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Molecular dynamics

Simulation of protein folding (Courtesy of K. Schulten’s group)



Molecular dynamics Free energy Adaptive Biasing Force Wang Landau Conclusion

Molecular dynamics
Molecular dynamics consists in simulating on the computer the
evolution of atomistic systems, as a numerical microscope:

• Understand the link bewteen macroscopic properties and
microscopic ingredients

• Explore matter at the atomistic scale

• Simulate new materials, new molecules

• Interprete experimental results

Applications: biology, chemistry, materials science

Molecular dynamics comes of age:

• 1/4 of CPU time worldwide is devoted to computations at the
molecular scale

• 2013 Chemistry Nobel prize: Arieh Warshel, Martin Karplus
and Michael Levitt. “Today the computer is just as important a

tool for chemists as the test tube. Simulations are so realistic that

they predict the outcome of traditional experiments.”
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Challenges

Main challenges:

• Improved models (force fields, coarse-grained force fields):
polarisability, water, chemical reactions

• Improved sampling methods (access long time scales):
thermodynamic quantities and dynamical properties

• Incorporate data: Bayesian approaches, data sciences

Spatial parallelism is very ef-
fective, but temporal reach of
heroic brute force MD is limited
to 1µs or less.

Courtesy of Danny Perez (LANL)
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Challenges

Why is mathematics useful?

• Rigorous links between models at different scales (space and
time): coarse-graining, coupling algorithms, certification

• Improve and analyze algorithms (efficiency, robustness, error
analysis)

• Develop new algorithms, in particular on parallel architectures

• Modern data assimilation techniques

... but MathSciNet hints: fluid 95543, Navier Stokes 24026,
Molecular dynamics 3166, ... ???
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Challenges

Examples of hot topics in mathematics for MD:

• Sampling of probability measures on manifolds, constrained
MD (P. Breiding, P. Diaconis, J. Goodman, TL, ...)

• Sampling of reactive trajectories, rare event sampling (A. Guyader,

C. Hartmann, TL, E. Vanden Eijnden, J. Weare, ...) Lecture 2

• Sampling of non equilibrium stationary state, non-reversible
dynamics (J. Bierkens, G. Stoltz, ...)

• Towards better force fields (G. Csanyi, C. Ortner, A.V. Shapeev, ...)

• Effective dynamics, Mori-Zwanzig (T. Hudson, F. Legoll, TL, W. Zhang, ...)

• Sampling of metastable dynamics, accelerated dynamics
methods (D. Aristoff, TL, D. Perez, A. Voter) Lecture 3

Today: Free energy and adaptive biasing methods
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The force field

The basic modelling ingredient: a potential V which associates to a
configuration (x1, ..., xN) = x ∈ R

3N an energy V (x1, ..., xN).

Typically, V is a sum of potentials modelling interaction between
two particles, three particles and four particles:

V =
∑

i<j

V1(x i , x j) +
∑

i<j<k

V2(x i , x j , xk) +
∑

i<j<k<l

V3(x i , x j , xk , x l).

For example,
V1(x i , x j) = VLJ(|x i − x j |)
where
VLJ(r) = 4ǫ

(

(

σ
r

)12 −
(

σ
r

)6
)

is

the Lennard-Jones potential.
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Dynamics

Newton equations of motion:

{

dX t = M−1Pt dt,
dPt = −∇V (X t) dt,
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1P t dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t ,

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β p
tM−1

p

2

)

dp with

dµ = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Dynamics
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1P t dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t ,

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β p
tM−1

p

2

)

dp with

dµ = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.

In the following, we focus on the over-damped Langevin (or
gradient) dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t ,

which is also ergodic wrt µ.
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From micro to macro

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamic quantities: averages wrt µ of some
observables. Examples: stress, heat capacity, free energy,...
These are approximated by trajectorial averages over dynamics
ergodic wrt µ:

∫

Rd

ϕ(x)µ(dx) ≃ 1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities: statistical quantities depending on the
trajectories. Examples: transition rates, transition paths,
diffusion coefficients, viscosity,... These require to sample
trajectories.

