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From Langevin to kinetic Monte Carlo
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Two models for dynamics

The basic modeling ingredient in molecular dynamics: a potential
function V which associates to a configuration
x = (x1, ..., xNatom

) ∈ R
3Natom an energy V (x) ∈ R.

From V , two kinds of dynamics are considered:

• Langevin and over-damped Langevin dynamics: Markov
processes with values in continuous state space ;

• kinetic Monte Carlo model or Markov state model (first order
kinetics): Markov processes with values in discrete state space
(jump Markov process).

Question: Can a mathematically rigorous link be made between
these two kinds of models ?
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Langevin and over-damped Langevin dynamics
Let us introduce the inverse temperature: β−1 = kBT .

The Langevin dynamic writes:

{
dX t = M−1

P t dt,

dPt = −∇V (X t) dt − γM−1
Pt dt +

√
2γβ−1dW t .

In the following, we focus on the over-damped Langevin dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t .

These dynamics are both ergodic wrt the canonical measure:
limt→∞

1

t

∫ t

0
ϕ(X s)ds =

∫
ϕdµ where

µ(dx) = Z−1 exp(−βV (x))dx .

Main practical challenge: these dynamics are metastable.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events



From Langevin to kMC From theory to algorithms Conclusion

Metastability: a toy example

(a) V = −12.53 (b) V = −11.50 (c) V = −11.48 (d) V = −11.40

Figure: Low energy conformations of the 7 atoms Lennard-Jones cluster.

−→ simulation
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The exit event

Let us consider the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given an ensemble of subsets of Rd

(states). Let us consider one of them: S ⊂ R
d . The exit event

from S is given by
(τS ,X τS )

where τS = inf{t > 0, X t 6∈ S}.
Objective: build a jump Markov model to simulate the exit event
(τS ,X τS ).

This is useful theoretically (justification of Markov state models and
Eyring-Kramers laws) and numerically (accelerated dynamics à la

Voter).
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Kinetic Monte Carlo
Kinetic Monte Carlo (or Markov state) models are built as follows:

• define exit regions from S: ∂S = ∪J
j=1

∂Sj

• associate a rate kj with an exit through ∂Sj

and then (jump Markov model)

• the exit time τkMC
S is exponentially distributed with parameter∑J

j=1
kj

• the exit region is I kMC
S with law P(I kMC

S = i) = ki∑J
j=1 kj

• I kMC
S and τkMC

S are independent random variables
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Eyring-Kramers laws

Formulas for transition rates. Let us introduce the local minima
(zj)j=1,...,J of V on ∂S , and associated exit regions ∂Si . The
parameters kj are computed using the Eyring-Kramers formula
(Harmonic Transition State Theory):

kHTST
j = νj e

−β[V (zj)−V (x1)]

where νj is an explicit prefactor and x1 = argminS V .
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A theoretical question

Question: can we relate the exit event (τS ,X τS ) for the original
dynamics with the exit event (τkMC

S , I kMC
S ) for the jump Markov

process?

Two steps:

• Introduce the Quasi-Stationary Distribution

• Consider the small temperature regime β → ∞
(semi-classical limit)
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Step 1: The Quasi-Stationary Distribution
Definition of the QSD: Let X 0 start in the state S. Then there
exists a probability distribution ν with support S such that

lim
t→∞

L(X t |τS > t) = ν

where τS is the first exit time from S.
Remark: Quantitative definition of a metastable exit:

exit time≫ local equilibration time

Fundamental property of the QSD: Starting from ν:

• the first exit time τS is exponentially distributed ;

• and τS is independent of the first hitting point X τS .

Consequence: Starting from ν, the exit event from S can be exactly
written as one jump of a kinetic Monte Carlo model with rates

ki =
P
ν(X τS ∈ ∂Si )

Eν(τS)
.
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Step 2: The small temperature regime
Moreover, one has explicit formulas for E(τS) and the distribution
of X τS . Let us introduce the first eigenstate (λ1, u1) of the
Fokker-Planck operator associated with the dynamics with Dirichlet
boundary conditions on ∂S:

{
div (∇Vu1) + β−1∆u1 = −λ1u1 on S,

u1 = 0 on ∂S.

Then, ν = u1(x)dx∫
S
u1

,

E
ν(τS) =

1

λ1

and

P
ν(X τS ∈ ∂Si ) = −

∫
∂Si

∂nu1 dσ

βλ1

∫
S u1(x) dx

.

Thus, ki = −
∫
∂Si

∂nu1 dσ

βλ1

∫
S
u1(x) dx

.

