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We consider an optimal stopping problem where a constraint is placed
on the distribution of the stopping time. Reformulating the problem in terms
of so-called measure-valued martingales enables us to transform the distribu-
tional constraint into an initial condition and view the problem as a stochastic
control problem; we establish the corresponding dynamic programming prin-
ciple. The method offers a systematic approach for solving the problem for
general constraints and under weak assumptions on the cost function. In addi-
tion, we provide certain continuity results for the value of the problem viewed
as a function of its distributional constraint.

1. Introduction. Our main problem of study is an optimal stopping problem where a
distributional constraint is placed on the stopping time. Specifically, given a nonanticipative
cost function, say c, we are interested in the problem of finding

sup
τ

E
[
c(B·∧τ , τ )

]
,

where (Bt )t≥0 is a Brownian motion and the optimisation is taken over stopping times satis-
fying the constraint τ ∼ μ for an a priori specified probability distribution μ. We consider the
weak formulation of this problem where the optimisation is performed over filtered probabil-
ity spaces supporting the Brownian motion and the constrained stopping times; the problem
can therefore also be understood as a particular optimal transport problem. While of interest
in its own right, the problem is also related to the so-called inverse first-passage-time problem
which has a long history. It has also attracted recent attention; see, for example, Beiglböck
et al. [8], where existence and characterisation of an optimiser is provided for certain cost
functions, or, for example, Ekström and Janson [16] to which we refer for further motivation,
references and an exposition of its role within financial and actuarial mathematics. Among
the related literature we also single out the articles by Bayraktar and Miller [5], who consid-
ered an optimal stopping problem equipped with a distributional constraint of atomic form,
as well as Ankirchner et al. [2] and Miller [30], where optimal stopping problems featuring
constraints on the expected value of the stopping time were studied.

The idea herein is to address this problem—for general distributional constraints and under
weak assumptions on the cost function—via a reformulation in terms of so-called measure-
valued martingales. The reformulation transforms the distributional constraint on the stopping
time into an initial condition for the associated measure-valued martingale enabling address-
ing the problem by use of dynamic programming arguments. The method thus unleashes the
full machinery of dynamic programming and stochastic control and opens up for a systematic
approach for solving distribution-constrained optimal stopping problems.
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In a nutshell, each stopping time τ is identified with the process specifying its distribution
conditional on current information; that is,

ξt =̂L(τ |Ft ), t ≥ 0.

Albeit, in order to account for the fact that we consider a weak formulation, we will rather
consider conditional distributions of so-called randomised stopping times. The thus defined
process belongs to a specific class of measure-valued martingales which we refer to as
adapted; given that τ ∼ μ, this process will also satisfy the initial condition ξ0 = μ. More pre-
cisely, a measure-valued martingale (MVM) is a process, say (ξt )t≥0, which takes its values
in the space of probability-measures and for which (ξt (ϕ))t≥0 is a martingale for nice enough
test functions ϕ. The key property satisfied by stopping times—namely that the information
available at each time is enough to determine whether or not to stop—implies that the cor-
responding conditional distribution process in addition need to satisfy a certain adaptedness
property. Crucially, the processes satisfying these properties also characterise all distribution-
constrained stopping times. In effect, the distribution-constrained optimal stopping problem
admits an equivalent formulation as an optimisation problem over adapted MVMs starting
off in μ—our first result formalises this equivalence.

Our main result then establishes the dynamic programming principle for this reformulated
problem; the result ultimately relies on the fact that the distributional constraint now is incor-
porated as an initial condition for the measure-valued state process. To establish the DPP, we
consider its weak formulation on the associated canonical path space; the canonical frame-
work has previously successfully been used for the study of stochastic control problems by,
for example, El Karoui and Tan [18, 19], see also Neufeld and Nutz [31], Nutz and van Han-
del [32] and Žitković [38]. We note that since we are dealing with MVMs, a component of our
canonical space will consist of functions from the positive reals into the space of probability
measures which we equip with the topology induced by the first Wasserstein distance render-
ing it a Polish space. We then establish the DPP by proving analyticity and stability under
concatenation and disintegration of certain sets of measures, and, in turn, applying Jankov-
von Neumann’s measurable selection theorem. The approach enables us to establish the DPP
for general distributional constraints and under weak assumptions on the cost function; while
imposing certain regularity, we notably do not require the cost to be of any specific “structural
form”. In parallel, a priori assuming certain continuity of the value function and restricting to
Markovian cost functions, we provide an alternative proof of the DPP; we choose to report
this complementary argument due to its simplicity. Following Bouchard and Touzi [11], see
also Bouchard and Nutz [10], the idea is to exploit continuity properties of the value func-
tion in order to explicitly construct an approximately optimal kernel and thus circumvent
the need for measurable selection arguments. To deal with the measure-valued argument we
here borrow ideas from optimal transport and the argument makes use of the structure of the
first Wasserstein distance. The fact that we are dealing with adapted MVMs implies that the
ordering on the set of probability measures becomes of key importance; we note that these
straightforward covering arguments are difficult to generalise precisely due to such ordering
considerations.

Finally, we consider the stability of the distribution-constrained optimal stopping problem
in that we establish continuity properties of the value of the problem as a function of its
distributional constraint. While upper semicontinuity holds in great generality, continuity is
more involved. Again, the question turns out to be linked to the ordering on the underlying
space of probability distributions. Equipping this space with the usual stochastic ordering—
while still making use of its properties as a metric space under the Wasserstein distance—we
establish “right-continuity” of the value function for a specific class of cost functions. While
we do not exclude that continuity might hold under appropriate assumptions, we note that the



1904 S. KÄLLBLAD

present result suffices to ensure that a stopping problem equipped with a general constraint
may be approximated by problems featuring atomic constraints which are easier to handle by
use of numerical methods.

We now comment on the related literature: Measure-valued martingales have been around
for a long time; see, for example, Horowitz [25] and the lecture notes by Dawson [14] and
Walsh [37]. They were recently introduced to the study of financially motivated robust pric-
ing problems by Cox and the present author in [13]; that is, to optimisation problems over
martingales satisfying marginal constraints (guaranteeing fit to market data). While the meth-
ods used in the present article and in [13] are related, the distinct features of the two prob-
lems calls for decisive differences: First and foremost, the present connection between the
MVMs and the a priori given optimisation objects requires the use of adapted MVMs; in
consequence, the ordering on the set of probability measures plays a central role. Moreover,
to account for the fact that we consider a weak formulation of the optimal stopping prob-
lem, our MVMs correspond to conditional distributions of disintegrated randomised stopping
times; in effect, they will not necessarily terminate. Bayraktar and Miller [5] notably study
a distribution-constrained optimal stopping problem using a similar perspective. They, how-
ever, restrict to a more specific class of cost functions and atomic constraints only; in contrast
to us, they also consider the strong formulation of the problem. Combining their result with
ours, we obtain, however, as a corollary that for the class of cost functions and constraints
considered in [5], the weak and strong formulations of the problem coincide. Our method of
proof is notably distinct from theirs; indeed, a key motivation for the present article has been
to establish the DPP for general distributional constraints and path-dependent cost functions
which called for a different set of arguments. Ankirchner et al. [2] and Miller [30] (cf. also
Bouchard and Nutz [10]) consider an optimal stopping problem with a constraint placed on
the expected value of the stopping time; the conditional expected value of the terminal con-
straint is then incorporated as an additional state process and the problem is addressed using
BSDEs. At an abstract level, our approach bears resemblance to theirs for our MVMs—
corresponding to conditional laws of stopping times—may be viewed as infinite-dimensional
additional state processes rendering the problem dynamically consistent. Finally, we note that
distribution-constrained optimal stopping problems are closely related to so-called causal op-
timal transport problems; see, for example, Beiglböck and Lacker [9]. Our approach may thus
be extended to such problems in a natural way. In the context of (discrete) causal transport,
a recursive scheme was notably introduced by Backhoff et al. [3], where the correspond-
ing dynamic programming principle was also established. It is interesting to compare their
scheme to ours; since the causality condition is nonsymmetric, the approaches are, however,
conceptually different.

The remainder of the article is organised as follows: In Section 2, we introduce our prob-
lem of study and the notion of adapted measure-valued martingales; we then establish the
equivalence between the original problem formulation and the corresponding optimisation
problem featuring MVMs. In Section 3, we introduce the conditional version of the problem
and prove the dynamic programming principle. In Section 4, we consider continuity proper-
ties of the value function and provide the direct proof of the DPP using covering arguments.
Appendix A collects results on the continuity and convergence of MVMs which are of inde-
pendent interest; various auxiliary arguments are deferred to Appendix B.

Notation: � We write B for the Borel algebra and bB, C and Cb for real-valued functions
being, respectively, bounded and measurable, continuous, and continuous and bounded; if
no other domain is explicitly mentioned, it is understood to be R. � C0(R+) denotes the
space of continuous functions from R+ to R which equal zero at the origin and are equipped
with the topology of uniform convergence on compact sets. � P denotes the set of proba-
bility measures on the reals which are concentrated on (0,∞) and have finite first moment;
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occasionally, we equip P with the weak topology but most frequently with the (subspace)
topology induced by the first Wasserstein distance denoted by W1. � Given a μ-integrable
function ϕ, we write μ(ϕ) = ∫ ∞

0 ϕ(s)μ(ds); in particular, given a P-valued stochastic pro-
cess ξ = (ξt )t≥0 and ϕ ∈ bB, ξ(ϕ) denotes a real-valued stochastic process. � We employ the
convention E[�] = E[�+]−E[�−] with ∞−∞ = −∞. � Q denotes the rational numbers.

2. Distribution-constrained optimal stopping and MVMs. For our main problem of
study, we consider a fixed filtered probability space (�,G,G,P) with G = (Gt )t≥0. We
suppose that it is rich enough to support a Brownian motion (Wt)t≥0 and an independent
G0-measurable random variable which is uniformly distributed on [0,1]. For μ ∈ P , the
set of stopping times which satisfy the constraint τ ∼ μ is denoted by T (μ). We take
c : C0(R+)×R+ → R to be a given measurable cost function and suppose that it is nonantic-
ipative in the sense that c(ω, t) = c(ω·∧t , t). Given μ ∈ P , we then consider the distribution-
constrained optimal stopping problem of maximising

E
[
c(W·∧τ , τ )

]
, over τ ∈ T (μ).(2.1)

Throughout, we impose the following nondegeneracy assumption on the cost function; in
consequence, v(μ) is well defined for μ ∈ P with values in (−∞,∞], where

v(μ) := sup
τ∈T (μ)

E
[
c(W·∧τ , τ )

]
.

ASSUMPTION 2.1. For each μ ∈ P , E[c(W·∧τ , τ )] is well defined in [−∞,∞) for all
τ ∈ T (μ), and there exists some τ ∈ T (μ) with E[c(W·∧τ , τ )] > −∞.

We note that the required richness of the probability space implies that we effectively
are dealing with a weak formulation of the optimal stopping problem. The remainder of
this section is devoted to demonstrating how this problem can be reformulated in terms of
measure-valued martingales so as to obtain a problem which is natural to address by use of
dynamic programming arguments.

