Skip to main content

Ilse Fischer: Alternating sign trapezoids and cyclically symmetric lozenge tilings with a central hole

Time: Wed 2020-01-29 10.30 - 11.20

Location: Institut Mittag-Leffler, Seminar Hall Kuskvillan

Lecturer: Ilse Fischer, University of Vienna

Abstract

For about 35 years now, combinatorialists have tried to find bijections between three classes of objects that are all counted by the product formula \(\prod\limits_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}\).
These objects are \(n \times n\) alternating sign matrices, totally symmetric self-complementary plane partitions in a \(2n \times 2n \times 2n\) box, and descending plane partitions with parts at most \(n\). Recently, we have added a fourth class of objects to this list, namely alternating sign triangles, and, even more recently, we have extended this class to alternating sign trapezoids, and have shown that they are equinumerous with cyclically symmetric lozenge tilings tilings of a hexagon with a central hole of size \(k\). Partly based on joint work with Arvind Ayyer and Roger Behrend

Page responsible:webmaster@math.kth.se
Belongs to: Department of Mathematics
Last changed: Jan 22, 2020