Difficulties: (i) high-dimensional problem (N ≫ 1); (ii) X t is a
metastable process and µ is a multimodal measure.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events
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Simulations of biological systems

Unbinding of a ligand from a protein
(Diaminopyridine-HSP90, Courtesy of SANOFI)

Elementary time-step for the molecular dynamics = 10−15
s

Dissociation time = 0.5 s
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Limitation of direct molecular dynamics

Direct molecular dynamics is a very powerful technique to generate
atomistic trajectories. These trajectories can be useful in
themselves (dynamical quantities) or to get ensemble averages
(thermodynamic quantities).

Orders of magnitude: LJ potential costs ∼ 2µs/atom/timestep;
EAM potential costs ∼ 5µs/atom/timestep; AIMD costs (at least)
1 min/atom/timestep.

Thus, molecular dynamics’ reach is limited in terms of time and
length scales. −→ Depending on the quantity of interest, MD is
combined with other algorithms to get better sampling.

Thermodynamic quantities: variance reduction methods
(importance sampling, stratification, control variate, ...)
Dynamic quantities: accelerated dynamics (using Markov State
models), rare event sampling methods (splitting), ...
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Sampling problems in molecular dynamics

In molecular dynamics, we would like to sample:

• multimodal measures in high-dimension,

• and metastable dynamics in high-dimension.

Outline of the lectures:

• Lecture 1: Free energy and adaptive biasing methods
(importance sampling)

• Lecture 2: Sampling of reactive trajectories, rare event
sampling (interacting particle systems, splitting methods)

• Lecture 3: Accelerated dynamics methods (the QSD approach
to study the exit event from a metastable state)
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Outline

We will present adaptive biasing techniques which are based on the
computation of the free energy:

1. Adaptive biasing force techniques Mathematical tool: Entropy

techniques and Logarithmic Sobolev Inequalities.

2. Wang Landau algorithm Mathematical tool: Convergence of

Stochastic Approximation Algorithms.
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Free energy and adaptive biasing techniques

[Esque, Cecchini, J. Phys. Chem. B, 2015.]
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Reaction coordinate

Let us be given a slow variable of interest ξ(X t) (say of
dimension 1 and periodic ξ : Rd → T). The function ξ is called
reaction coordinate, collective variable, order parameter,...

This reaction coordinate can be used to efficiently sample the
canonical measure: (i) constrained dynamics (thermodynamic
integration) and (ii) biased dynamics (adaptive free energy
importance sampling technique).

Free energy will play a central role.

For example, in the 2D simple examples: ξ(x , y) = x .
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Free energy

Let us introduce the image of the measure µ by ξ:

ξ∗µ (dz).

If X ∼ µ, then ξ(X ) ∼ ξ∗µ.

The free energy A is defined by:

exp(−βA(z)) dz = ξ∗µ (dz)

namely

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV δξ(x)−z(dx)

)

,

where Σ(z) = {x , ξ(x) = z} is a submanifold of Rd , and
δξ(x)−z(dx) dz = dx .
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Free energy (2d case)

In the simple case ξ(x , y) = x , the image of the measure µ by ξ is

ξ∗µ (dx) =

(

∫

Σ(x)
e−βV (x ,y)dy

)

dx

where Σ(x) = {(x , y), y ∈ R}.
And thus the free energy A is defined by:

A(x) = −β−1 ln

(

∫

Σ(x)
e−βV (x ,y)dy

)

.
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Free energy on a simple example (1/2)

What is free energy? A toy model for the solvation of a dimer
[Dellago, Geissler].
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Compact state. Stretched state.

The particles interact through a pair potential: truncated LJ for all
particles except the two monomers (black particles) which interact
through a double-well potential. A slow variable is the distance
between the two monomers.
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Free energy on a simple example (2/2)

Profiles computed using thermodynamic integration.
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The density of the solvent molecules is lower on the left than on
the right. At high (resp. low) density, the compact state is more
(resp. less) likely. The “free energy barrier” is higher at high density
than at low density.



