Sampling problems in computational statistical physics

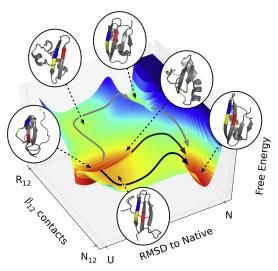
3- Sampling of metastable dynamics: the Quasi-Stationary Distribution approach

T. Lelièvre

CERMICS - Ecole des Ponts ParisTech & Equipe Matherials - INRIA

Brummer & Partners MathDataLab, KTH, 21/01/2021

From Langevin to kinetic Monte Carlo



C.R. Schwantes, D. Shukla, V.S.Pande, Biophysical Journal, vol. 110, 2016

ション ふゆ く ビット キロ・ ト きょうめん

Two models for dynamics

The basic modeling ingredient in molecular dynamics: a potential function V which associates to a configuration $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_{N_{atom}}) \in \mathbb{R}^{3N_{atom}}$ an energy $V(\mathbf{x}) \in \mathbb{R}$.

From V, two kinds of dynamics are considered:

- Langevin and over-damped Langevin dynamics: Markov processes with values in continuous state space ;
- kinetic Monte Carlo model or Markov state model (first order kinetics): Markov processes with values in discrete state space (jump Markov process).

Question: Can a mathematically rigorous link be made between these two kinds of models ?

Langevin and over-damped Langevin dynamics Let us introduce the inverse temperature: $\beta^{-1} = k_B T$. The Langevin dynamic writes:

$$\begin{cases} d\boldsymbol{X}_t = M^{-1}\boldsymbol{P}_t dt, \\ d\boldsymbol{P}_t = -\nabla V(\boldsymbol{X}_t) dt - \gamma M^{-1}\boldsymbol{P}_t dt + \sqrt{2\gamma\beta^{-1}} d\boldsymbol{W}_t. \end{cases}$$

In the following, we focus on the over-damped Langevin dynamics

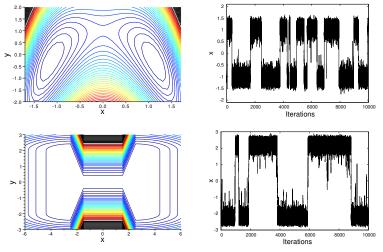
$$d\boldsymbol{X}_t = -\nabla V(\boldsymbol{X}_t) dt + \sqrt{2\beta^{-1}} d\boldsymbol{W}_t$$

These dynamics are both ergodic wrt the canonical measure: $\lim_{t\to\infty}\frac{1}{t}\int_0^t\varphi(\pmb{X}_s)ds = \int\varphi d\mu \text{ where }$

$$\mu(dx) = Z^{-1} \exp(-\beta V(x)) dx.$$

Main practical challenge: these dynamics are metastable.

Metastability: energetic and entropic barriers A two-dimensional schematic picture



- \rightarrow Slow convergence of trajectorial averages
 - Transitions between metastable states are rare events

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の < @

Metastability: a toy example

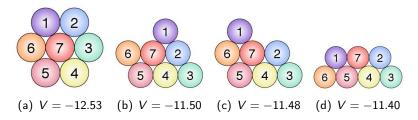


Figure: Low energy conformations of the 7 atoms Lennard-Jones cluster. \rightarrow simulation

The exit event

Let us consider the overdamped Langevin dynamics:

$$d\boldsymbol{X}_t = -\nabla V(\boldsymbol{X}_t) dt + \sqrt{2\beta^{-1}} d\boldsymbol{W}_t$$

and let assume that we are given an ensemble of subsets of \mathbb{R}^d (states). Let us consider one of them: $\mathcal{S} \subset \mathbb{R}^d$. The exit event from \mathcal{S} is given by

$$(\tau_{\mathcal{S}}, \boldsymbol{X}_{\tau_{\mathcal{S}}})$$

where $\tau_{\mathcal{S}} = \inf\{t > 0, \mathbf{X}_t \notin \mathcal{S}\}.$

Objective: build a jump Markov model to simulate the exit event $(\tau_S, \boldsymbol{X}_{\tau_S})$.