2.1. Adapted measure-valued martingales and alternative problem formulation. To mo-
tivate our alternative problem formulation, consider first a stopping time τ ∼ μ in the filtered
probability space (�,G,F,P), where F = (Ft )t≥0 denotes the augmented filtration generated
by the Brownian motion alone. Defining the process (this will be made precise below)

ξt =̂L(τ |Ft ), t ≥ 0,

we then obtain a process taking its values in P and which is a measure-valued martingale in
the sense that ξ(ϕ) is a martingale for any ϕ ∈ Cb. Morally, the process ξ gradually reveals the
full structure of the stopping time τ upon arrival of new information: ξ0 = μ and as t tends to
infinity, ξt → δτ weakly, a.s. The fact that an MVM eventually collapses into a random dirac
measure is a feature referred to as termination. More pertinently, denoting the almost sure
weak limit of ξ by ξ∞, the fact that τ is a stopping time implies that the following (stronger)
property must hold:

inf
{
t > 0 : ξt = δx, x ∈ (0,∞)

} ≤ inf{x : x ∈ supp ξ∞}, a.s.;(2.2)

that is, almost surely, ξ must eventually terminate and for each t ≥ 0, ξt is concentrated either
on a singleton or on (t,∞). Crucially, also the converse holds true; that is, every process
satisfying the above properties defines a stopping time with distribution μ. In particular, if ξ

is sufficiently nice, the latter can be recovered from

τ = arg{t ≥ 0 : ξt = δt };(2.3)
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indeed, the fact that ξ is terminating together with (2.2) implies that τ is a well-defined stop-
ping time, and the fact that ξ is an MVM satisfying ξ0 = μ ensures that τ ∼ μ. Putting the
above together, we see that there is a one-to-one correspondence between stopping times
τ ∼ μ in the Brownian filtration, and MVMs satisfying (2.2) and ξ0 = μ. The associated
distribution-constrained optimal stopping problem may thus, equivalently, be formulated as
an optimisation problem over such MVMs. Since these processes are constructed dynami-
cally forwards in time, the distributional constraint is now encoded by an initial condition
and the formulation is the appropriate one for addressing the problem via dynamic program-
ming arguments.

While the above discussion highlights the ideas underpinning our approach, we note that
in order to handle the optimal stopping problem in (2.1), we need to consider a larger class of
stopping times than those discussed above. The way we choose to formalise this is by relax-
ing the condition of termination. There are two ways to understand this approach: From the
perspective of the problem formulation in (2.1), if G is a Brownian filtration initially enlarged
by an independent uniformly distributed random variable, this corresponds to identifying a
G-stopping time with the process yielding its conditional law given the Brownian filtration
alone. Alternatively, since problem (2.1) is given in a weak formulation, it can be argued to
be equivalent to optimizing the objective over so-called randomised stopping times assign-
ing to each path not a specific time to stop but a ‘stopping distribution’; viewed from this
perspective, an MVM effectively corresponds to the conditional distribution of a randomised
stopping time.

To formalise the above, we here introduce a class of adapted but not necessarily terminat-
ing MVMs. For a general account on measure-valued martingales we refer to, for example,
[14, 25, 37]; see also [7, 13] for recent applications. In Appendix A, we provide various aux-
iliary results on the convergence and continuity of MVMs that will be used in the subsequent
analysis.

DEFINITION 2.2. Given a filtered probability space supporting a P-valued adapted pro-
cess ξ = (ξt )t≥0, we say that:

– ξ is a measure-valued martingale (MVM) if ξ(ϕ) is a martingale for ϕ ∈ Cb;
– ξ is continuous (resp. càdlàg) if it is almost surely continuous (resp. càdlàg) w.r.t. W1;
– ξ is an adapted MVM if an MVM and ξt ([0, s]) = ξs([0, s]) a.s., for all t ≥ s ≥ 0.

We denote by MVM(μ) the set of continuous adapted MVMs ξ with ξ0 = μ; we emphasise
that an MVM ξ being adapted refers to a stronger property than ξ being an adapted process.
Moreover, for any given MVM ξ , we define the associated real-valued process

A
ξ
t (ω) := inf

{
ξq

([0, q])(ω) : t < q ∈Q
}
, t ≥ 0;

the process Aξ is notably nondecreasing and right-continuous by definition and therefore
specifies a (random) cumulative distribution function.

REMARK 2.3 (Adapted MVMs). (i) By the monotone class theorem, a P-valued process
is an MVM, if and only if, ξ(ϕ) is a martingale for any ϕ ∈ bB. More pertinently, given an
MVM, ξ(ϕ) is a martingale for every measurable function with ξ0(|ϕ|) < ∞; see Remark 2 in
[13]. In particular, ξ(ϕ) is a martingale for any ϕ ∈ C asymptotically of at most linear growth.
(ii) Our notion of continuity is notably different from, for example, [13]; it is, however, natural
since when the filtration satisfies the usual conditions, according to Lemma A.1, every MVM
admits a version which is right-continuous in the topology induced by W1. (iii) For an adapted
MVM, by the monotone class theorem, ξt (B) = ξs(B) a.s., t ≥ s, for any B ∈ B([0, s]). (iv)
For an adapted MVM, ξt ([0, s]) = A

ξ
s a.s., t ≥ s; cf. the proof of Lemma 3.9 below.
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For the measure-valued martingale formulation of the problem, we consider a Brown-
ian setup. To this end, let � = C0(R+) and denote the canonical process on this space by
(Bt )t≥0 and the Wiener measure by W. Further, let the filtration F = (Ft )t≥0 be the usual
augmentation of the canonical filtration and set F = ∨

t≥0 Ft ; whenever using the notation
(�,F,F,W), we implicitly refer to this setup. The MVM-formulation of the optimal stop-
ping problem then takes the following form.

PROBLEM 2.4. Given μ ∈P and the space (�,F,F,W), maximise

E

[∫ ∞
0

c(B·∧s, s)dAξ
s

]
over ξ ∈ MVM(μ).(2.4)

The integral inside the expectation is to be understood in the usual sense of pathwise
Lebesgue–Stieltjes integration. In the next subsection (see Proposition 2.5 below), we estab-
lish the equivalence between this problem and our original problem of study.

2.2. The equivalence between the two formulations. Recall that for our optimal stopping
problem we require the filtration to be rich enough to support not only a Brownian motion but
also an independent uniformly distributed random variable. As already pointed out, problem
(2.1) is therefore equivalent to its weakly formulated counterpart. We first recall some facts on
equivalent weak formulations before proving the equivalence between the original problem
and the measure-valued martingale version provided in Problem 2.4.

Preliminaries on the weak problem formulation. For the study of weak formulations of
optimal stopping problems, one often makes use of the notion of randomised stopping times.
The notion has a long history; see, for example, [4, 15, 21, 29, 34], and notably recently
appeared in [6] and [8] (see also [18, 19, 24, 27] for related formulations).

To specify the setup, recall the definition of the space (�,F,F,W). Moreover, given the
product space C0(R+) × R+, for μ ∈ P , denote by Cpl(W,μ) the set of couplings between
W and μ; that is, the set of probability measures on the product space C0(R+) × R+ with
marginal laws W and μ, respectively. The set of randomised stopping times with pre-specified
law μ, is then given by1

RST(μ) := {
γ ∈ Cpl(W,μ) : ω 
→ γω

([0, t]) is Ft -measurable, for t ≥ 0
}
,

where (γω)ω∈C0(R+) denotes the disintegration of γ in the first coordinate.
The distribution-constrained optimal stopping problem can then be formulated as an opti-

misation problem over such randomised stopping times; specifically, denoting by (B,T ) the
canonical pair on C0(R+) ×R+, problem (2.1) is equivalent to the problem of optimising

Eγ [
c(B,T )

]
over γ ∈ RST(μ).(2.5)

Indeed, any given stopping time induces a measure in RST(μ). Conversely, given a ran-
domised stopping time, since (�,G,G,P) supports not only a Brownian motion but also an
independent uniformly distributed G0-measurable random variable, we may construct a stop-
ping time τ in this space such that (B, τ ) has precisely that given law; see Lemma 3.11 in [6].
Since randomised stopping times are characterised by their disintegration kernels, working

1In [6], sub-probability measures γ with projC0(R+)γ ≤ W are considered. However, since we here require
projR+γ = μ, where μ ∈P has mass 1, it follows that so has γ and it suffices to restrict to so-called ‘finite RST’s
for which projC0(R+)γ =W; see also p. 10 in [8].
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on the fixed probability space (�,F,F,W) and still denoting by B the canonical process on
� = C0(R+), the problem can also be formulated as optimising

E

[∫ ∞
0

c(B·∧s, s)dAγ
s

]
over γ ∈ RST(μ),(2.6)

where Aγ (ω) denotes the cumulative distribution function associated with γω for each ω ∈
C0(R+); that is, Aγ

t (ω) := γω([0, t]), t ≥ 0. This formulation emphasises the intuition behind
randomised stopping times: while a standard stopping time assigns to each path a single time
to stop, a stopping time depending on some external randomisation may be understood as
assigning to each path a distribution specifying the probability to stop at various times.

The above implies in particular that the specific choice of the probability space (�,G,G,

P) has in fact no bearing on the problem. Hence, writing A(μ) for the class of tuples
α = (�α,Gα,Gα,Pα,Wα, τα), with (�α,Gα,Gα,Pα) a probability space in which Wα is
a Brownian motion and τα is a stopping time with τα ∼ μ, the value of the problem remains
the same if optimising

Eα[
c
(
Wα·∧τα , τ

α)]
over α ∈A(μ);

this illustrates that we are indeed dealing with a weak problem formulation.
Since the above formulations are all equivalent, we are free to switch between them and in

the sequel we will consider the formulation most convenient in each particular situation.

The equivalence to the MVM formulation. We are now ready to establish the equiva-
lence between our original problem of study and the measure-valued martingale formulation;
the proof relies on identifying disintegrated randomised stopping times with measure-valued
martingales specifying their conditional law.

PROPOSITION 2.5. Problem 2.4 and the optimisation problem in (2.1) are equivalent in
the sense that their values coincide and from any optimiser to the former problem we may
construct an optimiser to the latter and vice versa.

PROOF. Recall that problem (2.1) is equivalent to problem (2.6). Let γ ∈ RST(μ); we
write γ also for its disintegration kernel in the first variable (γω)ω∈C0(R+). Invoking a Getoor-
type result, cf. [20], we may then construct an MVM returning the conditional distribution
of this random measure on the space (�,F,F,W). More precisely, applying Theorem 1.3
in [25] together with its proof, since μ ∈ P , we deduce the existence of a P-valued process
ξ = (ξt )t≥0 such that ξ(ϕ) is a version of the optional projection of γ (ϕ), for every ϕ ∈ bB,
where γ (ϕ) denotes the random variable ω 
→ γω(ϕ); since the filtration is right-continuous,
this implies that

ξt (ϕ) = E
[
γ (ϕ)|Ft

]
a.s., t ≥ 0, ϕ ∈ bB,

and the process ξ is thus an MVM. In consequence, since the filtration is the augmented one
generated by a Brownian motion, according to Lemma A.1, there exists a version of ξ such
that ξ(ϕ) is continuous a.s. for every ϕ ∈ bB and every ϕ ∈ C asymptotically of at most linear
growth; we choose this version. In particular, for any such ϕ, the process ξt (ϕ), t ≥ 0, is then
indistinguishable from the martingale E[γ (ϕ)|Ft ], t ≥ 0. Moreover, ξ is a.s. continuous in
the topology induced by W1; cf. the proof of Lemma A.1. Since γ ∈ RST(μ), we also have
that γ ([0, t]) is Ft -measurable, which implies that

ξu

([0, t]) = E
[
γ

([0, t])|Fu

] = γ
([0, t]) a.s., u ≥ t.
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The thus defined process ξ is therefore a continuous adapted MVM. Moreover, the fact that
γ ∈ CPL(W,μ) implies that

μ(B) = γ
(
C0(R+) × B

) =
∫
C0(R+)

γω(B)dW(ω) = E
[
γ (B)

]
, B ∈ B;

hence ξ0 = μ by Blumenthal’s zero-one law. It remains to argue that the objective functions
in (2.4) and (2.6) coincide when evaluated at ξ and γ , respectively. To this end, note that
there exists a null set N such that, for ω /∈ N , ξq([0, q])(ω) = γω([0, q]) for every q ∈ Q;
without loss of generality, suppose that q 
→ γω([0, q]) is nondecreasing off N . Then,

A
ξ
t (ω) = inf

t<q∈Q ξq

([0, q])(ω) = inf
t<q∈Qγω

([0, q]) = γω

([0, t]), t ≥ 0, ω /∈ N ,

which completes the proof of the claim.
Conversely, consider an arbitrary ξ ∈ MVM(μ). Invoking again a Getoor-type result we

may construct a limiting object. More precisely, according to Lemma A.2, there exists a P-
valued random measure ξ∞ such that limt→∞ ξt (ϕ) = ξ∞(ϕ) a.s., for any ϕ ∈ bB. We define
a measure γ on C0(R+) ×R+ via the following specification for c ∈ bB(C0(R+) ×R+):

γ (c) =
∫∫

c(ω, x)ξ∞(dx)(ω)dW(ω).