Molecular dynamics Free energy Adaptive Biasing Force Wang Landau Conclusion

Free energy

The free energy A associated with the reaction coordinate ξ (angle,
length, ...) can be seen as an effective potential along ξ.

Free energy is nowadays one of the major thermodynamic quantity
that the practitioners would like to compute.

The associated Boltzmann-Gibbs measure exp(−βA(z)) dz is exact
in terms of thermodynamic quantities.

Remark: Interesting question: what is the dynamical content of A?
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Free energy calculation techniques
There are many free energy calculation techniques:

(a) Thermodynamic integration. (b) Histogram method.

(c) Non equilibrium dynamics. (d) Adaptive dynamics.
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Adaptive biasing techniques

The bottom line of adaptive methods is the following: for “well
chosen” ξ the potential V − A ◦ ξ is less rugged than V . Indeed, by
construction ξ∗ exp(−β(V − A ◦ ξ)) = 1T.

Problem: A is unknown ! Idea: use a time dependent potential of
the form

Vt(x) = V (x)− At(ξ(x))

where At is an approximation at time t of A, given the
configurations visited so far.

Hopes:

• build a dynamics which goes quickly to equilibrium,

• compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, Landau,...
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Free energy biased dynamics (1/2)
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A 2D example of a free energy biased trajectory: energetic barrier.
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Free energy biased dynamics (2/2)
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Updating strategies
How to update At? Two methods depending on wether A′

t

(Adaptive Biasing Force) or At (Adaptive Biasing Potential) is
approximated.
To avoid geometry problem, an extended configurational space
(x , z) ∈ R

n+1 may be considered, together with the meta-potential:

V k(x , z) = V (x) + k(z − ξ(x))2.

Choosing (x , z) 7→ z as a reaction coordinate, the associated free
energy Ak is close to A (in the limit k → ∞, up to an additive constant).

Adaptive algorithms used in molecular dynamics fall into one of
these four possible combinations [TL, M. Rousset, G. Stoltz, J Chem Phys, 2007]:

A′
t At

V ABF Wang-Landau
V k ... metadynamics
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The Adaptive Biasing Force method
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The ABF method

For the Adaptive Biasing Force (ABF) method [Darve, Pohorille, Chipot,

Hénin], the idea is to use the formula

A′(z) =

∫
(∇V · ∇ξ

|∇ξ|2 − β−1
div

( ∇ξ
|∇ξ|2

))

e−βV δξ(x)−z(dx)
∫

e−βV δξ(x)−z(dx)

=

∫

f dµΣ(z) = Eµ(f (X )|ξ(X ) = z).

The mean force A′(z) is the mean of f with respect to µΣ(z).
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The ABF method
In the simple case ξ(x , y) = x , remember that

A(x) = −β−1 ln

(
∫

e−βV (x ,y)dy

)

,

so that

A′(x) =

∫

∂xV e−βV (x ,y) dy
∫

e−βV (x ,y) dy

=

∫

∂xV dµΣ(x).

Notice that actually, whatever At is,

A′(z) =

∫

f e−β(V−At◦ξ) δξ(x)−z(dx)
∫

e−β(V−At◦ξ) δξ(x)−z(dx)
.
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The ABF method
Thus, we would like to simulate:

{

dX t = −∇(V − A ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′(z) = Eµ (f (X )|ξ(X ) = z)

but A is unknown...
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx . −→ simulation
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The ABF method

The ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx . −→ simulation

Questions: Does A′
t converge to A′? What did we gain compared

to the original gradient dynamics?
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Longtime convergence and entropy (1/3)

Recall the original gradient dynamics:

dQt = −∇V (Qt) dt +
√

2β−1dW t .

The associated (linear) Fokker-Planck equation writes:

∂tφ = div
(

∇Vφ+ β−1∇φ
)

.

where Qt ∼ φ(t,q) dq.