This is useful theoretically (justification of Markov state models and Eyring-Kramers laws) and numerically (accelerated dynamics à la Voter).

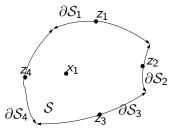
Kinetic Monte Carlo

Kinetic Monte Carlo (or Markov state) models are built as follows:

- define exit regions from $\mathcal{S}: \ \partial \mathcal{S} = \cup_{j=1}^{J} \partial \mathcal{S}_j$
- associate a rate k_j with an exit through ∂S_j

and then (jump Markov model)

- the exit time $\tau_{\mathcal{S}}^{kMC}$ is exponentially distributed with parameter $\sum_{j=1}^{J} k_j$
 - the exit region is I_{S}^{kMC} with law $\mathbb{P}(I_{S}^{kMC} = i) = \frac{k_{i}}{\sum_{i=1}^{J} k_{i}}$
 - ${\it I}_{\mathcal{S}}^{\it kMC}$ and $\tau_{\mathcal{S}}^{\it kMC}$ are independent random variables



Eyring-Kramers laws

Formulas for transition rates. Let us introduce the local minima $(z_j)_{j=1,...,J}$ of V on ∂S , and associated exit regions ∂S_i . The parameters k_j are computed using the Eyring-Kramers formula (Harmonic Transition State Theory):

$$\overline{k_j^{HTST}} = \nu_j \,\mathrm{e}^{-\beta \left[V(z_j) - V(x_1)\right]}$$

where ν_j is an explicit prefactor and $x_1 = \arg \min_{\mathcal{S}} V$.



▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

A theoretical question

Question: can we relate the exit event $(\tau_{\mathcal{S}}, \boldsymbol{X}_{\tau_{\mathcal{S}}})$ for the original dynamics with the exit event $(\tau_{\mathcal{S}}^{kMC}, I_{\mathcal{S}}^{kMC})$ for the jump Markov process?

Two steps:

- Introduce the Quasi-Stationary Distribution
- Consider the small temperature regime $\beta \to \infty$ (semi-classical limit)

Step 1: The Quasi-Stationary Distribution

Definition of the QSD: Let X_0 start in the state S. Then there exists a probability distribution ν with support S such that

 $\lim_{t\to\infty}\mathcal{L}(\boldsymbol{X}_t|\tau_{\mathcal{S}}>t)=\nu$

where τ_S is the first exit time from S. *Remark*: Quantitative definition of a metastable exit: exit time \gg local equilibration time

Fundamental property of the QSD: Starting from ν :

- the first exit time τ_S is exponentially distributed ;
- and τ_{S} is independent of the first hitting point $X_{\tau_{S}}$.

Consequence: Starting from ν , the exit event from S can be exactly written as one jump of a kinetic Monte Carlo model with rates

$$k_i = rac{\mathbb{P}^{
u}(oldsymbol{X}_{ au_{\mathcal{S}}} \in \partial \mathcal{S}_i)}{\mathbb{E}^{
u}(au_{\mathcal{S}})}.$$

Step 2: The small temperature regime

Moreover, one has explicit formulas for $\mathbb{E}(\tau_{\mathcal{S}})$ and the distribution of $X_{\tau_{\mathcal{S}}}$. Let us introduce the first eigenstate (λ_1, u_1) of the Fokker-Planck operator associated with the dynamics with Dirichlet boundary conditions on $\partial \mathcal{S}$:

$$\begin{cases} \operatorname{div} (\nabla V u_1) + \beta^{-1} \Delta u_1 = -\lambda_1 u_1 \text{ on } \mathcal{S}, \\ u_1 = 0 \text{ on } \partial \mathcal{S}. \end{cases}$$