Since γ (C0(R+) × B) = E[ξ∞(B)] = ξ0(B), for all B ∈ B, we have that γ ∈ CPL(W,μ).
Further, recall that ξu([0, t]) = ξt ([0, t]) a.s. for u ≥ t . Hence, there exists some null set, say
again N , off which ξ∞([0, q])(ω) = ξq([0, q])(ω) for every q ∈ Q; in consequence

A
ξ
t (ω) = inf

t<q∈Q ξ∞
([0, q])(ω) = ξ∞

([0, t])(ω), t ≥ 0, ω /∈ N .(2.7)

Since the disintegration of γ is W-a.e. unique, this implies that the objective functions in
(2.4) and (2.6) coincide when evaluated at ξ and γ , respectively. Moreover, to ensure that
γ ∈ RST(μ), it now suffices to argue that A

ξ
t is Ft -measurable for t ≥ 0. To see this, note

that off N , we have ξq([0, q]) ≤ ξr([0, r]) for any q ≤ r with q, r ∈Q; hence, for any ε > 0,
it holds (up to a null set) that{

A
ξ
t ≥ a

} = ⋂
t<q

q∈Q

{
ξq

([0, q]) ≥ a
} = ⋂

t<q<t+ε

q∈Q

{
ξq

([0, q]) ≥ a
} ∈ Ft+ε,(2.8)

which completes the proof. �

REMARK 2.6. Consider a filtered probability space (�,H,H,P) satisfying the usual
conditions and supporting a Brownian motion W ; in turn, let ξ be a càdlàg adapted MVM
in this space with ξ0 = μ. By use of analogous arguments to those employed above, in the
space (�,H,H,P) obtained by initially enlarging the former space by an independent uni-
formly distributed random variable, we may then construct a stopping time τ ∼ μ such that
E[c(W·∧τ , τ )] = E[∫ c(W·∧s, s)dA

ξ
s ]. In consequence, from Proposition 2.5 and the indepen-

dence of the specific choice of probability space for problem (2.1), we obtain that

v(μ) = sup
K(μ)

Eκ

[∫
c
(
Wκ·∧s, s

)
dAξκ

s

]
,

where we denote by K(μ) the class of tuples κ = (�κ,Hκ,Hκ,Pκ,Wκ, ξκ) such that
(�κ,Hκ,Hκ,Pκ) is a filtered probability space in which Wκ is a Brownian motion and ξκ is
a càdlàg adapted MVM with ξκ

0 = μ.
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3. The dynamic programming principle. The reformulation established in the previ-
ous section transformed the distributional constraint into an initial condition for an additional
state process and we are now facing an optimisation problem over adapted MVMs starting off
in μ. We may therefore address the problem by the use of dynamic programming arguments.
Such methods offer a powerful tool for characterising the solution as well as for enabling the
use of numerical methods. We here formally establish this link by proving that the dynamic
programming principle holds for this problem.

3.1. The conditional problem and the DPP.

The conditional problem and the value function. The dynamic programming approach
relies on embedding the problem of original interest into a family of conditional problems. To
this end, focusing on the distribution-constrained optimal stopping problem in its equivalent
form (2.4), we define the associated conditional problem and its value function as follows:
Continuing to work on the space (�,F,F,W), let v : R+ × C0(R+) ×P →R be given by

v(t,w,μ) := sup
ξ∈MVMt (μ)

E

[∫ ∞
t

c
(
Wt,w·∧u, u

)
dAξ

u

]
,

where Wt,w
s , s ≥ 0, denotes the solution to the SDE

dWt,w
s = dBs, s ∈ [t,∞), W t,w

s = ws, a.s., s ∈ [0, t],
and MVMt (μ) denotes the set of continuous adapted MVMs with ξt = μ a.s.

The value function notably depends on w up to time t only in the sense that v(t,w,μ) =
v(t,w·∧t ,μ). In particular, according to Proposition 2.5, we have that v(μ) = v(0,w,μ), for
any w ∈ C0(R+). Moreover, if μ ∈ P has an atom at time t , it will notably not contribute to
the value of v(t,w,μ); put differently, v(t,w,μ) depends on the restriction of μ to (t,∞)

only. For this reason we introduce the notation μ(t for the (re-weighted) restriction of μ to
(t,∞) given by

μ(t (A) := μ(A ∩ (t,∞))

μ((t,∞))
, A ∈ B;(3.1)

we use the convention μ(t = μ if μ((t,∞)) = 0. From the definition of v, it then follows that
v(t,w,μ) = μ((t,∞))v(t,w,μ(t ).

The dynamic programming principle. We are now ready to present our main result which
establishes the dynamic programming principle for the MVM-formulation of the optimal
stopping problem; the proof is provided in Section 3.3 below.

THEOREM 3.1 (Dynamic programming principle). Let (t,w,μ) ∈ R+ × C0(R+) × P .
For any F-stopping time θ with values in (t,∞), it then holds that

v(t,w,μ) = sup
ξ∈MVMt (μ)

E

[∫ θ

t
c
(
Wt,w·∧u, u

)
dAξ

u + v
(
θ,W

t,w
·∧θ , ξθ

)]
.(3.2)

REMARK 3.2. In the formulation of the DPP, for the same reasons as above, if an MVM
ξ ∈ MVMt (μ) has an atom at θ it will contribute to the objective function via the integral from
t to θ rather than via the value function evaluated at θ on the right-hand side of (3.2). Using
the notation introduced in (3.1), we therefore have the following equivalent formulation of
the DPP:

v(t,w,μ) = sup
ξ∈MVMt (μ)

E

[∫ θ

t
c
(
Wt,w·∧u, u

)
dAξ

u + ξθ

(
(θ,∞)

)
v
(
θ,W

t,w
·∧θ , ξ

(θ
θ

)]
.
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As always when the dynamic programming principle holds, it follows that the problem
can be solved by backward induction. When the distributional constraint is supported on a
finite number of atoms, the problem thus amounts to solving a finite number of subsequent
one-period problems (see Corollary 3.6 below). More generally, for an arbitrary distribu-
tional constraint, the DPP forms the basis for solving the problem via stochastic control
methods. While we leave the detailed development of such arguments for future study, we
note that MVMs are the canonical objects for guaranteeing preservation of a distributional
constraint when letting random distributions evolve over time; they are thus indispensable for
the development of such a theory. We also note that already the DPP itself ensures that the
martingale optimality principle holds (see [17]): the process (ω, t) 
→ v(t,ω, ξt (ω)) is thus a
supermartingale when evaluated for any MVM ξ ∈ MVM(μ), and a martingale—if and only
if—evaluated at an optimal MVM; this offers an alternative characterisation of optimisers to
our original problem of study.

To understand the role played by the dynamic programming principle, it is illustrative to
consider the following schematic example where the conceptual idea behind our approach is
pinned down in a discrete setup.

EXAMPLE 3.3 (Schematic illustration). Consider discrete time points n = 0,1,2,3,
and let us replace the Brownian motion with a simple random walk; that is, |�| = 8, and
(Bn(ω1))

3
n=0 = (0,1,2,3), (Bn(ω2))

3
n=0 = (0,1,2,1) etc. Let μ = μ1δ1 + μ2δ2 + μ3δ3,

and consider a cost function c depending on the path of B and the stopping time. The ana-
logue of our weakly formulated stopping problem then amounts to optimally associate with
each ωi a probability distribution (γ n

ωi
)3
n=1 such that γ n is σ(B1, . . . ,Bn)-measurable and

1
8

∑8
i=1 γ n

ωi
= μn, for n = 1,2,3. The idea is to do this in a recursive way. To this end, sup-

pose that given (B1,B2), there is remaining mass ξ3
2 to assign to the last atom. There is only

one way of doing this: no matter whether the random walk goes up or down, we must let
ξ3

3 = ξ3
2 ; the contribution to the objective is given by

v
(
(B1,B2), ξ

3
2
) = 1

2

∑
i=±1

c
(
(B1,B2,B2 + i),3

)
ξ3

3 .

Taking one step back, given B1, consider having mass (ξ2
1 , ξ3

1 ) to assign to the last two atoms;
the problem then amounts to find nonnegative pairs (ξ2

2 , ξ3
2 )(i), i = ±1, which attain the

following maximum:

(3.3) v
(
B1,

(
ξ2

1 , ξ3
1
)) = max

(ξ2
2 ,ξ3

2 )

1

2

∑
i=±1

c
(
(B1,B1 + i),2

)
ξ2

2 (i) + v
(
(B1,B1 + i), ξ3

2 (i)
)
,

subject to the constraint

(3.4) ξ2
2 (i) + ξ3

2 (i) = ξ2
1 + ξ3

1 , i = ±1,
1

2

(
ξn

2 (+1) + ξn
2 (−1)

) = ξn
1 , n = 2,3.

Because of the joint dependence on the path of B and the stopping time, (3.3)–(3.4) has a
nontrivial solution specifying the best choice for the given constraint. In turn, given B0 and
μ, solving the analogue of (3.3)–(3.4) to obtain (ξ1

1 , ξ2
1 , ξ3

1 )(i), i = ±1, and substituting this
solution as input for the above problems, the optimal γ is then obtained from(

γ n)3
n=1 = (

ξ1
1 , ξ2

2 , ξ3
3
)
.

In essence, in each time-step, we are facing the problem of “splitting the mass to be taken
care of” between the two events corresponding to the random walk going up or down; this is
done in an optimal way, taking into consideration the best value one can obtain for each of
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these scenarios when facing a certain constraint to embed. That we respect the “total mass
that needs to be embedded” is guaranteed through the measure-valued martingale condition;
cf. the second part of (3.4). Meanwhile, the adaptedness condition is satisfied since when in-
corporating the knowledge of, say B2, we keep refining only how to “split the mass” assigned
to the atoms at n = 2 and n = 3, while the mass reserved for n = 1 is “frozen” at this stage;
cf. the first part of condition (3.4).

3.2. The special cases of terminating and atomic MVMs. We comment next on two par-
ticular cases: the case when the weak problem formulation is equivalent to the strong one and
the case of atomic constraints.

