ‖Ad‖22 ≤ 4ǫ2.

• So ‖d‖22 = ‖x̃− x0‖22 ≤ 4ǫ2

1−δ2s0

• Recall δ2s0 ≤ (2s0 − 1)µ(A). Plug this to the right side of

above and we get ‖d‖22 ≤ 4ǫ2

1−δ2s0
≤ 4ǫ2

1−(2s0−1)µ(A)

• To remain valid 1− (2s0 − 1)µ(A) > 0 and so we require
s0 <

1
2 (1 +

1
µ(A))



The style is more general

• The analysis (or proof) can be generalized more.

• Let us say a feasible solution xǫ0 follows ‖xǫ0‖0 = s1. Then, we

can proof ‖xǫ0 − x0‖22 ≤ 4ǫ2

1−µ(A)(‖x0‖0+‖xǫ0‖0−1) .



What Happens for Practical Algos?

• OMP : Very easy to implement. Just choose ǫ0 = ǫ. With this
minor change, the OMP is ready, and this possibly explains it
popularity. Problem: Who will supply ǫ?

• Basis pursuit denoising (BPDN) : Second order cone program

(Pǫ
1) : xǫ1 = argmin

x∈Rm

‖x‖1 subject to ‖b− Ax‖2 ≤ ǫ. (26)

But, again - Problem: Who will supply ǫ?

• Least absolute shrinkage and selection operator (LASSO) :
For an appropriate Lagrange multiplier λ, the solution of
BPDN is precisely the solution of the unconstrained problem

(Qλ
1 ) : argmin

x∈Rm

{

λ‖x‖1 +
1

2
‖b− Ax‖22

}

(27)

But, again - Problem: Who will supply λ?



What we can do?

• We can check many λ and choose the best.

• Well, for the optimal minimizer of (Qλ
1 ), the solution should

lead to a sub-gradient set that contains the zero vector. Our
cost function f (x) = λ‖x‖1 + 1

2‖b− Ax‖22.
• The sub-gradient set is given by all the vectors

∂ f (x) =
{

AT (Ax− b) + λz
}

, ∀z, zi = 1 if x(i) > 0, (28)

or [−1, 1] if x(i) = 0, or − 1 if x(i) < 0.

When searching the minimizer of f (x), we should seek both x

and z such that 0 ∈ ∂ f (x).



• The goal in LASSO: Can we solve LASSO for all possible
choice of λ at once?

• Surprising answer: Yes, there exists that kind of Algorithm:
Least Angle Regression Stagewise (LARS).



Performance Guarantee

Theorem
BPDN Stability Guarantee: For (Pǫ

1), suppose that x0 is a feasible

solution satisfying ‖x0‖0 < 1
4

(

1 + 1
µ(A)

)

. The solution xǫ1 of (Pǫ
1)

must obey

‖xǫ1 − x0‖22 ≤
4ǫ2

1− µ(A)(4‖x0‖0 − 1)
(29)

Proof: We work out.



• Both x0 and xǫ1 are feasible solutions. Let d = xǫ1 − x0. So
4ǫ2 ≥ ‖Ad‖22. Now define Gram Matrix G = ATA. 1 is a
square matrix with all elements are one.

• 4ǫ2 ≥ ‖Ad‖22 = dTATAd = dTGd = dT Id+ dT (G− I)d ≥
‖d‖22 − |d|T |G− I||d| ≥ ‖d‖22 − µ(A)|d|T |1− I||d| =
(1+µ(A))‖d‖22−µ(A)|d|T1|d| = (1+µ(A))‖d‖22−µ(A)‖d‖21

• xǫ1 is the lowest ℓ1 norm solution. So
‖xǫ1‖1 = ‖d+ x0‖1 ≤ ‖x0‖1.

• Let x0 has k0 non-zeros elements, its support is denoted by S
and the k0 non-zeros elements are first k0 elements (we can
always do that by column permutation)



• 0 ≥ ‖d+ x0‖1−‖x0‖1 =
∑k0

j=1 |dj + x0j |− |x0j |+
∑

j>k0
|dj | ≥

−∑k0
j=1 |dj |+

∑

j>k0
|dj | = −2

∑k0
j=1 |dj |+

∑

∀j |dj | =
−21TS |d|+ ‖d‖1. Or ‖d‖1 ≤ 21TS |d|. Here 1S is a vector
where elements on support S are one, others zeros.

