$\mathcal{N} = 2^*$ SYM Theory at Strong Coupling

With K. Zarembo and J. Gordon, arXiv: 1408.6040

Xinyi Chen-Lin

NORDITA

7th Taiwan String Workshop, November 25th, 2014

Xinyi Chen-Lin

 $\mathcal{N}=2^*$ SYM Theory at Strong Coupling

NORDITA

Outline

Motivation

Localization

Strong coupling regime

Results

Conclusion

Table of Contents

Motivation

Localization

Strong coupling regime

Results

Conclusion

Motivation Localization Strong coupling regime Results Conclusion $\mathcal{N}=2^*$ theory

- ► Unique massive deformation of N = 4 SYM that preserves N = 2 SUSY.
- Same field content as $\mathcal{N} = 4$ theory:
 - Hypermultiplet (massive):
 - (2 complex scalar, 2 Majorana fermions)
 - Vector multiplet:
 - (1 vector, 1 complex scalar, 2 Majorana fermions)
- Adjoint representation of SU(N) gauge group.

Motivation	Localization	Strong coupling regime	Conclusion
Why s	study \mathcal{N} =	= 2* SYM?	

- Supersymmetric localization on S⁴
 [Pestun, '12]
- Known holographic dual
 [Pilch Warner, '00] [Bobev et al., '13]
- Holographic principle tested at leading order for the circular Wilson loop [Buchel Russo Zarembo, '13]
- Interesting phase transitions on R⁴
 [Russo Zarembo, '13]

What do we want to understand?

- Does the flat space limit commute with the strong-coupling limit?
 Not trivial due to the phase structure.
- How can we probe the phase structures at the strong coupling?
- The result at leading order does not give the right prefactor for the Wilson loop!

Table of Contents

Motivation

Localization

Strong coupling regime

Results

Conclusion

Localization technique

Property

Path integral is 1-loop exact!

Main idea

- 1. Deform the path integral such that it does not depend on the deformation parameter (α).
- 2. Expand the fields, but their fluctuations vanish when $\alpha \to \infty$.
- 3. Saddle-point method becomes exact!

Motivation Localization Strong coupling regime Results Conclusion
$$\mathcal{N}=2^* ext{ on } S^4$$

The partition function reduces to a finite dimensional integral of an **effective matrix model** [Pestun, '12]:

$$Z = \int d^{N-1}a \ \mathcal{Z}_{1-loop}(a) \ |\mathcal{Z}_{inst}(a)|^2 \ e^{-S_{classical}(a)}$$

as the scalar in the vector multiplet localizes at:

$$\langle \Phi \rangle = \operatorname{diag}(a_1, \ldots, a_N)$$

breaking the original SU(N) to $U(1)^{N-1}$.

Explicit expressions

•
$$S_{classical}(a) = \frac{8\pi^2 N}{\lambda} \sum_{j=1}^{N} a_j^2$$
; $\lambda = g_{YM}^2 N$
• $\mathcal{Z}_{1-loop}(a) = \prod_{i < j} \frac{(a_i - a_j)^2 H^2(a_i - a_j)}{H(a_i - a_j - M)H(a_i - a_j + M)}$
• $H(x) = \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2}\right)^n e^{-\frac{x^2}{n}}$

Note: we set R = 1. To recover it, replace: $M \rightarrow MR$

At large N limit

 Instantons' contribution are exponentially suppressed:

$$\left|\mathcal{Z}_{inst}(a)\right|^2 \longrightarrow 1$$

• Use the saddle point approximation:

$$Z = \int d^{N-1}a \ e^{-N^2 S_{eff}(a)} \quad ; \quad rac{\partial S_{eff}}{\partial a_i} = 0$$

Saddle point equation

$$rac{\partial S_{eff}}{\partial a_i} = 0 \quad \Rightarrow \quad rac{1}{N} \sum_{i \neq j} S(a_i - a_j) = rac{8\pi^2}{\lambda}$$