Can we then show that ki ≃ kHTST
i ?
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Justifying Eyring-Kramers laws

Theorem [Di Gesu, TL, Le Peutrec, Nectoux, 2019]

Under some geometric assumptions, starting from the QSD, in the
limit β → ∞, the exit rates are

ki = ν̃OL
i e−β[V (zi )−V (x1)] (1 + O(β−1))

where

ν̃OL
i =

√
β

2π
∂nV (zi)

√
det(∇2V )(x1)√
det(∇2V|∂S)(zi )

.
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Assumptions (1/2)

• S is an open bounded smooth domain in R
d .

• V : S → R is a Morse function with a single critical point x1.
Moreover, x1 ∈ S and V (x1) = minS V .

• ∂nV > 0 on ∂S and V |∂S is a Morse function with local
minima reached at z1, . . . , zJ with V (z1) < . . . < V (zJ).

• V (z1)− V (x1) > V (zJ)− V (z1)

• ∀i ∈ {1, . . . , J}, consider Bzi the basin of attraction of zi for
the dynamics ẋ = −∇TV (x) and assume that

inf
z∈Bc

zi

da(z , zi) > V (zJ)− V (z1)
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Assumptions (2/2)

Here, da is the Agmon distance:

da(x , y) = inf
γ

∫
1

0

g(γ(t))|γ′(t)| dt

where g =

{
|∇V | in S
|∇TV | in ∂S

, and the infimum is over all piecewise

C1 paths γ : [0, 1] → S such that γ(0) = x and γ(1) = y .

Numerical tests indicate that the assumption

∀i ∈ {1, . . . J}, inf
z∈Bc

zi

da(z , zi) > V (zI )− V (z1)

seems indeed necessay to get the expected results.
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Sketch of the proof (1/3)
The difficult part is to find an approximation for∫
∂Si

∂nu1 =
∫
∂Si

∂nv1e
−βV , where v1 = u1e

βV .
We have {

L(0)v1 = −λ1v1 on S,

v1 = 0 on ∂S,

where L(0) = β−1∆−∇V · ∇ is a self adjoint operator on
L2(e−βV ). We are interested in ∇v1 · n, and ∇v1 satisfies





L(1)∇v1 = −λ1∇v1 on S,

∇T v1 = 0 on ∂S,

(β−1div −∇V ·)∇v1 = 0 on ∂S,

where
L(1) = β−1∆−∇V · ∇ − Hess(V ).

Therefore ∇v1 is an eigenvector (eigen-1-form) of −L(1) associated
with the small eigenvalue λ1.
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Sketch of the proof (2/3)

Let Π(p) = 1[0,β−3/2](−L(p)) be the spectral projection operator on
small eigenvalues. We know [Helffer,Sjöstrand] that, for β large,
dim(RanΠ(0)) = 1 and dim(RanΠ(1)) = J:

RanΠ(0) = Span(v1)

RanΠ(1) = Span(ψ1, . . . , ψJ).

Since ∇v1 ∈ RanΠ(1),

∫

∂Si

∂nv1e
−βV =

J∑

j=1

〈∇v1, ψj 〉L2(e−βV )

∫

∂Si

ψj · ne−βV .

The idea is now to build so-called quasi-modes which approximate
the eigenvectors of L(0) and L(1) associated with small eigenvalues
in the regime β → ∞, in order to approximate the terms in the
sum.
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Sketch of the proof (3/3)

• RanΠ(0): an approximation of v1 is given by

ṽ = Z−1χS′

where S ′ ⊂⊂ S.

• RanΠ(1): an approximation of RanΠ(1) is Span(ψ̃1, . . . , ψ̃J)
where (ψ̃i )1≤i≤J are solutions to auxiliary eigenvalue problems,
attached to the local minima (zi)1≤i≤J .

Two tools:

• Agmon estimates (the support of ψ̃i is essentially in a
neighborhood of zi):

∃N > 0, ‖eβda(zi ,·)/2ψ̃i‖H1(e−βV ) = O(βN).

• WKB approximations:

∃N > 0, ψ̃i ≃ Z−1

i d(eβV /2e−βda(zi ,·)/2)βp .
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Generalizations and perspectives

If the state is metastable, the QSD is a good intermediate between
continuous-state space dynamics and jump Markov models.

We are working on generalizations:

• Broader geometric setting

• Langevin dynamics

• Non-reversible dynamics

The mathematical analysis gives the proper geometric setting under
which the kinetic Monte Carlo model can be built and the
Eyring-Kramers formulas can be used to parameterize it.
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From theory to algorithms

A.F. Voter, Annu. Rev. Mater. Res., vol. 32, 2002.
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How to sample efficiently the exit event?

