Till innehåll på sidan

Machine Learning methods in shotgun proteomics

Tid: Ti 2023-06-13 kl 14.00

Plats: Air & Fire, Science for Life Laboratory, Tomtebodavägen 23A, 17121 Solna

Videolänk: https://kth-se.zoom.us/j/63926020559

Språk: Engelska

Ämnesområde: Bioteknologi

Licentiand: Patrick Truong , Genteknologi, Science for Life Laboratory, SciLifeLab, Käll Research Lab

Granskare: Professor Peter Nilsson, Affinitets-proteomik, Science for Life Laboratory, SciLifeLab

Huvudhandledare: Professor Lukas Käll, Genteknologi, Science for Life Laboratory, SciLifeLab, SeRC - Swedish e-Science Research Centre

Exportera till kalender

QC 2023-05-22

Abstract

Allteftersom high-throughput experiment genererar allt större mängder data vänder sig området naturligt till data-drivna metoder för analys och extrahering av nya insikter. Dessa insikter om biologiska system är avgörande för att förstå sjukdomsprogression, läkemedelspåverkan, behandlingsutveckling, och diagnostiska metoder, vilket i slutändan leder till en förbättring av människors hälsa och välbefinnande, såväl som en djupare förståelse av cell biologi. Biologiska datakällor som genomet, transkriptomet, proteomet, metabolomet och metagenomet ger kritisk information om biologiska systems struktur, funktion och dynamik. I licentiatuppsats fokusområde ligger på proteomik, studiet av proteiner, vilket är en naturlig startpunkt för att förstå biologiska funktioner eftersom proteiner är avgörande funktionella komponenter i celler. Dessa proteiner spelar en avgörande roll i enzymatiska reaktioner, strukturellt stöd, transport, lagring, cellsignalering och immunsystemfunktion. Dessutom har proteomik har stora dataarkiv och tekniska samt metodologiska förbättringar görs kontinuerligt för att ge ännu mer data. Men för att generera proteomisk data krävs flera steg, som är felbenägna, vilket gör att sofistikerade modeller är väsentliga för att hantera tekniska och biologiska artefakter och för att ta hänsyn till osäkerhet i data. I denna licentiatuppsats undersöks användningen av maskininlärning och probabilistiska metoder för att extrahera information från masspektrometribaserade proteomikdata. Avhandlingen börjar med en introduktion till proteomik, inklusive en grundläggande biologisk bakgrund, följt av en beskrivning av hur masspektrometri-baserade proteomikexperiment utförs och utmaningar i proteomisk dataanalys. Statistiska metoder för proteomisk dataanalys utforskas också, och state-of-the-art mjukvara och verktyg som är relaterade till varje steg i proteomikdataanalyspipelinen presenteras. Avhandlingen avslutas med en diskussion om framtida arbete och presentationen av två original forskningsarbeten. Det första forskningsarbetet fokuserar på att anpassa Triqler, en probabilistisk grafisk modell för proteinkvantifiering som utvecklats för datadependent acquisition (DDA) data, till data-independent acquisition (DIA) data. Utmaningarna i denna studie inkluderade att verifiera att DIA-datas egenskaper överensstämde med modellen som användes i Triqler, att hantera benchmarking-frågor och att modifiera missing-value modellen som användes av Triqler till DIA-data. Studien visade att DIA-data överensstämde med de egenskaper som krävdes av Triqler, implementerade en proteininferensharmoniseringsstrategi och modifierade missing-value modellen till DIA-data. Studien avslutades med att visa att Triqler överträffade nuvarande state-of-the-art proteinkvantifieringsmetoder. Det andra forskningsarbetet fokuserade på utvecklingen av en djupinlärningsbaserad MS2-intensitetsprediktor genom att inkorporera self-attention mekanismen som kallas för transformer till Prosit, en etablerad Recurrent Neural Network (RNN) baserad djupinlärningsramverk för MS2 spektrum intensitetsprediktion. RNN är en typ av neurala nätverk som effektivt kan bearbeta sekventiell data genom att bevara och använda dolda tillstånd som fångar information från tidigare steg på ett sekventiellt sätt. Självuppmärksamhetsmekanismen i transformer tillåter modellen att fokusera på olika delar av sekventiellt data samtidigt under bearbetningen oberoende av varandra, vilket gör det möjligt att fånga relationer mellan elementen mer effektivt. Genom detta lyckas Transformer åtgärda vissa nackdelar med RNN, och därför hypotiserade vi att en implementation av en ny MS2-intensitetprediktor med transformers istället för RNN skulle förbättra prestandan. Därmed konstruerades Prosit-transformer, och studien visade att både modellträningstiden och likheten mellan predicerat MS2-spektrum och observerat spektrum förbättrades. Dessa originalforskningsarbeten hanterar olika utmaningar inom beräkningsproteomik och bidrar till utvecklingen av datadriven livsvetenskap.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-327122