
IN DEGREE PROJECT MECHANICAL ENGINEERING,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2021

PiChess
Voice Controlled Robotic Chess Player

OSCAR DE BRITO LINGMAN

AXEL SERNELIN

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

PiChess

Voice Controlled Robotic Chess Player

OSCAR DE BRITO LINGMAN
AXEL SERNELIN

Bachelor’s Thesis at ITM
Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA-ITM-EX 2021:51

Abstract

The purpose of this bachelor’s thesis was to create a
robot that could play chess through voice recognition and
robotics. The two areas to be investigated were the robot’s
precision and speed. The reason for building a robot arm
of the SCARA type was that it can easily pick up and
place pieces with reach over the entire chessboard. The
robot arm is controlled from a Raspberry Pi 4 and is moved
by two Dynamixel AX-12a servomotors. To pick up chess
pieces, a continuous 360-degree servomotor was used to lift
an electromagnet which was mounted on a gear rack. A
USB microphone was used to collect what move the player
indicated. The Stockfish chess engine was used to generate
moves for the robot.

The parts of the robot that had the greatest impact
on precision were the stability of the aluminum profiles,
the gear ratio between the gears that transmit torque to
the arm, the gear mesh contact ratio and the size of the
electromagnet. The time it took to complete a move could
be reduced by increasing the speed of the motors when
a chess piece was not attached to the electromagnet, and
using a larger gear in the RC servo that raises and lowers
the electromagnet.

Keywords— Mechatronics, Raspberry Pi, Chess, SCARA,
Dynamixel

Referat
Röststyrd Robotisk Schackspelare

Syftet med det här kandidatexamensarbetet var att ska-
pa en robot som genom röstigenkänning och robotik kun-
de spela schack. De tv̊a omr̊aden som skulle undersökas
var robotens precision och hastighet. Anledningen till att
bygga en robotarm av SCARA typ var att den enkelt kan
plocka upp och ställa ner pjäser med räckvidd över hela
schackbrädet. Robotarmen styrs fr̊an en Raspberry Pi 4
och drivs av tv̊a stycken Dynamixel AX-12a servomotorer.
För att plocka upp schackpjäser användes en kontinuerlig
360-graders servomotor som lyfte en elektromagnet monte-
rad p̊a en kuggst̊ang. En USB mikrofon användes för att
samla in vad spelaren angav för drag. Schackmotorn Stock-
fish användes för att generera drag åt roboten.

De delar p̊a roboten som hade störst inverkan p̊a pre-
cision var stabiliteten i aluminiumprofilerna, utväxlingen
mellan kugghjulen som överför moment till armen, anligg-
ningsytan vid kuggingreppen och storlek av elektromagnet.
Tiden det tog att genomföra ett drag gick att minska genom
att öka hastigheten p̊a motorerna d̊a en schackpjäs inte satt
fast p̊a elektromagneten, samt använda ett större kugghjul
hos RC servot som höjer och sänker elektromagneten.

Nyckelord— Mekatronik, Raspberry Pi, Schack, SCA-
RA, Dynamixel

Acknowledgements

We would like to thank our supervisor Nihad Subasic for guiding and helping us
throughout this project. We would also like to thank Staffan Qvarnström for helping
us acquiring parts, especially the FTDI cable. A special thanks to Richard Sernelin
for letting us use his personal workshop and helping us creating customized parts
necessary for the project. Without any of them, this project would not be possible.

Oscar de Brito Lingman & Axel Sernelin
Stockholm, May, 2021

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Scope . 2
1.4 Method . 2

2 Theory 3
2.1 SCARA . 3
2.2 Hardware . 3

2.2.1 Raspberry Pi 4 . 3
2.2.2 ArbotiX-M Robocontroller 3
2.2.3 Dynamixel AX-12A Servomotor 5
2.2.4 Electromagnet . 5
2.2.5 FTDI cable . 5
2.2.6 RC Servo . 5