Then,
$$u = \frac{u_1(x)dx}{\int_{\mathcal{S}} u_1},$$
 $\mathbb{E}^{\nu}(\tau_{\mathcal{S}}) = \frac{1}{\lambda_1}$

and

$$\mathbb{P}^{\nu}(\boldsymbol{X}_{\tau_{\mathcal{S}}} \in \partial \mathcal{S}_{i}) = -\frac{\int_{\partial \mathcal{S}_{i}} \partial_{n} u_{1} \, d\sigma}{\beta \lambda_{1} \int_{\mathcal{S}} u_{1}(x) \, dx}$$

Thus, $k_i = -\frac{\int_{\partial S_i} \partial_n u_1 \, d\sigma}{\beta \lambda_1 \int_S u_1(x) \, dx}$. Can we then show that $k_i \simeq k_i^{HTST}$?

Justifying Eyring-Kramers laws

Theorem [Di Gesu, TL, Le Peutrec, Nectoux, 2019] Under some geometric assumptions, starting from the QSD, in the limit $\beta \rightarrow \infty$, the exit rates are

$$k_i = \widetilde{
u}_i^{OL} \operatorname{e}^{-eta[V(z_i) - V(x_1)]} (1 + O(eta^{-1}))$$

where

$$\widetilde{\nu}_i^{OL} = \sqrt{\frac{\beta}{2\pi}} \partial_n V(z_i) \frac{\sqrt{\det(\nabla^2 V)(x_1)}}{\sqrt{\det(\nabla^2 V_{|\partial S})(z_i)}}$$

Assumptions (1/2)

- S is an open bounded smooth domain in \mathbb{R}^d .
- V: S→ R is a Morse function with a single critical point x₁. Moreover, x₁ ∈ S and V(x₁) = min_S V.
- $\partial_n V > 0$ on ∂S and $V|_{\partial S}$ is a Morse function with local minima reached at z_1, \ldots, z_J with $V(z_1) < \ldots < V(z_J)$.
- $V(z_1) V(x_1) > V(z_J) V(z_1)$
- $\forall i \in \{1, \ldots, J\}$, consider B_{z_i} the basin of attraction of z_i for the dynamics $\dot{x} = -\nabla_T V(x)$ and assume that

 $\inf_{z\in B_{z_i}^c}d_a(z,z_i)>V(z_J)-V(z_1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Assumptions (2/2)

Here, d_a is the Agmon distance:

$$d_a(x,y) = \inf_{\gamma} \int_0^1 g(\gamma(t)) |\gamma'(t)| \, dt$$

where
$$g = \begin{cases} |\nabla V| \text{ in } S \\ |\nabla_T V| \text{ in } \partial S \end{cases}$$
 and the infimum is over all piecewise \mathcal{C}^1 paths $\gamma : [0, 1] \to \overline{S}$ such that $\gamma(0) = x$ and $\gamma(1) = y$.

Numerical tests indicate that the assumption

$$orall i \in \{1,\ldots J\}, \inf_{z \in B^c_{z_i}} d_s(z,z_i) > V(z_l) - V(z_1)$$

seems indeed necessay to get the expected results.

Sketch of the proof (1/3)

The difficult part is to find an approximation for $\int_{\partial S_i} \partial_n u_1 = \int_{\partial S_i} \partial_n v_1 e^{-\beta V}$, where $v_1 = u_1 e^{\beta V}$. We have

$$\left\{egin{array}{ll} L^{(0)} v_1 = -\lambda_1 v_1 ext{ on } \mathcal{S}, \ v_1 = 0 ext{ on } \partial \mathcal{S}, \end{array}
ight.$$

where $L^{(0)} = \beta^{-1}\Delta - \nabla V \cdot \nabla$ is a self adjoint operator on $L^2(e^{-\beta V})$. We are interested in $\nabla v_1 \cdot n$, and ∇v_1 satisfies