The case of terminating MVMs and the strong problem formulation. Although we con-
sider the weak problem formulation studied herein to be the natural one (in particular since
it always admits a solution) we note that whenever problem (2.1) admits a strong solution—
here referring to an optimal stopping time adapted to the filtration generated by the Brownian
motion alone—Theorem 3.1 admits a stronger formulation. To specify the DPP in this case,
we first formalise the notion of termination briefly discussed in Section 2.1. To this end, let

Ps := {μ ∈ P : μ = δy, y ∈ R+}.
Further, recall from Lemma A.2 that for each MVM ξ there exists a limiting (random) mea-
sure ξ∞ such that for any ϕ ∈ bB, ξt (ϕ) → ξ∞(ϕ) a.s. as t → ∞; notably ξ∞ ∈ P a.s. and
convergence holds also a.s. in the topology induced by W1. Following [13], we define the
concept of termination as follows.

DEFINITION 3.4. An MVM ξ is terminating if ξ∞ ∈ Ps almost surely; it is finitely ter-
minating if inf{t > 0 : ξt ∈ Ps} is finite almost surely.

A terminating MVM is adapted in the sense of Definition 2.2, if and only if, condition
(2.2) holds; in consequence, any adapted terminating MVM is also finitely terminating. The
associated stopping time, say τ ξ , is given by (cf. (2.3) and (2.7)):

τ ξ = inf
{
t > 0 : Aξ

t = 1
}
.

We denote the set of continuous adapted and finitely terminating MVMs by MVMterm, and
define MVMt

term(μ) analogously to above.

COROLLARY 3.5 (DPP: strong formulation). Let (t,w,μ) ∈R+×C0(R+)×P . Suppose
that restricting in (2.1) to τ ∈ T (μ) which are stopping times in the filtration generated by
the Brownian motion alone does not affect the value of the problem. For any F-stopping time
θ with values in (t,∞), it then holds that

v(t,w,μ) = sup
ξ∈MVMt

term(μ)

E
[
c
(
W

t,w
·∧τ ξ , τ

ξ )
1{τ ξ≤θ} + v

(
θ,W

t,w
·∧θ , ξθ

)
1{τ ξ>θ}

]
.(3.5)

We note that the assumptions of this corollary are satisfied, for example, when (2.1) admits
a so-called barrier solution, which according to [8] happens whenever c(ω, t) = f ◦ ω(t) for
some f :R→R with f ′′′ > 0.
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The case of atomic MVMs and atomic constraints. Consider the situation where the initial
condition μ has support on a finite number of atoms 0 < t1 < · · · < tr , r ∈ N. An MVM ξ

with ξ0 = μ must notably remain supported on the same atoms; the process t 
→ ξt ({ti}) is
a real-valued martingale for each i = 1, . . . , r . This implies that the problem reduces to a
finite-dimensional one. To formalise this, let �k−1 be the standard (k − 1)-simplex in Rk ,
k ∈ N; that is, �k−1 = {(x1, . . . , xk) ∈ [0,1]k : x1 + · · · + xk = 1}. Moreover, let M(�k)

denote the set of martingales taking values in �k . For k ∈ {1, . . . , r} and t ∈ [tr−k, tr−k+1),
we then define vt : C0(R+) × �k−1 →R by

vt (w, y(r−k+1):r ) := v(t,w,μ) with μ =
r∑

i=r−k+1

yiδti ,(3.6)

where we use the notation y(r−k+1):r for the vector (yr−k+1, . . . , yr) ∈ �k−1 and similarly
for vector-valued stochastic processes.

COROLLARY 3.6 (DPP: atomic constraints). Let 0 < t1 < · · · < tr , r ∈ N. For k ∈
{1, . . . , r}, y(r−k):r ∈ �k and w ∈ C0(R+), we then have that

vtr−k−1(w, y(r−k):r ) = sup
Y∈M(�k)

Ytr−k−1=y(r−k):r

E

[
Y r−k

tr−k
c
(
W

t,w·∧tr−k
, tr−k

)

+
(
1 − Y r−k

tr−k

)
vtr−k

(
W

t,w·∧tr−k
,
Y

(r−k+1):r
tr−k

1 − Y r−k
tr−k

)]
.

(3.7)

As already mentioned, in [5], the authors consider the distribution-constrained optimal
stopping problem for atomic constraints and cost functions of the form c(ω·∧s, s) = f ◦ ω(s)

for some Lipschitz function f : R→R. A priori, they consider the strong formulation where
the filtration is the one generated by the Brownian motion alone and for this problem they
establish the DPP; that is, (3.5) which for atomic constraints takes the form (3.7) with the
additional condition Y r−k

tr−k
∈ {0,1} a.s. In turn, they relax this additional condition and show

that their value function also satisfies (3.7). Combining our Corollary 3.6 with their result,
we obtain that for distributional constraints and cost functions of the form considered in
[5], the value function resulting from the restriction to Brownian stopping times and the
value function for the weak problem formulation coincide. This should come as no surprise
for when considering non-path-dependent cost functions and atomic constraints, one has the
possibility to let the Brownian motion run for a positive amount of time before stopping;
even if a priori working with the filtration generated by the Brownian motion alone, additional
randomisation can thus be obtained by conditioning on the past of the Brownian motion itself.

3.3. Proof of the dynamic programming principle.

Reformulation onto Mayer form. Since our objective is given in Lagrange form (with a
reward function integrated over time), we first introduce an additional state variable (gov-
erning its accumulated value) in order to transform it onto Mayer form. Specifically, given
(t,w, y) ∈R+ × C0(R+) ×R and ξ ∈ MVM, we define the process

Y t,w,y
u (ξ) := y +

∫ t∨u

t
c
(
Wt,w·∧s , s

)
dAξ

s ;
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we note that it admits a well-defined limit which we denote by Y
t,w,y∞ (ξ). For (t,w, y,μ) ∈

R+ × C0(R+) ×R×P , we re-introduce the value function

v(t,w, y,μ) := sup
ξ∈MVMt (μ)

E
[
Y t,w,y∞ (ξ)

]
.(3.8)

To establish Theorem 3.1, we then need to show that for every F-stopping time θ with
values in (t,∞),

v(t,w, y,μ) = sup
ξ∈MVMt (μ)

E
[
v
(
θ,W

t,w
·∧θ , Y

t,w,y
θ (ξ), ξθ

)]
.(3.9)

The DPP formulated on the canonical path space. For our proof we consider the weak
formulation of the DPP on the associated canonical path space; the canonical framework has
previously successfully been used for the study of stochastic control problems in [18, 19],
see also [38] and [31, 32]. We denote by D the set of càdlàg paths on [0,∞) taking values
in E := R × R × P , where we equip P with the topology induced by W1 and E with the
product topology; this renders E a Polish space (cf. Theorem 6.18 in [36]) and using the
Skorokhod topology on D it is a Polish space too. A generic path in D is denoted by ω and
we use X = (W,Y, ξ) for the coordinate process Xt(ω) = (Wt , Yt , ξt )(ω) = ω(t). Further,
we let X = C0(R+) × R × P , X = B(X), denote a generic element in X by x, and write
xt for the mapping from R+ × D to X returning xt (X) := (W·∧t , Yt , ξt ). Let F0 = (F0

t )t≥0
denote the natural filtration generated by the coordinate process X and denote by P the set
of all probability measures on B(D). Given (t,x) =̂ (t,w, y,μ) ∈ R+ × X, we then introduce
the set Pt,x of probability measures P in P for which:

i. P-a.s., Ws = ws for s ≤ t , Yt = y and ξt = μ;
ii. (Wu − Wt)u≥t is an (F0,P)-Brownian motion;

iii. (ξu)u≥t is an adapted (F0,P)-MVM;
iv. P-a.s., Yu − Yt = ∫ u

t c(W·∧s, s)dA
ξ
s , u > t .

Note that there exists a measurable functional Y∞ : D → R+ such that Y∞(ω) =
limt→∞ Yt (ω) whenever the limit exists (recall that c(·, ·) is measurable and see Lemma 3.12
in [38]); in particular, for any P ∈ Pt,x, we have Y∞ = limt→∞ Yt , P-a.s. We define

v(t,x) := sup
P∈Pt,x

EP[Y∞], (t,x) ∈R+ × X;(3.10)

with a slight abuse of notation we will also write v(θ,X·∧θ ) for v(θ,xθ (X)).

LEMMA 3.7. The value functions given by (3.8) and (3.10) coincide; that is, for all
(t,x) = (t, (w, y,μ)) ∈ R+ × X, v(t,x) = v(t,w, y,μ).

PROOF. Let (t,x) = (t, (w, y,μ)) ∈ R+ × X. In turn, let K(t,x) denote the class of tu-
ples κ = (�κ,Fκ,Fκ,Pκ,Wκ,Y κ, ξκ) such that (�κ,Fκ,Fκ,Pκ) is a filtered probability
space in which ξκ is a càdlàg adapted MVM with ξκ

t = μ a.s.; Wκ solves dWκ
s = dBκ

s ,
s ∈ [t,∞), with Wκ

s = ws a.s., s ∈ [0, t], for some (Fκ ,Pκ)-Brownian motion Bκ ; and

Yκ
u = y + ∫ u

t c(Wκ·∧s, s)dA
ξκ

s , u ≥ t . According to Remark 2.6, we then have that

v(t,w, y,μ) = sup
K(t,x)

Eκ[
Yκ∞

]
.

Note that each tuple κ ∈ K(t,x) induces a term in Pt,x. Conversely, any probability mea-
sure P ∈ Pt,x together with the space (D,B(D),FP) and the canonical process (W,Y, ξ)

produces such a tuple for if properties (ii) and (iii) hold with respect to F0 they hold also with
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respect to the augmented filtration FP. This implies that supK(t,x)E
κ [Y κ∞] = v(t,x), which

completes the proof. �

The DPP for the problem introduced in (3.10) takes the following form.

THEOREM 3.8. For all (t,x) ∈ R+ × X, and any F0-stopping time θ with values in
(t,∞), it holds that

v(t,x) = sup
P∈Pt,x

EP
[
v(θ,X·∧θ )

]
.

In order to obtain Theorem 3.1, it then suffices to establish Theorem 3.8. Indeed, applying
Lemma 3.7 combined with the same arguments as used for its proof, it follows directly from
the latter result that relation (3.9), and thus relation (3.2), holds for any θ which is a stop-
ping time in the raw filtration generated by the Brownian motion. Theorem 3.1 then follows
since any F-stopping time is predictable and since for any F-predictable time θ there exists a
predictable time θ̄ in the raw filtration with θ̄ = θ a.s.

The remainder of this section is devoted to the proof of Theorem 3.8.

Analyticity of Pt,x and forward and backward concatenation properties. To establish the
above DPP, we use the same method of proof as employed in, for example, [32] or [19]; the
key step is to establish certain analyticity and stability properties.

We first show that the graph corresponding to Pt,x is analytic:

LEMMA 3.9. The set � := {(t,x,P) : (t,x) ∈ R+ × X,P ∈Pt,x} is a Borel set.

PROOF. For 0 < q < r , � = 1A with A ∈ F0
q , ψ ∈ C2

b and ϕ ∈ Cb, with C2
b denoting the

set of functions with continuous and bounded derivatives of second order, we consider the
following subsets of R+ × X ×P:

� {(t,x,P) : P(Wr∧t = w(r ∧ t), Yt = y, ξt = μ) = 1};
� {(t,x,P) : EP[�(ψ(Wt∨r ) − ψ(Wt∨q) − 1

2

∫ t∨r
t∨q ψ ′′(Wu)du)] = 0};

� {(t,x,P) : EP[�(ξt∨r (ϕ) − ξt∨q(ϕ))] = 0};
� {(t,x,P) : P(ξt∨r ([0, q]) = ξt∨q([0, q]) = 1};
� {(t,x,P) : P(Yt∨r − Yt∨q = ∫ t∨r

t∨q c(W·∧u, u)dA
ξ
u) = 1}.