2.3 Software . 7
2.3.1 Python . 7
2.3.2 Stockfish . 7
2.3.3 PyPose . 7

3 Demonstrator 9
3.1 Construction . 9

3.1.1 Robotic Arm . 9
3.2 Hardware . 9
3.3 Software . 13

3.3.1 Main program . 13
3.3.2 Chess . 13
3.3.3 Speech . 13
3.3.4 Movement . 13
3.3.5 Gripper . 13

4 Results 15

5 Discussion & Conclusion 17

5.1 Discussion . 17
5.2 Conclusion . 18
5.3 Future Work . 18

Bibliography 19

Appendices 21

A PiChess State Diagram 21

B Python Code 23

C Acumen 35

List of Figures

2.1 ArbotiX-M overview [8]. 4
2.2 Raspberry Pi 4 hardware overview [9]. 4
2.3 Dynamixel AX-12A front and back [12]. 5
2.4 Block Diagram of a typical servo motor [15]. 6
2.5 Servo motor PWN duty cycle and frequency requirement [16]. 6

3.1 Overhead picture of robot. 10
3.2 Lower arm point of rotation. 11
3.3 Upper arm point of rotation. 11
3.4 A wiring diagram of all the hardware components, made using Fritzing

[19]. 12

A.1 State diagram of PiChess, made using Creatly [20]. 22

C.1 Simulation of lifting movement, made using Acumen [5]. 35

List of Abbreviations

FTDI Future Technology Devices International

GPIO General Purpose Input/Output

PWM Pulse Width Modulation

RC Radio Control

SCARA Selective Complience Articulated Robot Arm

USB Universal Serial Bus

Chapter 1

Introduction

This project considers the construction of a robotic arm that can be remotely con-
trolled through voice activation. The goal is for the robotic arm to be able to play a
game of chess, using the arm to execute moves by physically picking up and putting
down chess pieces.

Today, society is constantly figuring out new ways to help and support people
living with disabilities. New technology is being developed to tackle these problems,
making life easier for disabled people. One of these technologies is robotics.

Robotics can be used to support those living with physical disabilities and more
so, voice-controlled robotics can cover an even wider range of people.

1.1 Background
Inspiration for this project was initially taken from the 18th century chess-playing
machine known as The Turk, Mechanical Turk or Automaton Chess Player.
This machine was believed to be completely automated and defeated challengers all
over the world. However, the machine was actually a hoax since a human player
was hidden underneath the desk, executing the machines moves manually [1].

The following projects has been used as sources of inspiration for the construc-
tion of the arm.

• Checkmate [2] which uses frame-like construction to move along the x- and
y-axis, magnetic sensors to detect the chess pieces and an electromagnet to
grab them.

• ChessP layingRobot [3] which uses a SCARA-arm construction to move along
the x-, y- and z-axis, a camera for visual recognition to detect the chess pieces
and an electromagnet to grab them.

1.2 Purpose
The following questions are to be investigated and answered in this thesis:

1

CHAPTER 1. INTRODUCTION

• Which physical parts of the robot have a noticeable impact on precision?

• How can the robot arm complete a move faster without losing precision?

1.3 Scope
Due to limited resources and time, some limitations have been formulated:

• The voice recognition will use an already existing software package for the
Raspberry Pi.

• A virtual chess board package will be used for handling chess actions.

• The robot will use the open-source chess engine Stockfish [4] to calculate
moves.

Since the purpose of this thesis was to research how well the robot arm can move
chess pieces it was not of significant importance to do the above listed, from scratch.

1.4 Method
In order to answer the research questions, a robotic prototype was constructed,
installed and programmed.

First, theoretical research was made to figure out how a robotic arm could be
constructed and which components and parts were necessary. An early simulation
of the robots lifting movement was made using Acumen [5] to understand how this
was supposed to be accomplished practically (a picture of the simulation, Figure
C.1, and the code necessary to produce the simulation can be found in Appendix C
on page 35).

Second, the robotic arm was built, this was done using a trial and error -
approach. Different parts were purchased and some custom made to test either
parts limitation until their purpose was considered satisfied.

Third, programming of the robot, this was also done using a trial and error
approach but some more theoretical research had to be made to finalize the code.

Fourth, testing, analyzing, fine tuning and result recording. To answer the
research questions, some calibration first had to be made and later the robot was
fine tuned whilst documenting the results of the robot. This was then used to
answer the research questions.

2

Chapter 2

Theory

The following chapter consists of theoretical information which is necessary for
the comprehension of the project. Here, the SCARA robot type as well as the
components and software used in the project will be explained.