$$\begin{cases} \mathcal{L}^{(1)} \nabla \mathbf{v}_1 = -\lambda_1 \nabla \mathbf{v}_1 \text{ on } \mathcal{S}, \\ \nabla_T \mathbf{v}_1 = 0 \text{ on } \partial \mathcal{S}, \\ (\beta^{-1} \mathrm{div} - \nabla V \cdot) \nabla \mathbf{v}_1 = 0 \text{ on } \partial \mathcal{S}, \end{cases}$$

where

$$L^{(1)} = \beta^{-1} \Delta - \nabla V \cdot \nabla - \text{Hess}(V).$$

Therefore ∇v_1 is an eigenvector (eigen-1-form) of $-L^{(1)}$ associated with the small eigenvalue λ_1 .

Sketch of the proof (2/3)

Let $\Pi^{(p)} = \mathbb{1}_{[0,\beta^{-3/2}]}(-L^{(p)})$ be the spectral projection operator on small eigenvalues. We know [Helffer,Sjöstrand] that, for β large, dim $(\operatorname{Ran}\Pi^{(0)}) = 1$ and dim $(\operatorname{Ran}\Pi^{(1)}) = J$:

 $\operatorname{Ran}\Pi^{(0)} = \operatorname{Span}(v_1)$

$$\operatorname{Ran}\Pi^{(1)} = \operatorname{Span}(\psi_1, \ldots, \psi_J).$$

Since $\nabla v_1 \in \operatorname{Ran}\Pi^{(1)}$,

$$\int_{\partial S_i} \partial_n v_1 e^{-\beta V} = \sum_{j=1}^J \langle \nabla v_1, \psi_j \rangle_{L^2(e^{-\beta V})} \int_{\partial S_i} \psi_j \cdot n e^{-\beta V}.$$

The idea is now to build so-called quasi-modes which approximate the eigenvectors of $L^{(0)}$ and $L^{(1)}$ associated with small eigenvalues in the regime $\beta \to \infty$, in order to approximate the terms in the sum.

Sketch of the proof (3/3)

• $\operatorname{Ran}\Pi^{(0)}$: an approximation of v_1 is given by

$$\tilde{v} = Z^{-1} \chi_{\mathcal{S}'}$$

where $\mathcal{S}' \subset \subset \mathcal{S}$.

RanΠ⁽¹⁾: an approximation of RanΠ⁽¹⁾ is Span(ψ˜₁,..., ψ˜_J) where (ψ˜_i)_{1≤i≤J} are solutions to auxiliary eigenvalue problems, attached to the local minima (z_i)_{1≤i≤J}.

Two tools:

Agmon estimates (the support of \$\tilde{\varphi}_i\$ is essentially in a neighborhood of \$z_i\$):

$$\exists N > 0, \| e^{\beta d_{\theta}(z_i, \cdot)/2} \tilde{\psi}_i \|_{H^1(e^{-\beta V})} = O(\beta^N).$$

• WKB approximations:

$$\exists N > 0, \, \tilde{\psi}_i \simeq Z_i^{-1} d(e^{\beta V/2} e^{-\beta d_a(z_i, \cdot)/2}) \beta^p.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Generalizations and perspectives

If the state is metastable, the QSD is a good intermediate between continuous-state space dynamics and jump Markov models.

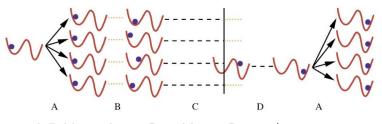
We are working on generalizations:

- Broader geometric setting
- Langevin dynamics
- Non-reversible dynamics

The mathematical analysis gives the proper geometric setting under which the kinetic Monte Carlo model can be built and the Eyring-Kramers formulas can be used to parameterize it.

Conclusion

From theory to algorithms

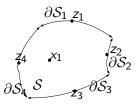


A.F. Voter, Annu. Rev. Mater. Res., vol. 32, 2002.