The metastable behaviour of Qt is related to the multimodality of
µ, which can be quantified through the rate of convergence of φ to
φ∞ = Z−1 exp(−βV ).

A classical approach for partial differential equations (PDEs):
entropy techniques.
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Longtime convergence and entropy (2/3)

Notice that the Fokker-Planck equation rewrites

∂tφ = β−1
div

(

φ∞∇
(

φ

φ∞

))

.

Let us introduce the entropy:

E (t) = H(φ(t, ·)|φ∞) =

∫

ln

(

φ

φ∞

)

φ.

We have (Csiszár-Kullback inequality):

‖φ(t, ·)− φ∞‖L1 ≤
√

2E (t).
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Longtime convergence and entropy (3/3)

dE

dt
=

∫

ln

(

φ

φ∞

)

∂tφ

= β−1

∫

ln

(

φ

φ∞

)

div

(

φ∞∇
(

φ

φ∞

))

= −β−1

∫
∣

∣

∣

∣

∇ ln

(

φ

φ∞

)∣

∣

∣

∣

2

φ =: −β−1I (φ(t, ·)|φ∞).

If V is such that the following Logarithmic Sobolev inequality
(LSI(R)) holds: ∀φ pdf,

H(φ|φ∞) ≤ 1

2R
I (φ|φ∞)

then E (t) ≤ E (0) exp(−2β−1Rt) and thus φ converges to φ∞
exponentially fast with rate β−1R .

Metastability ⇐⇒ small R
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Convergence of ABF (1/2)
A convergence result [TL, M. Rousset, G. Stoltz, Nonlinearity 2008]: Recall the
ABF Fokker-Planck equation:







∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫
f ψ δξ(x)−z(dx)

∫
ψ δξ(x)−z(dx)

.

Suppose:

(H1) “Strong ergodicity” of the microscopic variables: the
conditional probability measures µΣ(z) satisfy a LSI(ρ),

(H2) Bounded coupling:
∥

∥∇Σ(z)f
∥

∥

L∞
<∞,

then
‖A′

t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:

• the rate r of convergence of ψ =
∫

ψ δξ(x)−z(dx) to ψ∞,

• the LSI constant ρ (the real limitation).
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Convergence of ABF (2/2)

In summary:

• Original gradient dynamics: exp(−β−1Rt) where R is the LSI
constant for µ;

• ABF dynamics: exp(−β−1ρt) where ρ is the LSI constant for
the conditioned probability measures µΣ(z).

If ξ is well chosen, ρ≫ R : the free energy can be computed very
efficiently.

Two ingredients of the proof:

(1) The marginal ψ(t, z) =
∫

ψ(t, x) δξ(x)−z(dx) satisfies a closed
PDE:

∂tψ = β−1∂z ,zψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with exponential speed
C exp(−4π2β−1t). (Here, r = 4π2).
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Convergence of ABF (3)

(2) The total entropy can be decomposed as [N. Grunewald, F. Otto, C. Villani,

M. Westdickenberg, Ann. IHP, 2009]:

E = EM + Em

where
The total entropy is E = H(ψ|ψ∞),

The macroscopic entropy is EM = H(ψ|ψ∞),

The microscopic entropy is

Em =

∫

H
(

ψ(·|ξ(x) = z)
∣

∣

∣
ψ∞(·|ξ(x) = z)

)

ψ(z) dz .

We already know that EM goes to zero: it remains only to consider
Em...
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Other results based on this set of assumptions:

• [TL, JFA 2008] LSI for the cond. meas. µΣ(z)

+ LSI for the marginal µ(dz) = ξ∗µ(dz)
+ bdd coupling (‖∇Σ(z)f ‖L∞ <∞) =⇒ LSI for µ.