If the process remains sufficiently long in a state, the exit event can
be modeled by one jump of a Markov state model. This can be
used to simulate efficiently the exit event: accelerated dynamics à

la A.F. Voter.

x1
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z3

z4

S

∂S1

∂S2

∂S3∂S4

Two steps:

• Estimate the decorrelation time, namely the time to reach the
QSD

• Use the underlying jump Markov process to efficiently sample
the exit event
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Decorrelation time
How long should we wait in practice so that L(X t |τS > t) is close
to the QSD ν?

• Theoretically: exponential decay
‖L(X t |τS > t)− ν‖TV ≤ C (L(X 0)) exp (−(λ2 − λ1)t);

• Numerically: simulate L(X t |τS > t) via interacting particle
system (Fleming-Viot particle system), and test stationarity to
estimate the convergence time to the QSD (Gelman-Rubin
convergence diagnostic).
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The Fleming-Viot particle process
Start N processes i.i.d. from µ0, and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, . . . ,N)

dX
k
t = −∇V (X k

t ) dt +
√

2β−1dW
k
t

until one of them, say X
1

t , exits;

2. Kill the process that exits;

3. With uniform probability 1/(N − 1), randomly choose one of
the survivors, X

2

t , . . . ,X
N
t , say X

2

t ;

4. Branch X
2

t , with one copy persisting as X
2

t , and the other
becoming the new X

1

t .

It is known that the empirical distribution [Villemonais]

µt,N ≡ 1

N

N∑

k=1

δ
X

k
t

satisfies:
lim

N→∞
µt,N = L(X t |t < τS).
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Accelerated dyamics

Once the QSD has been reached, there are three ideas to efficiently
sample (τS ,X τS ):

• use parallel architectures to accelerate the sampling: parallel
replica, parsplicing

• raise the minimum of the potential inside the state S (but not
on ∂S): hyperdynamics

• raise the temperature: temperature accelerated dynamics
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The Parallel Replica Algorithm

Perform many independent exit events in parallel [Voter, 1998]

Two steps:

• Distribute N independent initial conditions in S according to
the QSD ν ;

• Evolve N replicas from these initial conditions, consider the
first exiting replica, and multiply the first exit time by the
number of replicas.

S
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The Parallel Replica Algorithm

Why is it consistent?

• Exit time is independent of exit point so that

X
I0

τ
I0
S

L
= X

1

τ1
S
,

where I0 = argmini (τ
i
S);

• Exit times are i.i.d. exponentially distributed so that, for all N,

N min(τ1

S , . . . , τ
N
S )

L
= τ1

S .

Remark: For this algorithm, one just needs two properties: τS is
exponentially distributed, and independent of the exit point X τS .
The Eyring-Kramers formulas are not used.
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The generalized Parallel Replica algorithm
[Binder, Hédin, TL, Simpson]

1. Run a reference walker, using standard MD.

2. Each time the reference walker enters a state, start a
Fleming-Viot particle process (with N replicas simulated in
parallel) with initial condition the entering point.

3. If the reference walker exits before the Fleming Viot particle
process reaches stationarity go back to 1. Else go to the
parallel step.

4. Parallel step: Starting from the end points of the Fleming-Viot
particle process (approximately i.i.d. with law the QSD), run
independent MD and consider the first exit event. Multiply the
first exit time by N and go back to 1, using the first exit point
as initial condition.

The time at which the Fleming-Viot particle process becomes
stationary is determined using the Gelman-Rubin statistical test.
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The generalized Parallel Replica algorithm

• The algorithm does not require a partition of the state space
but only an ensemble of states.

• The time to reach the QSD is estimated each time the process
enters a new state (it depends on the state and on the initial
condition within the state).
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Numerical results

We recently tested the generalized Parallel Replica algorithm
applied to biological systems (postdoc Florent Hédin):

• Conformational equilibrium of the alanine dipeptide

• Dissociation of the FKBP-DMSO protein-ligand system

Main differences with materials science: definition of the states
using collective variables, the states do not define a partition, much
more rugged landscapes.