•
$$S(x) \equiv \frac{1}{x} + \frac{1}{2}K(x+M) + \frac{1}{2}K(x-M) - K(x)$$

• $K(x) \equiv -\frac{H'(x)}{H(x)}$; $H(x) = \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2}\right)^n e^{-\frac{x^2}{n}}$

Xinyi Chen-Lin $\mathcal{N} = 2^*$ SYM Theory at Strong Coupling

NORDITA

Continuous approximation

$$\int_{-\mu}^{\mu} dy \,\rho(y) S(x-y) = \frac{8\pi^2}{\lambda} x$$

• Large *N* master field, i.e. a density distribution:

$$\rho(x) = \frac{1}{N} \sum_{i}^{N} \delta(x - a_i)$$

Table of Contents

Motivation

Localization

Strong coupling regime

Results

Conclusion

Motivation	Localization	Strong coupling regime	Conclusion
Iargo	1		
Large	$\boldsymbol{\Lambda}$		

The saddle point equation for $\lambda \to \infty$:

$$\int_{-\mu}^{\mu} dy \,\rho(y) \frac{1+M^2}{x-y} = \frac{8\pi^2}{\lambda} x$$

Solved by Wigner's semi-circular distribution:

$$\rho(x) = \frac{2}{\pi \mu^2} \sqrt{\mu^2 - x^2} \quad ; \quad \mu = \frac{\sqrt{\lambda(1 + M^2)}}{2\pi}$$

Wigner's semi-circular distribution

$$W = \langle \frac{1}{N} P \exp\left(\oint ds \left(i \dot{x}^{\mu} A_{\mu} + |\dot{x}| \Phi\right)\right) \rangle$$

It is mapped to:

$$W = \langle \frac{1}{N} \sum_{i}^{N} e^{2\pi a_i} \rangle = \int_{-\mu}^{\mu} ds \,\rho(x) \, e^{2\pi x}$$

The leading order result recovers the **perimeter law**, in agreement with the dual theory [Buchel Russo Zarembo, '13]:

$$W \approx e^{2\pi\mu} \Rightarrow \boxed{\log W = \sqrt{\lambda(1 + (MR)^2)} + O(\lambda^0) \rightarrow \sqrt{\lambda} MR}$$

Wrong endpoint distribution

- The solution is not good close to the endpoint!
- For the Wilson loop, the prefactor to the exponential needs to be corrected!

Density close to the endpoints

Endpoint distribution, for $\xi \equiv \mu - x \sim 1$:

$$\rho(\xi) = \frac{2^{\frac{3}{2}}}{\pi \mu^{\frac{3}{2}}} f(\xi)$$

Need to match the asymptotics of the bulk distribution:

÷

$$f(\xi) \xrightarrow{\xi \gg 1} \sqrt{\xi}$$

Saddle point equation

- Subtract the contribution from the bulk
- Regularize the function with $g(\xi) = f(\xi) \sqrt{\xi}$

$$\int_0^\infty d\eta \, g(\eta) S(\eta - \xi) = F(\xi)$$

$$F(\xi) \equiv \int_0^\infty d\eta \, \left(\frac{1+M^2}{\eta-\xi} - S(\eta-\xi)\right)$$

The Wiener-Hopf Method

- 1. Convolution: $(S * g)(\xi) = F(\xi) + \theta(-\xi)X(\xi)$
- 2. Fourier space: $\hat{S}(\omega)\hat{g}_{+}(\omega) = \hat{F}(\omega) + \hat{X}_{-}(\omega)$
- 3. Factorize the kernel: $\hat{S}(\omega) = \frac{1}{G_{+}(\omega)G_{-}(\omega)}$

$$rac{\hat{g}_+(\omega)}{G_+(\omega)} = G_-\hat{F}(\omega) + G_-\hat{X}_-(\omega)$$

- 4. Project out terms: $\hat{g}_{+}(\omega) = G_{+}(\omega) (G_{-}F)_{+}(\omega)$
- \pm mean analytic in the upper/lower half complex plane.