• [F. Legoll, TL, U. Sharma, W. Zhang, 2010-2019] Effective dynamics for ξ(Qt).
Uniform control in time:

H(L(ξ(Q t))|L(zt)) ≤ C

(‖∇Σ(z)f ‖L∞
ρ

)2

H(L(Q0)|µ).
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Discretization of ABF
Discretization of adaptive methods can be done using two
(complementary) approaches:

• Use empirical means over many replicas (interacting particle
system):

E(f (X t)|ξ(X t) = z) ≃
∑N

m=1
f (Xm,N

t ) δα(ξ(Xm,N
t )− z)

∑N
m=1

δα(ξ(Xm,N
t )− z)

.

This approach is easy to parallelize, flexible (selection
mechanisms) and efficient in cases with multiple reactive
paths. [TL, M. Rousset, G. Stoltz, 2007; C. Chipot, TL, K. Minoukadeh, 2010 ; TL,

K. Minoukadeh, 2010]

• Use trajectorial averages along a single path:

E(f (X t)|ξ(X t) = z) ≃
∫ t

0
f (X s) δ

α(ξ(X s)− z) ds
∫ t

0
δα(ξ(X s)− z) ds

.

The longtime behavior is much more difficult to analyze
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Back to the original problem

How to use free energy to compute canonical averages
∫

ϕdµ = Z−1
∫

ϕe−βV ?

• Importance sampling:

∫

ϕ dµ =

∫

ϕe−βA◦ξ Z−1

A e−β(V−A◦ξ)

∫

e−βA◦ξ Z−1

A e−β(V−A◦ξ)
.

• Conditioning:

∫

ϕ dµ =

∫

z

(

∫

Σ(z)
ϕ dµΣ(z)

)

e−βA(z) dz

∫

z

e−βA(z) dz

.
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The Wang Landau algorithm
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The Wang Landau algorithm

The Wang Landau algorithm is one example of an Adaptive Biasing
Potential strategy.

Let us present the algorithm in the following setting:

• The original (non-adaptive) dynamics is the
Metropolis-Hastings algorithm with target measure
exp(−V (x)) dx (β = 1 for simplicity)

• The reaction coordinate is discrete: I : Rd → {1, . . . ,m}
The free energy A is thus defined by: for i ∈ {1, . . . ,m},

exp(−A(i)) = Z−1

∫

Rd

1{I (x)=i} exp(−V (x)) dx

In addition, we will consider an algorithm where

• Trajectorial averages are used to approximate the free energy
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The original algorithm: Metropolis-Hastings

Iterate the following on n ≥ 1:

1. Propose a move from Xn to Yn+1 according to a proposal
kernel q(x , y) dy (assumed to be symmetric for simplicity q(x, y) = q(y, x))

2. With probability min (1, exp[−V (Yn+1) + V (Xn)]) accept the
move (Xn+1 = Yn+1) ; otherwise reject (Xn+1 = Yn)

For a multimodal target exp(−V (x)) dx , the dynamics is
metastable, and convergence is very slow.
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The free energy biased algorithm

If the free energy A was known, one would use instead the following
algorithm:

Iterate the following on n ≥ 1:

1. Propose a move from Xn to Yn+1 according to a proposal
kernel q(x , y) dy (assumed to be symmetric for simplicity q(x, y) = q(y, x))

2. With probability
min (1, exp[−V (Yn+1)+A(I (Yn+1)) + V (Xn)−A(I (Xn))])
accept the move (Xn+1 = Yn+1) ; otherwise reject
(Xn+1 = Yn)
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The Wang Landau algorithm
Iterate the following on n ≥ 1:

1. Propose a move from Xn to Yn+1 according to a proposal
kernel q(x , y) dy (assumed to be symmetric for simplicity q(x, y) = q(y, x))

2. With probability
min (1, exp[−V (Yn+1)+An(I (Yn+1)) + V (Xn)−An(I (Xn))])
accept the move (Xn+1 = Yn+1) ; otherwise reject
(Xn+1 = Yn)

3. Update An: for i ∈ {1, . . . ,m},

exp(−An+1(i)) = exp(−An(i))(1 + γn+11{I (Xn+1)=i}).