< ロ > < 同 > < 回 > < 回 >

How to sample efficiently the exit event?

If the process remains sufficiently long in a state, the exit event can be modeled by one jump of a Markov state model. This can be used to simulate efficiently the exit event: accelerated dynamics \dot{a} *la* A.F. Voter.



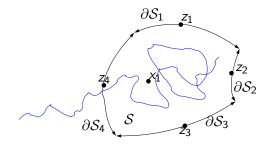
Two steps:

- Estimate the decorrelation time, namely the time to reach the QSD
- Use the underlying jump Markov process to efficiently sample the exit event

Decorrelation time

How long should we wait in practice so that $\mathcal{L}(\boldsymbol{X}_t | \tau_S > t)$ is close to the QSD ν ?

- Theoretically: exponential decay $\|\mathcal{L}(\boldsymbol{X}_t|\tau_S > t) - \nu\|_{TV} \leq C(\mathcal{L}(\boldsymbol{X}_0)) \exp(-(\lambda_2 - \lambda_1)t);$
- Numerically: simulate $\mathcal{L}(\boldsymbol{X}_t | \tau_S > t)$ via interacting particle system (Fleming-Viot particle system), and test stationarity to estimate the convergence time to the QSD (Gelman-Rubin convergence diagnostic).



The Fleming-Viot particle process

Start *N* processes i.i.d. from μ_0 , and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, ..., N)

$$doldsymbol{X}_t^k = -
abla V(oldsymbol{X}_t^k) \, dt + \sqrt{2eta^{-1}} doldsymbol{W}_t^k$$

until one of them, say \boldsymbol{X}_{t}^{1} , exits;

- 2. Kill the process that exits;
- With uniform probability 1/(N − 1), randomly choose one of the survivors, X²_t, ..., X^N_t, say X²_t;
- Branch X²_t, with one copy persisting as X²_t, and the other becoming the new X¹_t.
- It is known that the empirical distribution [Villemonais]

$$\mu_{t,N} \equiv \frac{1}{N} \sum_{k=1}^{N} \delta_{\boldsymbol{X}_{t}^{k}}$$

satisfies:

$$\lim_{N\to\infty}\mu_{t,N}=\mathcal{L}(\boldsymbol{X}_t|t<\tau_{\mathcal{S}}).$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Accelerated dyamics

Once the QSD has been reached, there are three ideas to efficiently sample $(\tau_S, \mathbf{X}_{\tau_S})$:

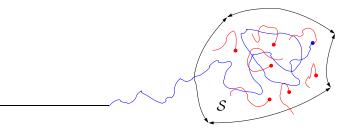
- use parallel architectures to accelerate the sampling: parallel replica, parsplicing
- raise the minimum of the potential inside the state S (but not on ∂S): hyperdynamics
- raise the temperature: temperature accelerated dynamics

The Parallel Replica Algorithm

Perform many independent exit events in parallel [Voter, 1998]

Two steps:

- Distribute N independent initial conditions in ${\mathcal S}$ according to the QSD $\nu\,$;
- Evolve *N* replicas from these initial conditions, consider the first exiting replica, and multiply the first exit time by the number of replicas.



The Parallel Replica Algorithm

Why is it consistent?

• Exit time is independent of exit point so that

$$oldsymbol{X}_{ au_{\mathcal{S}}^{l_0}}^{l_0} \stackrel{\mathcal{L}}{=} oldsymbol{X}_{ au_{\mathcal{S}}^1}^1,$$

where $I_0 = \arg \min_i(\tau_S^i)$;

• Exit times are i.i.d. exponentially distributed so that, for all N,

$$N\min(\tau_{\mathcal{S}}^1,\ldots,\tau_{\mathcal{S}}^N) \stackrel{\mathcal{L}}{=} \tau_{\mathcal{S}}^1.$$

Remark: For this algorithm, one just needs two properties: τ_S is exponentially distributed, and independent of the exit point X_{τ_S} . The Eyring-Kramers formulas are not used.