Table of Contents

Motivation

Localization

Strong coupling regime

Results

Conclusion

Wiener-Hopf solution

$$\hat{g}(\omega) = \frac{i^{\frac{3}{2}}\sqrt{\pi}}{2\omega\sqrt{\omega+i\epsilon}} \left[\frac{M^{2}\sinh^{2}\frac{\omega}{2} - \sin^{2}\frac{M\omega}{2}}{\sinh^{2}\frac{\omega}{2} + \sin^{2}\frac{M\omega}{2}} + \left(M^{2} + 1\right)^{2}\omega e^{-\frac{i\phi\omega}{2\pi}} \frac{\mathcal{Y}\left(\frac{M-i}{2\pi}\omega\right)\mathcal{Y}\left(-\frac{M+i}{2\pi}\omega\right)}{\mathcal{Y}^{2}\left(-\frac{i\omega}{2\pi}\right)} \times \sum_{n=1}^{\infty} \frac{(-1)^{n}}{nn!} \left(\frac{e^{\frac{i\phi n}{M-i}}}{\omega - \frac{2\pi n}{M-i}} \frac{\mathcal{Y}\left(\frac{M+i}{M-i}n\right)}{\mathcal{Y}^{2}\left(\frac{i}{M-i}n\right)} + \frac{e^{-\frac{i\phi n}{M+i}}}{\omega + \frac{2\pi n}{M+i}} \frac{\mathcal{Y}\left(\frac{M-i}{M+i}n\right)}{\mathcal{Y}^{2}\left(-\frac{i}{M+i}n\right)} \right) \right]$$

Density at endpoint, M = 0.5

Density at endpoint, M = 10

Density at endpoint, M = 100

Xinyi Chen-Lin $\mathcal{N} = 2^*$ SYM Theory at Strong Coupling

NORDITA

Large M /decompactification limit 1) At the extreme endpoint:

$$\rho(\xi) = \frac{2^{3/2}}{\pi \mu^{3/2}} M \sqrt{\xi}$$

2) Oscillatory regime when $\xi \sim M$:

$$\rho(\xi) = \frac{1}{\pi} \sqrt{\frac{2M}{\mu^3}} \sum_{k=0}^{\left[\frac{\xi}{M}\right]} \frac{1}{\sqrt{\left\{\frac{\xi}{M}\right\} + k}}$$

3) Matching regime with the semicircle, when $\xi \sim M^2$:

$$\rho(\xi) = \frac{2^{3/2}}{\pi \mu^{3/2}} \left(\sqrt{\xi} + \frac{M}{4\sqrt{\xi}}\right)$$

Xinyi Chen-Lin

NORDITA

Oscillatory regime, $M \to \infty$

Comparing with M = 100

Other solutions

At large *M*:

• Wilson loop:

$$W = \sqrt{\frac{8\pi}{MR}} \, \lambda^{-\frac{3}{4}} \, \mathrm{e}^{\left(\sqrt{\lambda} - \pi\right)MR - 2}$$

• Correction to the endpoint:

$$\mu = \frac{\sqrt{\lambda(1+M^2)}}{2\pi} - \frac{M}{2} + O(\lambda^{-1/2})$$

Table of Contents

Motivation

Localization

Strong coupling regime

Results

Conclusion

- Endpoint density distribution at strong coupling for general *MR*
- At the decompactification limit, we saw the phase transitions!
- The decompactification and the strong coupling limits commute! *
- Correct prefactor for the Wilson loop
- Correction to the endpoint

^{*}see also [Zarembo, '14]

What to do next?

- Test massive holography at the quantum level: compute quantum corrections for the Wilson loop, in the dual string theory.
- Probe the phase structure using other observables: high representation Wilson loops.
- Understand the phase transitions in the dual theory.

Motivation	Localization	Strong coupling regime	Conclusion

Thank you for your attention!