Here, (γn)n≥1 is a given sequence of penalizing weights (γn > 0). The
sequence (γn)n≥1 should converge to zero (to observe convergence)
but not too fast (premature convergence).

The idea is to penalize already visited states, the states being
indexed by I .
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Heuristics (1/2)
We expect θn(i) :=

exp(−An(i))∑m
j=1 exp(−An(j))

to converge to exp(−A(i)).

Why?

m
∑

j=1

exp(−An+1(j)) =

m
∑

j=1

exp(−An(j))[1 + γn+11{I (Xn+1)=j}]

=

m
∑

j=1

exp(−An(j)) + γn+1 exp(−An(I (Xn+1)))

=

m
∑

j=1

exp(−An(j)) [1 + γn+1θn(I (Xn+1))]

and thus

θn+1(i) =
exp(−An(i))(1 + γn+11{I (Xn+1)=i})

∑m

j=1
exp(−An(j)) [1 + γn+1θn(I (Xn+1))]

= θn(i)
[

1 + γn+1

(

1{I (Xn+1)=i} − θn(I (Xn+1))
)]

+O(γ2

n+1
)
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Heuristics (2/2)

θn+1(i) = θn(i) + γn+1θn(i)
(

1{I (Xn+1)=i} − θn(I (Xn+1))
)

+O(γ2

n+1)

If Xn+1 was at equilibrium wrt the target measure

Z−1

n exp(−(V (x)− An(I (x)))) dx = Z̃n
−1

exp(−V (x))/θn(I (x)),

where Z̃n =
∑m

i=1
exp(−A(i))/θn(i), the average drift would be:

Z̃n
−1

∫

θn(i)
(

1{I (x)=i} − θn(I (x))
)

exp(−V (x))/θn(I (x)) dx

= Z̃n
−1

[exp(−A(i))− θn(i)] .

Thus, up to fluctuations,

θn+1(i) ≃ θn(i) + γn+1Z̃n
−1

[exp(−A(i))− θn(i)] .

If θn converges when n → ∞, it is thus expected that
θn → exp(−A).
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Convergence result (1/3)

The convergence of θn to exp(−A) can be obtained using results
for the convergence of SAA [Andrieu, Moulines, Priouret], assuming that

∑

n≥1

γn = ∞ and
∑

n≥1

γ2

n <∞.

This requires in particular to prove the recurrence property:

almost surely, lim sup
n→∞

min
j∈{1,...,d}

θn(j) > 0.

The sequence (θn)n≥0 returns infinitely often to a compact set of

Θ =
{

(θ(1), . . . , θ(d)), θ(i) > 0,
∑d

i=1
θ(i) = 1

}

.

Under additional assumptions on (γn)n≥1, it is possible to prove a
central limit theorem on

√
γn(θn − exp(−A)), see [Fort].
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Convergence result (2/3)

Once θn is known to converge, one can apply results on the
convergence of Markov chains with non-constant transition kernels
[Fort, Moulines, Priouret] to obtain:


















lim
n→∞

E(ϕ(Xn)) = Z−1

A

∫

ϕ(x) exp(−V (x) + A(I (x))) dx

lim
n→∞

1

n

n
∑

k=1

ϕ(Xk ) = Z−1

A

∫

ϕ(x) exp(−V (x) + A(I (x))) dx a.s.

where ZA =
∫

exp(−V (x) + A(I (x))) dx = m.
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Convergence result (3/3)

Back to the original problem (sampling of µ):

• Importance sampling:

lim
n→∞

∑n

k=1

∑m

j=1
θk−1(j)ϕ(Xk )1{I (Xk )=j}

∑n

k=1

∑m

j=1
θk−1(j)1{I (Xk )=j}

= Z−1

∫

ϕ(x) exp(−V (x)) dx a.s.

lim
n→∞

m

n

n
∑

k=1

m
∑

j=1

θk−1(j)ϕ(Xk )1{I (Xk )=j} = Z−1

∫

ϕ(x) exp(−V (x)) dx a.s.

