

2023-09-19, STOCKHOLM

5G for industrial control systems: a critical reflection

Zhibo Pang, Senior Principal Scientist, ABB Corporate Research Sweden

pang.zhibo@se.abb.com

Our business areas

Electrification

Motion

Process Automation

Robotics & Discrete Automation

Needs and opportunities

Promises and Expectations

Experimental results from COTS 5G products and gaps

Reflections and recommendations

Needs and opportunities

5G enables mobility and flexibility

Large height

Rural areas

Mobile machines

Mobile operation

Moving parts

Harsh or corrosive

Access forbidden

Cabling forbidden

Temporary deployment

Needs and opportunities

5G brings computation to mobile edge

Slide 5

Promises and Expectations

5G Alliance for Connected Industries and Automation

"For URLLC, the first release of **5G (Release 15)** already has the capability to achieve a latency of **1 ms** with a reliability of **99.999%** over the 5G radio interface."

-- the flagship White Paper[1]

5G is expected to be generic communication infrastructure for "nearly all" industrial control systems

Experimental test of COTS 5G in Level-1 control loop

Mid-band, eMBB, NSA, line-of-sight, lab condition (tested in Feb 2022)

Unobtrusive to control loop

Insertion delay: <1us

Latency error: < 40ns

Verified reliability: < 10e-8

Verified protocols: PROFINET, PROFIsafe, Modbus TCP, EtherNet/IP, TCP, UDP, DDS, OPC UA

Limitation: Distance between probes: <100m (a)

Parameter	5G
Generation of standard	3GPP Release 15 (R15), eMBB profile
TC-IoT Controller	AC500 PLC
TC-IoT Device	ACS880 Drive
Deployment mode	Non-standalone (NSA)
TDD slot pattern	DDSU
User Equipment/ Access point	WNC SKM-5xE
Frequency band(s)	LTE: 1875-1880 MHz 5G: 3720-3800 MHz
Industrial Ethernet protocol	PROFINET RT
Distance of the wireless link	≤ 10m
QoS at network and user equipment	No
levels	NO
Network type	Private network in office building
Application cycle time	16ms
Packet rate	62.5 packets/sec in each direction (from Controller to Drive and vice versa)
Packet length	76 bytes
Timeout limit of packet matching	300ms
Experiment duration	112 hours
Other parameters	Line of sight (LoS) between UE and BS, radio resource pre-allocation enabled

K. Bhimavarapu, Z. Pang*, O. Dobrijevic and P. Wiatr, "Unobtrusive, Accurate, and Live Measurements of Network Latency and Reliability for Time-Critical Internet of Things," in IEEE Internet of Things Magazine, vol. 5, no. 3, pp. 38-43, September 2022, doi: 10.1109/IOTM.001.2200068.

Latency and reliability of COTS 5G

The "Dinosaur Curve" (tested in Feb 2022, settings in previous pages)

- 5G has achieved a lot
- URLLC not there yet
- Lab results are encouraging, but field tests are necessary:
 - Field survivability
 - \circ Scalability

Known functional gaps of COTS 5G

to integrate 5G in Level 1 control network (tested in Feb 2022, settings in previous pages)

It lacks support to layer2 Ethernet PDU

It lacks time synchronization signaling for user devices

It lacks support to IP/UDP multicast

Cannot fully support layer2 industrial ethernet e.g., PROFINET

Difficult or infeasible to realize time-critical application

Difficult or infeasible to realize time-critical PubSub e.g., DDS, OPC UA PubSub

Ethernet PDU (protocol data unit) is the layer 2 Ethernet packet which is commonly used in main-stream industrial ethernet protocols. UDP: user defined protocol, a common way of realizing industrial communication protocols on top of IP (internet protocol).

Other challenges for your attention

Relations between the 3 major concerns

Reflections and recommendations

Use "production timeline" in IT-OT collaboration and planning

Reflections and recommendations

Pay more attention to UE, e.g., "OpenUE", learn from OT open standards

OT market is valuesensitive rather than cost-sensitive

Reflections and recommendations

Revisit the 5G use cases and gaps before rush into 6G

©ABB

November 2, 2023 Slide 13

Victor K. L. Huang; Zhibo Pang; Cheng-Jen Allen Chen; Kim Fung Tsang "New Trends in the Practical Deployment of Industrial Wireless: From Noncritical to Critical Use Cases", *IEEE Industrial Electronics Magazine*, Volume: 12, Issue 2, 2018, Pages: 50 – 58, 2018.

"Killer applications" or "iPhone moment" of 5G/6G for OT?

Not new, but they are still the strongest candidates. Don't expect the "iPhone moment" in OT.