The above sets are all Borel measurable. Furthermore, we claim that � is the intersection of
countably many sets of the above form and thus itself a Borel set. More precisely, we claim
that � is the intersection of the above sets when 0 < q < r are allowed to vary among all
rational numbers; A among a countable family generating F0

q for each q; and ψ and ϕ among

countable subsets generating, respectively, C2
b and Cb via pointwise convergence. Indeed, by

use of the monotone class theorem and dominated convergence we then obtain that the second
and third properties hold for any � ∈ F0

q , ψ ∈ C2
b and ϕ ∈ Cb, for rational 0 < q < r ; since

W and ξ(ϕ), ϕ ∈ Cb, are càdlàg this implies that (Wu)u≥t is a Brownian motion and that
(ξu)u≥t is an MVM. To argue the adaptedness property, without loss of generality, let t = 0
and let P belong to the above intersection of sets. Using the MVM-property, Remark 2.3(i)
and the fourth property above, we obtain for any u ≥ q with q ∈ Q,

ξu

([0, q]) = E
[
ξr

([0, q])|F0
u

] = E
[
ξq

([0, q])|F0
u

] = ξq

([0, q]), a.s.,

where we picked r ≥ u with r ∈ Q. In turn, recalling that there exists a null set off which
q 
→ ξq([0, q]) is nondecreasing, we obtain for any u > s,

ξu

([0, s]) = inf
q∈(s,u)∩Q ξu

([0, q]) = inf
q∈(s,u)∩Q ξq

([0, q]) = Aξ
s , a.s.
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Let F̄ = (F̄u)u≥0 be the augmentation of F0. By Lévy’s downward theorem, the càdlàg
(F0,P)-martingales ξ(ϕ), ϕ ∈ Cb, are also (F̄,P)-martingales and ξ is thus an (F̄,P)-MVM.
Using again Remark 2.3(i) and the fact that A

ξ
s is F̄s -measurable (cf. (2.8)), we obtain

ξs

([0, s]) = E
[
ξu

([0, s])|F̄s

] = E
[
Aξ

s |F̄s

] = Aξ
s , a.s.;

hence, ξu([0, s]) = ξs([0, s]) a.s., u ≥ s, and ξ is an adapted MVM. �

Next, we establish that certain consistency properties hold when concatenating measures
in Pt,x. To this end, we first introduce some further notation: A map Q : D× B(D) → [0,1]
is called a (universally) measurable kernel if (i) Q(ω, ·) ∈ P for all ω ∈ D, and (ii) D � ω 
→
Q(ω,A) is (universally) measurable for all A ∈ B(D). Recall that the universal σ -algebra is
the intersection of the completions of the Borel σ -algebra over all probability measures on
the space, and that universally measurable functions are integrable with respect to any such
probability measure; we will use the superscript U to refer to the universal completion. We
write Qω for the probability measure Q(ω, ·) and interpret Q as a (universally) measurable
map from D to P. Further, given a random time θ and two paths ω,ω′ ∈ D with Xθ(ω)(ω) =
Xθ(ω)(ω

′), we define the concatenation ω ⊗θ ω′ to be the element of D given by

Xt

(
ω ⊗θ ω′) = 1{t<θ(ω)}Xt(ω) + 1{t≥θ(ω)}Xt

(
ω′).

Given a probability measure P ∈ P and a universally measurable kernel Q, we then define
the concatenation P⊗θ Q as the probability measure in P given by

(P⊗θ Q)(A) =
∫∫

1A

(
ω ⊗θ ω′)Qω

(
dω′)P(dω), A ∈ B(D).

LEMMA 3.10. Let (t,x) ∈ R+ × X, P ∈ Pt,x and let θ be a (t,∞)-valued F0-stopping
time. Then, (i) there exists a regular conditional probability (Pω)ω∈D of P given F0

θ with

Pω ∈ Pθ(ω),xθ(ω)(ω) for P-a.a. ω ∈ D; and (ii) given (Qω)ω∈D such that ω 
→ Qω is F0,U
θ -

measurable and Qω ∈ Pθ(ω),xθ(ω)(ω) for P-a.a. ω ∈ D, it holds that P⊗θ Q ∈Pt,x.

PROOF. (i) We note that F0
θ is generated by the map ω 
→ (ω·∧θ(ω), θ(ω)) where D×R+

is equipped with its Borel algebra; see, for example, page 10 in [19]. Since B(D × R+) is
countably generated, hence so is F0

θ . In turn, since (D,B(D)) is a standard Borel space and
F0

θ is countably generated, there exists a (proper) regular conditional probability (Pω)ω∈D
of P given F0

θ , such that Pω(Xs = ωs, s ∈ [0, θ(ω)]) = 1 for P-a.a. ω ∈ D. According to
Theorem 1.2.10 in [35], given a martingale M on [t,∞), there exists a P-null set N ∈ F0

θ

such that M is a Pω-martingale after θ(ω) for every ω /∈ N . Since the fact that W is a BM
and ξ an MVM are characterised by the martingale property of M

ψ· = ψ(Wt∨·) − ψ(Wt) −
1
2

∫ t∨·
t ψ ′′(Wu)du and ξt∨·(ϕ), where ψ and ϕ run through some countable sets of functions

(cf. the proof of Lemma 3.9), we conclude that there exists a P-null set N ∈ F0
θ such that for

every ω /∈ N , W is a BM and ξ an MVM under Pω on [θ(ω),∞). The remaining properties
which must be checked to ensure that Pω ∈ Pθ(ω),xθ(ω)(ω), for P-almost every ω ∈ D, follow
from the fact that any P-null set is a Pω-null set for P-almost all ω ∈ �.

(ii) Given (Qω)ω∈D as specified in the statement of the lemma, applying once again Theo-
rem 1.2.10 in [35] (cf. also the proof of Lemma 3.3 in [19]), we obtain that M

ψ
t∨· and ξt∨·(ϕ)

defined as above are indeed martingales also under P⊗θ Q. Moreover, since a set which is a
null set under Qω, for P-almost all ω ∈ D, is a null set also under P⊗θ Q, we conclude that
also the remaining properties hold under the latter measure; hence, P⊗θ Q ∈ Pt,x. �
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Proof of the dynamic programming principle. We are now ready to complete the proof of
our main result.

PROOF OF THEOREM 3.8. Given (t,x) ∈ R+ ×X and an F0-stopping time θ with values
in (t,∞), let P ∈ Pt,x and recall that according to Lemma 3.10, there exists a regular con-
ditional probability of P given F0

θ , say (Pω)ω∈D, such that Pω ∈ Pθ(ω),xθ(ω)(ω) for P-almost
every ω ∈ D. In particular, EPω [Y∞] ≤ v(θ(ω),xθ(ω)(ω)), for P-almost every ω ∈ D, and we
obtain

EP[Y∞] = EP[
EPω [Y∞]] ≤ EP[

v(θ,X·∧θ )
]
.

Since P ∈ Pt,x was arbitrarily chosen, this gives us v(t,x) ≤ supP∈Pt,x
EP[v(θ,X·∧θ )].

Next, recall that according to Lemma 3.9, the set � = {(t,x,P) : P ∈ Pt,x} is Borel. In
particular, this implies that v is upper semianalytic. Indeed, the level sets of v are given by
{(t,x) ∈ R+ × X : v(t,x) > c} = projR+×XL>c with

L>c := {
(t,x,P) ∈ R+ × X ×P : EP[Y∞] > c

} ∩ �, c ∈ R,

where we recall that P 
→ EP[Y∞] is Borel measurable. Given ε > 0, it follows that also the
following set is analytic:

�ε = {
(t,x,P) : EP[Y∞] ≥ vε(t,x)

} ∩ �,

where vε(t,x) := (v(t,x) − ε)1{v(t,x)<∞} + 1
ε
1{v(t,x)=∞}. Hence, we may apply Jankov-von

Neumann’s measurable selection theorem to obtain (Qt,x) such that (t,x) 
→ Qt,x is (B ⊗
X )U -meas. and such that Qt,x ∈ Pt,x and EQt,x[Y∞] ≥ vε(t,x), for every (t,x) ∈ R+ × X. In
turn, given an F0-stopping time θ with values in (t,∞), we define Qω := Qθ(ω),xθ(ω)(ω) for
ω ∈ D; then,

Qω ∈ Pθ(ω),xθ(ω)(ω) and EQω [Y∞] ≥ vε(θ(ω),xθ(ω)(ω)
)
, ω ∈D.

We claim that (Qω)ω∈D is also universally measurable. To see this, given P ∈ P, let P̂ be a
measure on (R+ × X,B ⊗X ) induced by P via the mapping ω 
→ (θ(ω),xθ(ω)(ω)); that is,

P̂
(
(t,x) ∈ A

) := P
((

θ, (W·∧θ , Yθ , ξθ )
) ∈ A

)
, A ∈ R+ × X.

Let Q′
t,x be such that Q′

t,x = Qt,x, P̂-a.s., and (t,x) 
→ Q′
t,x is B ⊗ X -meas. Then (t,ω) 
→

Q′
t,xt (ω) is B × F0∞-meas. and thus O-meas. since Q′

t,xt (ω) depends only on (t,ω·∧t ). In

consequence, ω 
→Q′
θ(ω),xθ(ω)(ω) is F0

θ -meas. It follows that Qθ(ω),xθ(ω)(ω) is F0,P
θ -meas. and

therefore F0,U
θ -meas. since P was arbitrarily chosen.

We may now easily conclude: According to Lemma 3.10, for any P ∈ Pt,x we have P⊗θ

Q ∈ Pt,x. In consequence,

v(t,x) ≥ EP⊗θQ[Y∞] = EP[
EQω

] ≥ EP[
vε(θ,X·∧θ )

]
.

Since ε > 0 and P ∈ Pt,x were both arbitrarily chosen, we therefore have v(t,x) ≥
supP∈Pt,x

EP[v(θ,X·∧θ )] which completes the proof. �

4. Stability of the value function and covering arguments. In this section we study
continuity properties of the optimal stopping problem with respect to its distributional con-
straint. Moreover, for the case of Markovian costs, we provide an alternative proof of the
dynamic programming principle.

Throughout this section we work under the following assumption on the cost function.
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ASSUMPTION 4.1. There exists a modulus of continuity ϕ such that for any two ordered
stopping times, say τ ≤ ρ a.s., in a filtered probability space supporting a Brownian motion
(Wt)t≥0, it holds that ∣∣E[

c(W·∧τ , τ ) − c(W·∧ρ, ρ)
]∣∣ ≤ ϕ

(
E

[|τ − ρ|]).
While this assumption defines a particular class of cost functions we note that it is wide

enough to include a number of relevant examples.

EXAMPLE 4.2. Assumption 4.1 holds in each of the following cases:

• c(ω, t) satisfying |c(ω, t) − c(ω, s)| ≤ ϕ(|t − s|) for a concave modulus of continuity ϕ;
• c(ω, t) = f (ωt ), where |f (x) − f (y)| ≤ ϕ(|x − y|) for a concave modulus of continuity

ϕ, since then ϕ̃(·) = ϕ(
√·) is a concave modulus of continuity and by Jensen’s inequality

E
[∣∣f (Wτ ) − f (Wρ)

∣∣] ≤ E
[
ϕ̃

(|Wτ − Wρ |2)] ≤ ϕ̃
(
E

[|Wτ − Wρ |2]) = ϕ̃
(
E

[|τ − ρ|]);
• c(ω, t) = f (ω∗

t ), where ω∗
t = sup·≤t ω· and |f (x) − f (y)| ≤ ϕ(|x − y|) for a concave

modulus of continuity ϕ, since defining ϕ̃ as above and applying Doob’s inequality,

E
[∣∣f (

W ∗
τ

) − f
(
W ∗

ρ

)∣∣] ≤ ϕ̃
(
E

[∣∣W ∗
τ − W ∗

ρ

∣∣2]) ≤ ϕ̃
(
4E

[|τ − ρ|]);
• variations of the above cases obtained when replacing W by a local martingale M “evolv-

ing slower” than the Brownian motion in the sense that 〈M〉t ≤ t .