Sac

The generalized Parallel Replica algorithm

[Binder, Hédin, TL, Simpson]

- 1. Run a reference walker, using standard MD.
- Each time the reference walker enters a state, start a Fleming-Viot particle process (with N replicas simulated in parallel) with initial condition the entering point.
- 3. If the reference walker exits before the Fleming Viot particle process reaches stationarity go back to 1. Else go to the parallel step.
- 4. Parallel step: Starting from the end points of the Fleming-Viot particle process (approximately i.i.d. with law the QSD), run independent MD and consider the first exit event. Multiply the first exit time by *N* and go back to 1, using the first exit point as initial condition.

The time at which the Fleming-Viot particle process becomes stationary is determined using the Gelman-Rubin statistical test.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The generalized Parallel Replica algorithm

- The algorithm does not require a partition of the state space but only an ensemble of states.
- The time to reach the QSD is estimated each time the process enters a new state (it depends on the state and on the initial condition within the state).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Numerical results

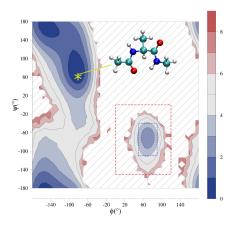
We recently tested the generalized Parallel Replica algorithm applied to biological systems (postdoc Florent Hédin):

- Conformational equilibrium of the alanine dipeptide
- Dissociation of the FKBP-DMSO protein-ligand system

Main differences with materials science: definition of the states using collective variables, the states do not define a partition, much more rugged landscapes.

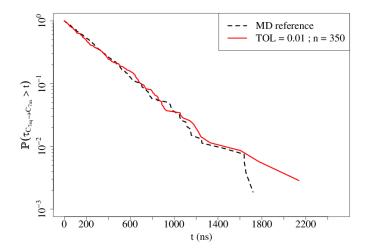
Current implementation within OpenMM, see https://gitlab.inria.fr/parallel-replica

Alanine dipeptide (1/5)



Definition of ParRep domains based on a free energy surface: we study the transition time from C_{7eq} (outside the red rectangle) to C_{7ax} (inside the red rectangle).

Alanine dipeptide (2/5)



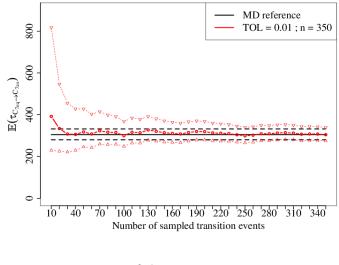
Cumulative distribution function of the transition time.

・ロト ・聞ト ・ヨト ・ヨト

Ξ.

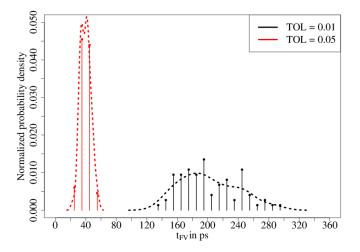
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = 三 のへで

Alanine dipeptide (3/5)



Convergence of the mean transition time.

Alanine dipeptide (4/5)



Distribution of the correlation times computed by FV.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣ぬ⊙

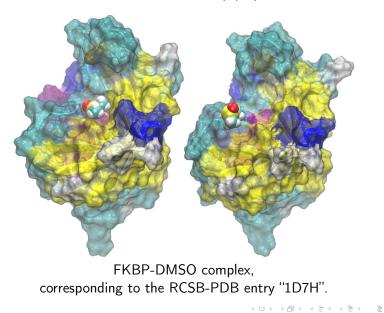
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Alanine dipeptide (5/5)

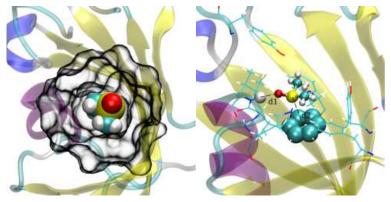
tol	WT(s)	<i>t_{sim}</i> (ns)	Speed(ns/day)	Eff. speedup	(Eff./Max)
0.01	6015	10008	143752	156	70%
0.025	5239	10103	166609	181	80%
0.05	4973	10032	174296	189	84%

Effective speed-up as a function of the tolerance, for N = 224 replicas run in parallel (speed of a reference Langevin dynamics is 921 ns/day).