Current implementation within OpenMM, see
https://gitlab.inria.fr/parallel-replica
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Alanine dipeptide (1/5)

Definition of ParRep domains based on a free energy surface: we
study the transition time from C7eq (outside the red rectangle) to

C7ax (inside the red rectangle).
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Alanine dipeptide (2/5)

Cumulative distribution function of the transition time.
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Alanine dipeptide (3/5)

Convergence of the mean transition time.
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Alanine dipeptide (4/5)

Distribution of the correlation times computed by FV.
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Alanine dipeptide (5/5)

tol WT(s) tsim(ns) Speed(ns/day) Eff. speedup (Eff./Max)

0.01 6015 10008 143752 156 70%
0.025 5239 10103 166609 181 80%
0.05 4973 10032 174296 189 84%

Effective speed-up as a function of the tolerance, for N = 224
replicas run in parallel (speed of a reference Langevin dynamics is
921 ns/day).
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FKBP-DMSO (1/4)

FKBP-DMSO complex,
corresponding to the RCSB-PDB entry “1D7H”.
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FKBP-DMSO (2/4)

DMSO in its binding cavity ; distances used to define the cavity.
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FKBP-DMSO (3/4)

Cumulative distribution function of the dissociation times.
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FKBP-DMSO (4/4)

TOL WT(s) tsim(ns) Speed (ns/day) Eff. speedup (Eff./Max)

0.01 85142 403.5 409.4 79.5 56.8%
0.025 79574 457.6 496.8 96.5 68.9%
0.05 84455 482.2 493.4 95.8 68.4%

Effective speed-up as a function of the tolerance, for N = 140
replicas run in parallel (speed of a reference Langevin dynamics is
5.15 ns/day).
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The Parallel Trajectory Splicing algorithm

Precompute the exit events [Perez, Cubuk, Waterland, Kaxiras, Voter, 2015]

Algorithm:

• Simulate in parallel short trajectories which start from the
QSD in a state, and end at the QSD in a state.

• Glue together these short trajectories to build the full
dynamics.
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Hyperdynamics (1/2)

Raise the potential in S to reduce the exit time [Voter, 1997]

Two steps:

• Equilibrate on the biased potential V + δV ;

• Wait for an exit and multiply the exit time τ δVS by the boost

factor B = 1

τδVS

∫ τδVS
0

exp(β δV (X t)) dt.
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z4
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Hyperdynamics (2/2)
Why is it consistent ?

Assumptions on δV : (i) δV = 0 on ∂S and (ii) δV is sufficiently
small so that the Theorem above applies.

Recall the formula for the exit rates:

ki = ν̃OL
i e−β[V (zi )−V (x1)] (1 + O(β−1))

where ν̃OL
i =

√
β
2π∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V|∂S)(zi )
.

One easily check that ki/
∑J

j=1
kj is independent of δV and

∑J
j=1

kj(V + δV )
∑J

j=1
kj(V )

=

√
det(∇2(V + δV ))(x1)

det(∇2(V ))(x1)
eβδV (x1)(1 + O(β−1))

=

∫
S
exp(−βV )∫

S
exp(−β(V + δV ))

(1 +O(β−1)) ≃ B
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Temperature Accelerated Dynamics (1/2)

Increase the temperature to reduce the exit time [Sorensen, Voter, 2000]

Algorithm:

• Observe the exit events from S at high temperature ;

• Extrapolate the high temperature exit events to low
temperature exit events.
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Temperature Accelerated Dynamics (2/2)
Recall that, starting from the QSD, the exit event from a given
state S can exactly be modelled using a kinetic Monte Carlo model
with rates

ki = ν̃OL
i e−β[V (zi )−V (x1)] (1 + O(β−1))

where ν̃OL
i =

√
β
2π∂nV (zi)

√
det(∇2V )(x1)√

det(∇2V|∂S)(zi )
.

Thus,

k loi
khii

≃
√
βlo

βhi
exp(−(βlo − βhi )(V (zi)− V (x1))).

Algorithm: observe exit events at high temperature, extrapolate the
rates to low temperature, stop when the extrapolated event will not
modify anymore the low temperature exit event.

Remark: TAD can be seen as a smart saddle point search method.
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Generalizations and perspectives

• The parallel replica is a very versatile algorithm: it applies e.g.

to non reversible dynamics, discrete-in-time dynamics,
continuous-time Markov Chain [Aristoff, Plechac, Wang]. It does not
require estimates of the exit rates.

• Hyper and TAD are more efficient, but require the
temperature to be sufficiently small so that estimates of the
rates by the Eyring-Kramers formulas hold true.

All these techniques require “good” metastable states:
exit time > convergence time to the QSD.
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Conclusion

There are mathematical characterizations of good coarse-graining
representations (spectral gaps, convergence times vs exit times).

Could we use those characterizations together with advanced
learning techniques (auto-encoder, sparse methods) to get better
coarse-grained descriptions?

• Identify slow variables

• Sparse representation of the committor function

• Identify metastable states
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