4.1. Stability properties of the value function. We first study the dependence of the prob-
lem on its distributional constraint. Specifically, recalling our original problem formulation,
we consider continuity properties of the mapping μ 
→ v(μ), μ ∈ P . We note that this value
function is continuous, for example, when the problem admits a solution of barrier type; cf.
[8, 23, 28, 33]. More generally, such continuity properties are easier to establish when taking
the ordering on the underlying space of probability distributions into account; we therefore
choose to view P as a partially ordered space while still making use of its properties as a met-
ric space under W1. More precisely, we write μ � η if η can be obtained from μ by “moving
mass to the right”; that is, if there exists a coupling between μ and η whose disintegration in
the first variable, say m(·,dy), is such that for μ-a.a. x, m(x,dy) is concentrated on [x,∞).
This ordering is usually referred to as the first stochastic ordering and the fact that η stochas-
tically dominates μ can equivalently be expressed as μ(f ) ≤ η(f ) for any nondecreasing
function f .2

Our first result establishes a certain “right-continuity” of the value function. The result is of
relevance for it ensures that the value of an optimal stopping problem equipped with a general
distributional constraint can be approximated by problems featuring atomic constraints which
are easier to handle by use of numerical methods (cf. Corollary 3.6).

THEOREM 4.3. Suppose that the cost function c is bounded with t 
→ c(ω·∧t , t) continu-
ous and that it satisfies Assumption 4.1. Let μ ∈P and take μn ∈ P , n ∈N, to be a sequence
with μ � μn, n ∈ N, such that W1(μ,μn) → 0, as n → ∞. Then, v(μ) = limn→∞ v(μn).

2We note that P equipped with the usual stochastic ordering is a lattice (a poset such that every nonempty finite
set has a supremum and infimum); if restricting to measures supported on some given compact set, it is also a
complete lattice (any subset admits an infimum). It is also a continuous lattice in the sense of [22].



A DPP FOR DISTRIBUTION-CONSTRAINED OPTIMAL STOPPING 1919

PROOF. For each n ∈ N, recalling that μ � μn, let �n such that W1(μ,μn) = ∫∫ |s −
t |�n(ds,dt) and such that its disintegration kernel mn(s,dt) satisfies both �n(ds,dt) =
μ(ds)mn(s,dt) and suppmn(s, ·) ⊆ [s,∞), for μ-a.e. s > 0. Let ε > 0. Recalling in turn the
probability space (�,G,G,P) from problem (2.1), take τ ∈ T (μ) such that E[c(W·∧τ , τ )] ≥
v(μ) − ε. Consider now the enlarged probability space given by(

�,G, (Gt )t≥0,P
) = (

� × [0,1],G ⊗B
([0,1]), (

Gt ⊗B
([0,1]))t≥0,P× Leb

);
we write ω̄ = (ω,u) for ω̄ ∈ �. Defining U(ω̄) = u, it follows that the random variable U

is uniformly distributed on [0,1] and independent of G. Denoting by Mn,(−1)(s, ·) : [0,1) →
[s,∞) the right-continuous inverse of Mn(s, ·) := ∫ ·

s mn(s,dt), for n ∈ N, and using the ob-
vious identification τ(ω̄) = τ(ω), we then define

τn := Mn,(−1)(τ,U), n ∈ N;
it follows that τn is a stopping time in the enlarged space. Moreover, τn ∼ μn and

E
[|τ − τn|] = E

[∣∣τ − Mn,(−1)(τ,U)
∣∣] =

∫∫
|s − t |μ(ds)mn(s,dt) = W1(μ,μn).

We can therefore choose N ∈ N such that E[|τ − τn|] ≤ ϕ−1(ε), for all n ≥ N , where ϕ is the
modulus of continuity provided by Assumption 4.1; making use of this assumption we then
obtain

v(μn) ≥ E
[
c(W·∧τn, τn)

] ≥ E
[
c(W·∧τ , τ )

] − ε ≥ v(μ) − 2ε n ≥ N.

Since ε > 0 was arbitrarily chosen, we therefore have lim infn→∞ v(μn) ≥ v(μ), which com-
bined with Proposition 4.4 below yields the result. �

The next result establishes (general) upper semicontinuity of the value function; the argu-
ment is a variation of the existence proof given in [8] and notably does not rely on Assump-
tion 4.1. Since the value function v is concave,3 the result implies in particular that when
restricting v to the set of finitely supported probability measures—rendering it a function
from Rn to R (cf. (3.6))—continuity holds on the domain where it is finite.

PROPOSITION 4.4. Suppose that the cost function c is bounded from above and that
t 
→ c(ω·∧t , t) is upper semicontinuous for W-a.e. ω ∈ C0(R+). Then, μ 
→ v(μ) is upper
semicontinuous on P in the topology induced by W1.

PROOF. Fix μ ∈ P and let μn ∈ P , n ∈ N, be a sequence such that W1(μn,μ) → 0,
as n → ∞; without loss of generality, we suppose that W1(μn,μ) is nonincreasing in n. In
turn, recalling the equivalent problem formulation from (2.5), let γn ∈ RST(μn), n ∈ N, be a
sequence such that

lim
n→∞Eγn

[
c(B,T )

] = lim sup
n→∞

v(μn).(4.1)

We first argue that the sequence (γn) is tight; for this it suffices to show that its respective
projections onto C0(R+) and R+ are tight. The projections onto C0(R+) all coincide with

3Indeed, let μ1,μ2 ∈ P , ε > 0, and let τ1, τ2 be corresponding ε-optimal stopping times. Given λ ∈ (0,1), let

μλ = λμ1 + (1 − λ)μ2. Consider the enlarged space (�,G,G,P) constructed in the proof of Theorem 4.3 and
define τ = 1{U≤λ}τ1 + 1{U>λ}τ2. Then, τ ∈ T (μλ); moreover,

v
(
μλ) ≥ E

[
1{U≤λ}c(W·∧τ1 , τ1) + 1{U>λ}c(W·∧τ2 , τ2)

] ≥ λv(μ1) + (1 − λ)v(μ2) − 2ε.
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W and are thus trivially tight. On the other hand, for any ε > 0, using the properties of
the sequence (μn), we may choose r > 0 such that μn((r,∞)) < ε, for all n ∈ N. Since
γn(T > r) = μn((r,∞)), it follows that also the projections onto R+ are tight.

Let now γ be an accumulation point; by passing if necessary to a subsequence, we may
assume that γn converges weakly to γ . From the continuity of (ω, t) 
→ ω, we obtain that
γ |C0(R+) = W. Further, using the continuity of (ω, t) 
→ t combined with the fact that
W1(μn,μ) → 0, we obtain for any ϕ ∈ Cb,

γ |R+(ϕ) = Eγ [
ϕ(T )

] = lim
n→∞Eγn

[
ϕ(T )

] = lim
n→∞μn(ϕ) = μ(ϕ).

Hence, γ ∈ Cpl(W,μ). We may now invoke Theorem 3.8 in [6] (cf. the equivalence between
properties (2) and (3) therein), to deduce that γ ∈ RST(μ).

Next, according to Proposition 2.4 in [26] (see also Lemma 4.2 in [24]), on
⋃

μ∈P RST(μ),
the weak convergence topology coincides with the stable convergence topology, which is
the coarsest topology under which γ → Eγ [φ] is continuous for all bounded measurable
functions φ : C0(R+) × R+ → R such that t 
→ φ(ω, t) is continuous for all ω ∈ C0(R+).
Hence, by use of the imposed assumptions on c and Portmanteau’s lemma, we obtain

v(μ) ≥ Eγ [
c(B,T )

] ≥ lim sup
n→∞

Eγn
[
c(B,T )

]
,

which combined with (4.1) yields the required upper semicontinuity. �

4.2. The DPP in the Markovian case. In this section we provide an alternative proof of
the DPP for the case of Markovian cost functions. While the result naturally follows from
our previous one we provide this separate argument due to its simplicity. The argument relies
on the fact that under some additional structural assumptions, we can construct a measurable
optimiser explicitly via covering arguments; we may thus circumvent the need for abstract
measurable selection arguments and provide a straightforward proof. The approach is in the
spirit of Bouchard and Touzi [11] (see also [10] and [1]); it was also the method employed in
[5] for the optimal stopping problem with atomic constraints.

The Markovian setting. Recalling the setup from our original problem formulation (2.1)
and denoting the augmented filtration generated by the Brownian motion alone by F =
(Ft )t≥0, we say that a cost function c is of Markov type if it admits the representation

c(W·∧τ , τ ) = f (Xτ ) a.s.,

for some Rn-valued F-Markov process (Xt)t≥0 and f ∈ C(Rn). Let S = {(t, x,μ) ∈ R+ ×
Rn × P : μ([t,∞)) = 1} and S0 = {(t, x,μ) ∈ S : μ((t,∞)) = 1}; with a slight abuse of
notation we write S and S0 also for their projections onto R+ × P . For the class of cost
functions of Markov type, we then re-introduce the value function v : S0 →R by

v(t, x,μ) := sup
ξ∈MVMt (μ)

E

[∫ ∞
t

f
(
Xt,x

s

)
dAξ

s

]
,

where MVMt (μ) here denotes the set of continuous adapted MVMs with ξt = μ a.s., which
are independent of Ft , and where we now refer to an MVM as continuous if ξ(ϕ) is continu-
ous a.s. for every ϕ ∈ bB.4

For the Markovian case, the DPP then takes the following form; the result can be deduced
directly from Theorem 3.1 via the identification v(t,Xt(w),μ) =̂v(t,w,μ) or proven anal-
ogously to Theorem 3.1 by applying measurable selection to deduce a measurable optimiser
on the state space S0.

4An inspection of the proof of Proposition 2.5 together with Lemma A.1 verifies that this modified continuity
assumption will not affect the value of the problem; that the value remains unaltered if relaxing the condition of
independence of Ft follows from (B.3) below and, for example, Proposition 2.4 in [12].
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COROLLARY 4.5 (DPP: Markovian case). Let (t, x,μ) ∈ S0. For any F-stopping time θ

with values in (t,∞), it then holds that

v(t, x,μ) = sup
ξ∈MVMt (μ)

E

[∫ θ

t
f

(
Xt,x

u

)
dAξ

u + ξθ

(
(θ,∞)

)
v
(
θ,X

t,x
θ , ξ

(θ
θ

)]
.

Covering arguments and alternative proof. Our direct proof of the above DPP relies on
the fact that given an MVM which is optimal at a point, we may in a measurable way con-
struct a modified MVM which respects the state constraint and is approximately optimal in
some neighbourhood of that point. To specify this, given μ,η ∈ P , let mμ→η denote the
disintegration kernel for which

W1(μ,η) =
∫∫

|s − u|μ(du)mμ→η(u,ds).