FKBP-DMSO (1/4)



FKBP-DMSO (2/4)

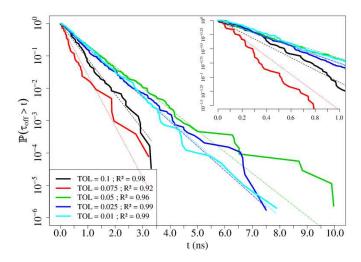


DMSO in its binding cavity ; distances used to define the cavity.

・ロト ・個ト ・モト ・モト

э

FKBP-DMSO (3/4)



Cumulative distribution function of the dissociation times.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Conclusion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

FKBP-DMSO (4/4)

TOL	WT(s)	<i>t_{sim}</i> (ns)	Speed (ns/day)	Eff. speedup	(Eff./Max)
0.01	85142	403.5	409.4	79.5	56.8%
0.025	79574	457.6	496.8	96.5	68.9%
0.05	84455	482.2	493.4	95.8	68.4%

Effective speed-up as a function of the tolerance, for N = 140 replicas run in parallel (speed of a reference Langevin dynamics is 5.15 ns/day).

The Parallel Trajectory Splicing algorithm

Precompute the exit events [Perez, Cubuk, Waterland, Kaxiras, Voter, 2015]

Algorithm:

- Simulate in parallel short trajectories which start from the QSD in a state, and end at the QSD in a state.
- Glue together these short trajectories to build the full dynamics.

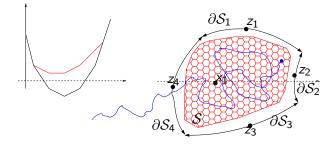
(ロ) (部) (注) (注) (注)

Hyperdynamics (1/2)

Raise the potential in S to reduce the exit time [Voter, 1997]

Two steps:

- Equilibrate on the biased potential $V + \delta V$;
- Wait for an exit and multiply the exit time $\tau_{S}^{\delta V}$ by the boost factor $B = \frac{1}{\tau_{S}^{\delta V}} \int_{0}^{\tau_{S}^{\delta V}} \exp(\beta \, \delta V(\boldsymbol{X}_{t})) \, dt.$



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Hyperdynamics (2/2)

Why is it consistent ?

Assumptions on δV : (i) $\delta V = 0$ on ∂S and (ii) δV is sufficiently small so that the Theorem above applies.

Recall the formula for the exit rates:

$$k_i = \widetilde{\nu}_i^{OL} e^{-\beta \left[V(z_i) - V(x_1)\right]} \left(1 + O(\beta^{-1})\right)$$

where $\widetilde{\nu}_{i}^{OL} = \sqrt{\frac{\beta}{2\pi}} \partial_{n} V(z_{i}) \frac{\sqrt{\det(\nabla^{2} V)(x_{1})}}{\sqrt{\det(\nabla^{2} V_{|\partial S})(z_{i})}}.$

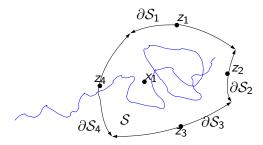
One easily check that $k_i / \sum_{j=1}^J k_j$ is independent of δV and

$$\frac{\sum_{j=1}^{J} k_j(V+\delta V)}{\sum_{j=1}^{J} k_j(V)} = \sqrt{\frac{\det(\nabla^2(V+\delta V))(x_1)}{\det(\nabla^2(V))(x_1)}} e^{\beta\delta V(x_1)} (1+O(\beta^{-1}))$$
$$= \frac{\int_{\mathcal{S}} \exp(-\beta V)}{\int_{\mathcal{S}} \exp(-\beta(V+\delta V))} (1+O(\beta^{-1})) \simeq B$$

Temperature Accelerated Dynamics (1/2)

Increase the temperature to reduce the exit time [Sorensen, Voter, 2000] Algorithm:

- Observe the exit events from ${\cal S}$ at high temperature ;
- Extrapolate the high temperature exit events to low temperature exit events.