• Conditioning:

lim
n→∞

m
∑

j=1

θn(j)

∑n

k=1
ϕ(Xk )1{I (Xk )=j}

∑n

k=1
1{I (Xk )=j}

= Z−1

∫

ϕ(x) exp(−V (x)) dx a.s.

lim
n→∞

m
∑

j=1

θn(j)
m

n

n
∑

k=1

ϕ(Xk )1{I (Xk)=j} = Z−1

∫

ϕ(x) exp(−V (x)) dx a.s.
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Efficiency

Related works: [Jacob, Ryder]

Convergence is nice, but what about the efficiency of the whole
procedure?

Possible approaches:

• Compare the asymptotic variances of the original dynamics
with the adaptive dynamics

• Compare the exit times from metastable states of the original
dynamics with the adaptive dynamics

• ... ???

Let us look at the average exit time from a metastable state on a
toy problem.
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A three state model
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Target probability:

Z−1(exp−(V (i)))i∈{1,2,3} =
1

2 + ε
(1, ε, 1).

Reaction coordinate: for i ∈ {1, 2, 3}, I (i) = i

We look at the average time to go from 1 to 3, in the limit ε→ 0.
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A three state model: the MH dynamics

For the original (non adaptive) Metropolis Hastings dynamics, one
can compute

E(TMH
1→3) ≃

6

ε

More precisely, limε→0 εT
MH
1→3

= E(1/6) in distribution.
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A three state model: the WL dynamics

For the Wang-Landau dynamics with stepsize sequence
γn = γ⋆n

−α, one has:

• for α ∈ (1/2, 1),

E(TWL
1→3) ≃ Cα,γ⋆ | ln(ε)|1/(1−α)

• for α = 1,
E(TWL

1→3) ≃ Cε−1/(1+γ⋆)

In any case, in the limit ε→ 0,

E(TWL
1→3) ≪ E(TMH

1→3).
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Recent developments

We recently analyzed [Fort, Jourdain, TL, Stoltz, 2017-2018] advanced WL-like
dynamics (SHUS, well-tempered metadynamics) with:

• Self-tuned stepsize sequence (γn+1 is a function of the past);

• Partial biasing (the target is exp(−V (x) + aA(I (x))) with
a ∈ (0, 1)).

Practical interests:

• Adapt the stepsize sequence (large γ in the exploration phase,
small γ in the asymptotic regime);

• Control the efficiency factor in the importance sampling step.
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Conclusion

ABF versus ABP

• ABP can treat discrete reaction coordinates

• ABP can be used for purely entropic barriers

• ABF computes directly the force (which is generally needed in MD)

• ABF acts locally (bias is changed only at the RC value)

• ABF has less numerical parameters to tune

Trajectorial averages versus Interacting Particle Systems

• IPS −→ Nonlinear PDE / Trajectorial average −→
convergence of SAA

• IPS allows for selection mechanisms and easy parallelization

• IPS lead to a better behaviour in a multiple channel case

Adaptive biasing techniques can be used whenever the sampling of
a multimodal measure is involved, for example for statistical
inference in Bayesian statistics [N. Chopin, TL, G. Stoltz, 2011].
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Recent developments and open problems

Numerical aspects:

• Multiple walker ABF [C. Chipot, TL, K. Minoukadeh]

• Projection on a gradient of the mean force (Helmholtz
decomposition) [H. Alrachid, J. Hénin, TL, 2016-2017]

• Reaction coordinates in larger dimension: exchange bias,
separated representations [V. Ehrlacher, TL, P. Monmarché, 2019], learning
techniques

• What happens for non-gradient force fields?

Theoretical aspects:

• Analysis when the mean force (or the free energy) is
approximated using time averages [G. Fort, B. Jourdain, E. Kuhn, TL, G.

Stoltz, P.A. Zitt, 2014-2019]

• Extension of the analysis to the Langevin dynamics?
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