Consider (̃t , μ̃) ∈ S, t
∼

< t̃ and the MVM ξ̃ ∈ MVM
t∼(μ̃) to be given. For every (s, η) ∈ S0

with s < t∼
, we then define a process ξ as follows: ξs∨·∧ t∼

:= η and

ξ·∨ t∼
(A) := η

(
A ∩ (s, t̃]) + η

(
(̃t ,∞)

) ∫
ξ̃·(du)mμ̃→η(̃t

(u,A), A ∈ B.(4.2)

If μ̃ � η(̃t , the thus defined process ξ is an adapted MVM which lies in MVMs(η). More
pertinently, under some further assumptions, the next result verifies that ξ̃ and ξ are close in
a certain sense and if the former is optimally chosen, the latter will thus be approximately
optimal in some neighbourhood.

ASSUMPTION 4.6. The cost function c is of Markov type with f locally bounded and
satisfies Assumption 4.1. Moreover, for every η ∈ P , there exists ε > 0 such that (t, x) 
→
E[f (Xt∧lτ ,x

τ )] is continuous on R+ ×Rn uniformly for τ ∈ T (μ) with μ ∈ Bε(η), where lτ
denotes the left end-point of the support of τ .

PROPOSITION 4.7. Suppose that Assumption 4.6 holds and that v is continuous on S0.
Given ε > 0, there exists δ : S0 → R+ such that for every (t, x,μ) ∈ S0 the following holds:
If A ⊆ Bδ(t,x,μ)(t, x,μ), (̃t , μ̃) ∈ S, t∼

< t̃ , and it holds for all (s, z, η) ∈ A that

(̃t − s) ∨ η
(
(0, t̃]) ∨W1

(
η(̃t , μ̃

)
< δ(t, x,μ), s < t

∼
and μ̃ � η(̃t ;(4.3)

and if ξ̃ ∈ MVM
t∼(μ̃) is chosen such that

E

[∫
f

(
X

t∼,x

u

)
dAξ̃

u

]
≥ v(t∼

, x, μ̃) − δ(t, x,μ);
then it holds for any (s, z, η) ∈ A that the MVM ξ given by (4.2) belongs to MVMs(η) and
satisfies

E

[∫
f

(
Xs,z

u

)
dAξ

u

]
≥ v(s, z, η) − ε.

The second component needed for the proof is the fact that S0 admits a measurable par-
tition satisfying the properties required for Proposition 4.7 to apply; the following lemma
provides such a partition.

LEMMA 4.8. For δ : S0 →R+ given, S0 admits a measurable partition (Ai), i ∈ N, with
associated sequences of reference points (ti , xi,μi) ∈ S0, (̃ti , μ̃i) ∈ S and ti∼

< t̃i , such that

Ai ⊆ Bδ(ti ,xi ,μi)(ti , xi,μi) and (4.3) holds with respect to (ti , xi,μi), (̃ti , μ̃i) and ti∼
, for all

(s, z, η) ∈ Ai , i ∈N.
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Combining Lemma 4.8 and Proposition 4.7, it is now straightforward to explicitly con-
struct a measurable and approximately optimal MVM, which enables proving the DPP with-
out invoking any abstract measurable selection arguments. For completeness, we provide the
full argument in Appendix B together with the proofs of Proposition 4.7 and Lemma 4.8.
We note that this direct proof relies on continuity of v while in light of Theorem 4.3, “right-
continuity” would have been a more natural assumption. It seems, however, unclear whether
the argument can be extended to account for this, which illustrates the limitations of covering
arguments. In conclusion, while covering arguments provide neat proofs whenever applica-
ble, the complexity of the distribution-constrained optimal stopping problem typically calls
for more subtle measurable selection arguments as employed in our main proof herein.

APPENDIX A: ON THE CONTINUITY AND CONVERGENCE OF
MEASURE-VALUED MARTINGALES

In this appendix we establish some auxiliary results on measure-valued martingales; the
underlying filtered probability space is here taken to be a general one satisfying the usual
conditions. Moreover, we here apply Definition 2.2 with the convention that P is replaced by
the set of all probability measures on R; that is, we do not a priori impose any assumptions
on the integrability or support of the MVMs.

First, we consider the existence of continuous versions of MVMs.

LEMMA A.1. Given an MVM ξ , there exists a version of it such that ξ(ϕ) is càdlàg a.s.
for every ϕ ∈ bB. Moreover, ξ is then almost surely right-continuous in the weak topology.

If ξ0(| · |) < ∞, the version can be chosen such that ξ(ϕ) is càdlàg a.s. for every ϕ ∈ bB
and every ϕ ∈ C asymptotically of at most linear growth. Moreover, ξ is then almost surely
right-continuous in the topology induced by W1.

PROOF. According to Proposition 2.5 in [25] and its proof, there exists a version of ξ

such that for every ϕ ∈ bB, ξ(ϕ) is càdlàg a.s. Let A be the set of finite unions of open
intervals with rational endpoints. Then there exists a null set N such that for ω /∈ N , t 
→
ξt (A)(ω) is càdlàg for all A ∈ A. Let U ⊆R be an arbitrary open set; then U = ⋃∞

n=1 An for
some sequence (An) with An ∈ A and An ⊂ An+1, n ∈ N. Since An ⊂ U , n ∈ N, we obtain
off N that for any t ≥ 0,

lim inf
u↓t

ξu(U) ≥ sup
n∈N

lim inf
u↓t

ξu(An) = sup
n∈N

ξt (An) = ξt (U);

by Portmanteau’s lemma ξ is thus weakly right-continuous off N .
Next, suppose in addition that ξ0(| · |) < ∞. For any ϕ ∈ bB it then holds that∫

ϕ(x)
(
1 ∨ |x|)ξ0(dx) ≤ sup

x∈R
ϕ(x)

(
1 + ξ0

(| · |)) < ∞,

and therefore ξt (ϕ(·)(1∨|· |)), t ≥ 0, is a martingale for any ϕ ∈ bB. In consequence, defining
ηt (dx) = (1∨|x|)ξt (dx), it holds that ηt (ϕ), t ≥ 0, is a martingale for any ϕ ∈ bB. Moreover,
ηt (dx) is a nonnegative random measure. Hence, we may again apply the results in [25] to
deduce the existence of a version of η, and thus of ξ , such that η(ϕ) is càdlàg a.s. for any
ϕ ∈ bB. In particular, for any ϕ ∈ bB or ϕ ∈ C with lim|x|→∞ |ϕ(x)

x
| ≤ 1, since it then holds

that ϕ(·)
1∨|·| ∈ bB and ∫

ϕ(x)ξt (dx) =
∫

ϕ(x)

1 ∨ |x|ηt (dx), t ≥ 0,
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we obtain that ξ(ϕ) is càdlàg a.s. By use of the same arguments as above, it follows that
ξ is a.s. weakly right-continuous. Since also ξ(| · |) is càdlàg a.s., it follows that ξ is a.s.
right-continuous in the topology induced by W1. �

Next, we turn to the question of convergence of MVMs to a limiting object.

LEMMA A.2. Given an MVM ξ , there exists a random measure ξ∞ which satisfies
limt→∞ ξt (ϕ) = ξ∞(ϕ) a.s. for every ϕ ∈ bB. Moreover, as t → ∞, ξt then converges al-
most surely to ξ∞ in the weak topology.

If ξ0(| · |) < ∞, there exists a random measure ξ∞ which satisfies limt→∞ ξt (ϕ) = ξ∞(ϕ)

a.s. for every ϕ ∈ bB and every ϕ ∈ C asymptotically of at most linear growth. Moreover, as
t → ∞, ξt then converges almost surely to ξ∞ in the topology induced by W1.

PROOF. According to Proposition 2.1 in [25] and its proof, there exists a random measure
ξ∞ such that ξt (ϕ) → ξ∞(ϕ) a.s., as t → ∞, for any ϕ ∈ bB. Let A, U and (An)n∈N be as in
the proof of Lemma A.1; further, let N be a null set off which ξt (An)(ω) → ξ∞(An)(ω), for
all n ∈ N. Off N it then holds that

lim inf
t→∞ ξt (U) ≥ lim

n→∞ lim inf
t→∞ ξt (An) = lim

n→∞ ξ∞(An) = ξ∞(U),

and the almost sure weak convergence follows from Portmanteau’s lemma.
Next, suppose in addition that ξ0(| · |) < ∞. Define the measure-valued process η as in the

proof of Lemma A.1. Applying again the results in [25], we deduce the existence of a random
measure η∞ such that ηt (ϕ) → η∞(ϕ) a.s., for any ϕ ∈ bB. Defining ξ∞(dx) = 1

1∨|x|η∞(dx),

we obtain for any ϕ ∈ bB or ϕ ∈ C with lim|x|→∞ |ϕ(x)
x

| ≤ 1, that

lim
t→∞ ξt (ϕ) = lim

t→∞ηt

(
ϕ(·)

1 ∨ | · |
)

= η∞
(

ϕ(·)
1 ∨ | · |

)
= ξ∞(ϕ), a.s.

Convergence in the weak topology then follows by use of the same arguments as above.
Convergence in the topology induced by W1 then holds off the union of the two null sets off
which, respectively, the first moment converges and weak convergence holds. �

The next result refines the convergence properties for adapted MVMs.

LEMMA A.3. Consider an adapted MVM such that ξ(ϕ) is càdlàg a.s. for every ϕ ∈ bB
and let ξ∞ be a random measure such that limt→∞ ξt (ϕ) = ξ∞(ϕ) a.s. for every ϕ ∈ bB.
Then, for any s > 0, there exists a null set N s such that

ξt (B)(ω) = ξs(B)(ω) for all t ∈ [s,∞] and B ∈ B
([0, s]),ω /∈N s .

In particular, there exists a null set N such that for any B ∈ B bounded by some κ > 0,
ξt (B)(ω) = ξ∞(B)(ω) for all t > κ , ω /∈N .

PROOF. For any fixed t ≥ 0, ξu([0, t]) = ξt ([0, t]), a.s., u ≥ t . Since ξ·([0, t]) is càdlàg
a.s. there thus exists some null set, possibly depending on t , off which ξu([0, t])(ω) =
ξt ([0, t])(ω), u ≥ t . In consequence, also ξ∞([0, t])(ω) = ξt ([0, t])(ω) off this null set. For
fixed s > 0, it follows that there exists some null set N s , off which

ξt

([0, q]) = ξq

([0, q]), t ∈ [q,∞], for all q ∈ [0, s] ∩Q∪ {s}.
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Note that D := {B ∈ B([0, s]) : ξt (B)(ω) = ξs(B)(ω), t ≥ s,ω /∈ N s} is a λ-system. Indeed,
clearly [0, s] ∈ D and A ∈ D =⇒ [0, s] \ A ∈ D. Further, given (Ai)i∈N with Ai ∈ D and
Ai ∩ Aj =∅, i �= j , it holds off N s that

ξt

(⋃
i∈N

Ai

)
= ∑

i∈N
ξt (Ai) = ∑

i∈N
ξs(Ai) = ξs

(⋃
i∈N

Ai

)
, t ≥ s.

Since {[0, q] : q ∈ [0, s] ∩ Q ∪ {s}} is a π -system contained in D this completes the proof.
�

APPENDIX B: PROOF OF THE DPP USING COVERING ARGUMENTS

We here provide the full argument for how to prove Theorem 3.1 using covering argu-
ments. To this end we first provide the two missing proofs from Section 4.2.