• ∀v ∈ R
n, ‖v‖1 ≤

√
n‖v‖2. So

‖d‖1 ≤ 21TS |d| ≤ 2
√

|S |‖dS‖2 ≤ 2
√

|S |‖d‖2 = 2
√
k0‖d‖2

• 4ǫ2 ≥ (1 + µ(A))‖d‖22 − µ(A)‖d‖21 ≥
(1 + µ(A))‖d‖22 − µ(A)4k0‖d‖22.

• Or ‖d‖22 ≤ 4ǫ2

1−µ(A)(4k0−1)



Further results (by Candes and Tao using

RIP)

Theorem
Let us define Ts to be the set of all strictly s-sparse signals, i.e.,

Ts = {x ∈ R
m : ‖x‖0 = s} . (30)

Then let us denote xs as the best s-term approximation of a
compressible signal x according to

xs = arg min
x′∈Ts

‖x− x′‖1. (31)

Suppose that A holds the RIP of order 2s with isometry constant
δ2s <

√
2− 1. Given a noisy measurement vector y = Ax+w and

‖w‖2 ≤ ǫ, the solution to (Pǫ
1) obeys ‖x− xǫ1‖2 ≤ C0ǫ+C1

‖x−xs‖1√
s

,

where C0 and C1 are typically small constants.



Iteratively-Reweighted-Least-Squares

(IRLS)

Main Idea

• Setting X = diag(|x|), we have ‖x‖1 = xTX−1x

• We can view the l1-norm as an adaptively weighted l2 norm

• In kth iteration, given a current approximate solution xk−1,
set Xk−1 = diag(|xk−1|) and attempt to solve for

(Mk) : min
x∈Rm

{

λ xTX−1
k−1x+

1

2
‖b−Ax‖22

}

(32)

The above problem is regularized LS. The solution is assigned
to form xk

• Initialization: x0 = 1.



Summary

• Noise modeling: Till now we performed worst case study by
assuming that the noise always has the highest l2 strength ǫ.
So, we always use the worst realization of noise in a
deterministic sense. There exists better results by shifting to
random noise model, accompanied by a near one probability
to the claimed bounds.

• Allowing rare failures: Worst case analysis does not allow
failure. By allowing a small fraction of failure, it is possible to
get better bounds.

• Worst case characterization of A: The mutual coherence,
spark, RIP are all leads to worst case analaysis - over
pessimistic results. Can we introduce more relaxed measures,
such as a probabilistic RIP / coherence? Statistical mechanics
based approach?



Applications

• Source coding

• Wireless channel estimation

• Wireless sensor network

• Information Theory based proofs for Sparse Reconstruction

• Cognitive radio

Check the review paper: K. Hayashi, M. Nagahara and T Tanaka,
A Users Guide to Compressed Sensing for Communications
Systems, IEICE Trans Communications, March 2013.



Source coding
The best example is Compressed Sensing.

b = Ax ∈ R
n×1, (33)

where x ∈ R
m×1 and n < m. The assumption is x is sparse in

some basis, for example in Fourier transform F or DCT, and then
we have y = Fx, where y is sparse. The effective measurement is
b = AF−1y = Cy.

• We have b, but further b needs to be quantized and sent over
the channel - Source coding1.

• Compressed sensing has connection with channel coding2.

• If x is not in one place, but in a distributed setup. Distributed
source and joint source-channel coding.

1V. K. Goyal, A. K. Fletcher, and S. Rangan, Compressive Sampling and
Lossy Compression, IEEE Signal Processing Magazine, 25(2):48-56, March
2008.

2A.G. Dimakis et al, LDPC Codes for Compressed Sensing, IEEE Trans.
Information Theory, 2012



• We have b, but further b needs to be quantized and sent over
the channel - Source coding3.

• Compressed sensing has connection with channel coding4.

• If x is not in one place, but in a distributed setup. Distributed
source and joint source-channel coding 5.

3V. K. Goyal, A. K. Fletcher, and S. Rangan, Compressive Sampling and
Lossy Compression, IEEE Signal Processing Magazine, 25(2):48-56, March
2008.