・ロッ ・雪 ・ ・ ヨ ・

-

Temperature Accelerated Dynamics (2/2)

Recall that, starting from the QSD, the exit event from a given state ${\cal S}$ can exactly be modelled using a kinetic Monte Carlo model with rates

$$k_i = \widetilde{\nu}_i^{OL} \operatorname{e}^{-\beta[V(z_i) - V(x_1)]} \left(1 + O(\beta^{-1})\right)$$

where
$$\widetilde{\nu}_{i}^{OL} = \sqrt{\frac{\beta}{2\pi}} \partial_{n} V(z_{i}) \frac{\sqrt{\det(\nabla^{2} V)(x_{1})}}{\sqrt{\det(\nabla^{2} V_{|\partial S})(z_{i})}}.$$

Thus,

$$\frac{k_i^{lo}}{k_i^{hi}} \simeq \sqrt{\frac{\beta^{lo}}{\beta^{hi}}} \exp(-(\beta^{lo} - \beta^{hi})(V(z_i) - V(x_1))).$$

Algorithm: observe exit events at high temperature, extrapolate the rates to low temperature, stop when the extrapolated event will not modify anymore the low temperature exit event.

Remark: TAD can be seen as a smart saddle point search method.

ション ふゆ く ビット キロ・ ト きょうめん

Generalizations and perspectives

- The parallel replica is a very versatile algorithm: it applies *e.g.* to non reversible dynamics, discrete-in-time dynamics, continuous-time Markov Chain [Aristoff, Plechac, Wang]. It does not require estimates of the exit rates.
- Hyper and TAD are more efficient, but require the temperature to be sufficiently small so that estimates of the rates by the Eyring-Kramers formulas hold true.

All these techniques require "good" metastable states: exit time > convergence time to the QSD.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Conclusion

There are mathematical characterizations of good coarse-graining representations (spectral gaps, convergence times *vs* exit times).

Could we use those characterizations together with advanced learning techniques (auto-encoder, sparse methods) to get better coarse-grained descriptions?

- Identify slow variables
- Sparse representation of the committor function
- Identify metastable states

References

Some papers I mentioned:

- A. Binder, TL and G. Simpson, *A Generalized Parallel Replica Dynamics*, Journal of Computational Physics, 284, 2015.
- G. Di Gesù, TL, D. Le Peutrec and B. Nectoux, *Jump Markov* models and transition state theory: the Quasi-Stationary Distribution approach, Faraday Discussion, 195, 2016.
- G. Di Gesù, TL, D. Le Peutrec and B. Nectoux, *Sharp asymptotics of the first exit point density*, Annals of PDE, 5, 2019.
- F. Hédin and TL, gen.parRep: a first implementation of the Generalized Parallel Replica dynamics for the long time simulation of metastable biochemical systems, Computer Physics Communications, 239, 2019.
- C. Le Bris, TL, M. Luskin and D. Perez, A mathematical formalization of the parallel replica dynamics, Monte Carlo Methods and Applications, 18(2), 2012.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

References

Review papers:

- TL and Gabriel Stoltz, *Partial differential equations and stochastic methods in molecular dynamics*. Acta Numerica, 25, 2016.
- TL, Mathematical foundations of Accelerated Molecular Dynamics methods, In: W. Andreoni and S. Yip (eds) Handbook of Materials Modeling, Springer, 2018.