PROOF OF PROPOSITION 4.7. Let (t, x,μ) ∈ S0 and δ > 0. Further, let A ⊂ Bδ(t, x,μ),
(̃t , μ̃) ∈ S, t

∼
< t̃ and ξ̃ ∈ MVM

t∼(μ̃) be such that the conditions listed in the proposition are

satisfied with respect to this fixed δ. In turn, let (s, z, η) ∈ A and define ξ ∈ MVMs(η) by (4.2).
By use of Assumption 4.1 we first obtain∣∣∣∣E[∫∫

f
(
Xs,z

r

)
mμ̃→η(̃t

(u,dr)̃ξ∞(du) −
∫

f
(
Xs,z

u

)̃
ξ∞(du)

]∣∣∣∣
≤ ϕ

(
E

[∫∫
|u − s|mμ̃→η(̃t

(s,du)̃ξ∞(ds)

])
≤ ϕ

(∫∫
|u − s|mμ̃→η(̃t

(s,du)μ̃(ds)

)
≤ ϕ

(
W1

(
μ̃, η(̃t )),

for some modulus of continuity ϕ (cf. the proof of Theorem 4.3); that is,

E

[∫ ∞
t̃

f
(
Xs,z

u

)
ξ∞(du)

]
≥ E

[∫
f

(
Xs,z

u

)̃
ξ∞(du)

]
− ϕ

(
W1

(
μ̃, η(̃t )).

Second, using again Assumption 4.1, we also have∣∣∣∣E[∫ t̃

s
f

(
Xs,z

u

) η(du)

η((s, t̃]) − f (x)

]∣∣∣∣ ≤ ϕ̃

(∫ t̃

s
|u − s|η(du)

)
≤ ϕ̃

(
η
(
(s, t̃])|s − t̃ |),

for some modulus of continuity ϕ̃; that is,

E

[∫ t̃

s
f

(
Xs,z

u

)
ξ∞(du)

]
≥ f (x)η

(
(s, t̃]) − ϕ̃

(
η
(
(s, t̃])|s − t̃ |).

Applying Assumption 4.6 we see that by requiring δ to be small enough, we may thus ensure
that E[∫ f (Xs,z

u )ξ∞(du)] ≥ E[∫ f (Xs,z
u )̃ξ∞(du)] − ε, for all (s, z, η) ∈ A.

On the other hand, applying again Assumption 4.6 and using that v is continuous on S0, re-
quiring if necessary δ > 0 to be even smaller, we also have for all (s, z, η) ∈ A ⊂ Bδ(t, x,μ),∣∣∣∣E[∫

f
(
Xs,z

u

)̃
ξ∞(du)

]
−E

[∫
f

(
X

t∼,x

u

)̃
ξ∞(du)

]∣∣∣∣ ≤ ε

and |v(t∼
, x, μ̃) − v(s, z, η)| ≤ ε, which allows us to conclude. �

PROOF OF LEMMA 4.8. Let (t, x,μ) ∈ S0 and 0 < δ < 1. Let t0 ∈ (t, t + δ) such that
μ((0, t0]) < δ. In turn, let t < t∼

< t̃ < t0 and define the set

A(t,x,μ) := (t − δ, t∼
) × Bδ(x) × Bδ(t0−t̃ )(μ);



A DPP FOR DISTRIBUTION-CONSTRAINED OPTIMAL STOPPING 1925

then t̃ −s < 2δ and η((0, t̃]) < 2δ for all (s, z, η) ∈ A(t,x,μ) ⊆ Bδ(t, x,μ). In particular, for all
(s, z, η) ∈ A(t,x,μ), W1(η

(̃t , η) < ϕ(δ) for some modulus of continuity ϕ; hence, there exists
μ̃ ∈ P with supp μ̃ ⊆ [̃t,∞), such that μ̃ � η(̃t and W1(μ̃, η(̃t ) < ϕ(δ) for all (s, z, η) ∈
A(t,x,μ), where ϕ was if necessary modified. By choosing δ > 0 small enough, we may then
ensure that the thus defined set A(t,x,μ) lies in Bδ(t,x,μ) and together with the points (̃t , μ̃)

and t
∼

< t̃ satisfies (4.3).

The collection of sets {A(t,x,μ) : (t, x,μ) ∈ S0} provides an open cover of S0; since
we are dealing with a Polish space, there exists a countable subcover. We denote the
latter by (Bi)i∈N, and associate with each Bi the reference points (ti, xi,μi) =̂ (t, x,μ),
(̃ti , μ̃i) =̂ (̃t , μ̃) and ti∼

=̂ t∼
. Defining

A1 = B1 ∩ S0,Ai+1 = (
Bi+1 \ (B1 ∪ · · · ∪ Bi)

) ∩ S0, i ≥ 1,

we then obtain a measurable partition of S0 with the required properties. �

Our direct proof of the DPP relies on continuity of v; we now highlight the difficulties
associated with relaxing this to right-continuity only. For simplicity, consider the case when
the only state process is the MVM itself and the value function is given by μ 
→ v(μ). Let
� = (μi)i∈N be the countable family of measures in P whose cumulative distribution func-
tions are “step-functions” with step-lengths and -heights given by multiples of rational num-
bers. Given ε > 0, one can then cover P by countably many sets of the form B�

ε (μi), i ∈ N,
where

B�
ε (η) := {

μ � η : W1(μ,η) < ε
}
.(B.1)

Given δ > 0, choosing ε > 0 such that v(μ) ≤ v(μi)+δ, for μ ∈ B�
ε (μi), i ∈ N, a measurable

optimiser can be constructed—and the DPP proven—using similar arguments to those in
Section 4.2. While this argument relies on right-continuity only as opposed to continuity, it
notably requires uniform (semi) right-continuity of v. To generalise arguments of this type
beyond uniform (semi) right-continuity seems difficult. Indeed, consider a set S ⊂ P and
a cover of the form

⋃
η∈S B�

εη
(η), where εη is chosen such that v(μ) ≤ v(η) + δ, for μ ∈

B�
εη

(η), η ∈ S. To proceed along the same lines as above, one would like to find a countable
subcover; however, it is not clear that the topology defined with respect to open sets of the
form (B.1) would be Lindelöf. Indeed, note first that the second countable topology generated
by {B�

q (μ) : q ∈ Q,μ ∈ �} is strictly coarser than the topology generated by all sets of the
form (B.1) since for μ ∈ B�

ε (η), ε > 0 and η ∈ P , there need not exist q ∈ Q and μi ∈ �

such that μ ∈ B�
q (μi) ⊆ B�

ε (η). Moreover, note that considering sets of the form

B�
ε (η) := {

μ � η : W1(μ,η) < ε
} ⊂ B�

ε (η),(B.2)

where � denotes the “way-below” relation associated with the stochastic ordering (see [22]),
the topology generated by {B�

q (μ) : q ∈ Q,μ ∈ �} does coincide with the topology gener-
ated by all sets of the form (B.2); cf. the so-called Scott topology [22]. This topology is
therefore second countable, hence Lindelöf, and any cover of the form

⋃
η∈S B�

εη
(η) admits

a countable subcover. It is tempting to think that this could be used to argue that the topology
generated by (B.1) would be Lindelöf even if not second countable—in the same way as the
Sorgenfrey line is; however, since the anti-chains for the stochastic ordering are not count-
able, the set S \⋃

η∈S B�
εη

(η) cannot be covered in a countable way and analogous arguments
do not apply.

We finally provide the details for the direct proof of the DPP using covering arguments.
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PROOF OF COROLLARY 4.5. (Imposing Assumption 4.6 and continuity of v on S0).
Without loss of generality, let t = 0. Given ξ ∈ MVM(μ), we then introduce the modified
MVM ξε as follows: ξε·∧θ := ξ·∧θ and

ξε·∨θ (A) := ξθ

(
A ∩ (0, θ ]) + ξθ

(
(θ,∞)

) ∑
i∈N

1{(θ,Xx
θ ,ξ

(θ
θ )∈Ai}ξ

i,θ,ξ
(θ
θ·∨θ (A), A ∈ B,

where (Ai)i∈N is the partition of S0 provided by Lemma 4.8 with associated reference points,
and where ξ

i,s,η
·∨s , (s, z, η) ∈ Ai , is the MVM given by (4.2) with (̃t , μ̃) =̂ (̃ti , μ̃i), t∼

=̂ ti∼
and

ξ̃ =̂ ξi with ξi ∈ MVM
ti∼(μ̃i) chosen such that

E

[∫
f

(
X

ti∼,xi

u

)
dAξi

u

]
≥ v(ti∼

, xi, μ̃i) − δ(ti, xi,μi);
we note that the thus defined process is a well-defined continuous and adapted MVM with
ξε

0 = μ. By use of Proposition 4.7 and the facts that X is a Markov process and ξi is indepen-

dent of Fti∼
, we obtain the following on {(θ,Xx

θ , ξ
(θ
θ ) ∈ Ai}:

E

[∫
f

(
Xx

s

)
ξ

i,θ,ξ
(θ
θ∞ (ds)|Fθ

]
= E

[∫
f

(
Xt,x

s

)
ξ i,t,μ∞ (ds)

]
(t,x,μ)=(θ,Xx

θ ,ξ
(θ
θ )

≥ v
(
θ,Xx

θ , ξ
(θ
θ

) − ε.

Hence,

v(0, x,μ)

≥ E

[∫ ∞
0

f
(
Xx

s

)
dAξε

s

]

= E

[∫ θ

0
f

(
Xx

s

)
ξθ (ds) + ξθ

(
(θ,∞)

) ∑
i∈N

1{(θ,Xx
θ ,ξ

(θ
θ )∈Ai}E

[∫
f

(
Xx

s

)
ξ

i,θ,ξ
(θ
θ∞ (ds)|Fθ

]]

≥ E

[∫ θ

0
f

(
Xx

s

)
ξθ (ds) + ξθ

(
(θ,∞)

)
v
(
θ,Xx

θ , ξ
(θ
θ

)] − ε.

Since ε > 0 and ξ ∈ MVM(μ) were both arbitrarily chosen, this yields the first inequality.
In order to show the reverse inequality, let ξ ∈ MVM(μ) and let θ be a finite F-stopping

time. The so-called pseudo Markov property notably holds (cf. [12]), and for almost all ω ∈ �

we have that

E

[∫ ∞
θ

f
(
Xx

s

)
ξ (θ∞(ds)|Fθ

]
(ω) =

∫
�

∫ ∞
θ(ω)

f
(
X

θ(ω),Xx
θ(ω)

s (ω̃)
)̃
ξθ(ω),ω∞ (ω̃;ds)dW(ω̃)

(B.3)
≤ v

(
θ(ω),Xx

θ(ω)(ω), ξ
(θ(ω)
θ(ω) (ω)

)
,

where ξ̃
θ(ω),ω
u (ω̃) = ξ

(θ(ω)
θ(ω) (ω)1{u<θ(ω)} + ξ

(θ(ω)
u (ω ∗θ(ω) ω̃)1{u≥θ(ω)} with the concatenated

path given by ω ∗t ω̃(s) = 1{0≤s<t}ω(s) + 1{t≤s}(ω(t) + ω̃(s) − ω̃(t)); indeed, for ω ∈ �

fixed, ξ̃
θ(ω),ω· is independent of Fθ and thus lies in MVMθ(ω)(ξ

(θ(ω)
θ(ω) (ω)). In consequence,

E

[∫ ∞
0

f
(
Xx

s

)
dAξ

s

]
= E

[∫ θ

0
f

(
Xx

s

)
ξθ (ds) + ξθ

(
(θ,∞)

)
E

[∫ ∞
θ

f
(
Xx

s

)
ξ (θ∞(ds)|Fθ

]]

≤ E

[∫ θ

0
f

(
Xx

s

)
ξθ (ds) + ξθ

(
(θ,∞)

)
v
(
θ,Xx

θ , ξ
(θ
θ

)]
,

which completes the proof since ξ and θ were arbitrarily chosen. �
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