4A.G. Dimakis et al, LDPC Codes for Compressed Sensing, IEEE Trans.
Information Theory, 2012

5A. Shirazinia, S. Chatterjee and M. Skoglund, Joint source-channel vector
quantization for compressed sensing, Accepted for IEEE Trans. Signal Proc.,
2014



Wireless channel estimation

• Sparsity in channel impulse response, for example, larger
bandwidth wireless channel 6, Underwater acoustic channel7

• using training signals (pilots) t, most of the times we can
form a system where received signal y = Tx and typically T is
Toeplitz and x is channel impulse response (sparse) 8.

6Raghavan V., Hariharan G., Sayeed A.M., Capacity of Sparse Multipath
Channels in the Ultra-Wideband Regime, Selected Topics in Signal Processing,
IEEE Journal of , vol.1, no.3, pp.357,371, Oct. 2007

7Berger C.R., Shengli Zhou, Preisig J.C., Willett P., Sparse Channel
Estimation for Multicarrier Underwater Acoustic Communication: From
Subspace Methods to Compressed Sensing, Signal Processing, IEEE
Transactions on , vol.58, no.3, pp.1708,1721, March 2010

8Berger C.R., Zhaohui W., J. Huang, Shengli Z., Application of compressive
sensing to sparse channel estimation, Communications Magazine, IEEE , vol.48,
no.11, pp.164,174, November 2010



Wireless sensor network

• Let m and xj , j = 1, 2, ...,m denote the number of sensors and
the measured signal at the jth node 9.

• Each sensor node sends xj to the fusion center using n time
slots (n < m) with n random coeeficients {Ai ,j}ni=1. Since m
sensor nodes send Ai ,jxj in the ith slot simultaneously, the
recived signal at fusion center at ith slot is
yi =

∑m
j=1 Ai ,jxj + noise

• Assume x = {xj} is sparse in some domain, for example
differential domain, or DFT, etc.

9Haupt J., Bajwa W.U., Rabbat M., Nowak R., Compressed Sensing for
Networked Data, Signal Processing Magazine, IEEE , vol.25, no.2, pp.92,101,
March 2008



Information Theory based proofs for

Sparse Reconstruction

• A specific example: Connection the Gaussian Multiple Access
Channel (MAC) model for Sparse Reconstruction 10

10Yuzhe J., Young-Han Kim, Rao B.D. Limits on Support Recovery of Sparse
Signals via Multiple-Access Communication Techniques, IEEE Trans on
Information Theory, vol.57, no.12, pp.7877,7892, Dec. 2011



Cogitive Radio

• A specific example: Distributed spectrum sensing

• Lets say there exists lots of sensors that observe spectrum,
and spectrum is sparse. So the question is how to detect the
unoccupied spectrum bands in consensus? 11

11Zeng Fanzi, Chen Li, Zhi Tian, Distributed Compressive Spectrum Sensing
in Cooperative Multihop Cognitive Networks, IEEE Jour. of Selected Topics in
Signal Processing, vol.5, no.1, pp.37,48, Feb. 2011



Orthogonal Application: Bioinformatics

• In metagenomics where the task is to identify the proportions
of species from large scale metagenomic data.

• Philosophy: In any sample, number of known species are small
compared to all known species. So, IF WE ASSUME A
SPECIES space, then a species in a sample is sparse. 12

12S. Chatterjee, D. Koslicki, S. Dong, N. Innocenti, L Cheng, Y Lan, M
Vehkapera, M. Skoglund, L.K. Rasmussen, E. Aurell and J. Corander, SEK:
Sparsity exploiting k-mer-based estimation of bacterial community composition,
Bioinformatics, 2014



Lets begin .... Low rank matrix system

Let us consider a matrix X ∈
{

X ∈ C
P×N : rank(X) = r

}

, where
r ≪ min(P ,N). The linear measurement

y = A(X) ∈ R
M×1, (34)

where A : RP×N → R
M×1 and M < PN. Further

A(X) =







〈X, A1〉
...

〈X, AM〉






=







b1
...

bM






vec(X) = B vec(X), (35)

where 〈X, Am〉 , trace(At
mX) = btm vec(X).



• Note vec(X) is not sparse in any linear transform. But sparse
in SVD.

• So far this new system has limited investigation for
communication technologies.



Thank You
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