2.1 SCARA
SCARA, an acronym for Selective Compliance Articulated Robot Arm, is a solution
for making the robot arm compliant in the X-Y axis. This means that the arm can
move freely across an area decided by the length of two jointed arms.

Movement in the Z axis can be obtained either by altering the base of the arm
or by using a rod, which can be altered, at the end of the second arm [6].

2.2 Hardware
In this section the hardware of the robot are explained.

2.2.1 Raspberry Pi 4

Raspberry Pi is a series of small single-boarded computers, the latest to the addition
being the Raspberry Pi 4. The Raspberry Pi 4 runs on Raspberry Pi OS (previously
known as Raspbian), a Linux based operating system, which gives it the capabilities
to run more advanced tasks than that of a microcontroller. It can run programs
developed for Linux operating system and programmed using advanced languages
such as Python, Java, C++, etc [7].

A full overview of the Raspberry Pi 4 can be seen in Figure 2.2 on page 4.

2.2.2 ArbotiX-M Robocontroller

The ArbotiX-M Robocontroller is an advanced, Arduino based microcontroller, used
primarily for DYNAMIXEL based actuators. It provides the servos with a 12V

3

CHAPTER 2. THEORY

electrical current and handles data packages sent and received from the servo motors
[8].

An overview of the ArbotiX-M Robocontroller can be seen in Figure 2.1.

Figure 2.1: ArbotiX-M overview [8].

Figure 2.2: Raspberry Pi 4 hardware overview [9].

4

2.2. HARDWARE

2.2.3 Dynamixel AX-12A Servomotor

A servomotor is a rotary actuator which allows for precise control of angular po-
sition, velocity and acceleration. It contains a motor connected to a sensor for
position feedback [10]. The Dynamixel AX-12A servomotor has a rotation span
of zero to 300 degrees. At 12V the servomotor has a stall torque of 1.5 N*m and
returns feedback of its position, current motor temperature, load and input voltage
back to the motor controller [11].

A picture of the Dynamixel AX-12A Servomotor can be seen in Figure 2.3.

Figure 2.3: Dynamixel AX-12A front and back [12].

2.2.4 Electromagnet

An electromagnet is a type of magnet in which the magnetic field is produced by
an electric current [13]. Electromagnets can be switched on and off which allows for
applications such as attracting a magnetic material on demand.

2.2.5 FTDI cable

The FTDI cable is a USB to Serial converter which allows for a simple way to
connect transistor-transistor logic devices, such as an Arduino, to USB. The I/O
pins of this FTDI cable are configured to operate at 5V [14].

2.2.6 RC Servo

RC Servos are small actuators commonly used in remote controls or robotics because
of its ability to rotate and maintain a certain position or angle while still being small
in size.

A common RC servo consist of a motor, a gearbox, a position sensor, an error
amplifier, a motor driver and a circuit. A block diagram for a common RC servo
can be seen in Figure 2.4.

The RC servo is connected through three wires; power (+5V), ground and a
signal wire [15].

5

CHAPTER 2. THEORY

Figure 2.4: Block Diagram of a typical servo motor [15].

Pulse Width Modulation in Servos

An RC servo is controlled using PWM, Pulse Width Modulation. The angle at
which the servo should be maintained is determined by the duration of a pulse that
is applied to the signal wire.

The typical RC Servo expects a pulse every 20 ms, though this can vary from
servo to servo, and applying a 1.5 ms pulse to the servo will result in the motor
turning to the 90°position. Likewise, applying a 1.0 ms pulse turns the motor to
the 0°position and 2.0 ms pulse to the 180°position, which is shown in Figure 2.5.

This is a very effective way to vary the power supply to a normally binary control
device [15].

Figure 2.5: Servo motor PWN duty cycle and frequency requirement [16].

6

2.3. SOFTWARE

2.3 Software
In this section the software used will be explained.

2.3.1 Python
Python is an interpreted, general-purpose and high-level programming language. It
is used for programming and software development such as web development, back
end development, writing system scripts and data sciences [17].

2.3.2 Stockfish
Stockfish is a free and open-source chess engine, which evaluates chess positions by
developing a tree of all legal moves for the user chosen depth. The engine then
looks at all of these board positions and decides the best move considering things
such as control of the center, vulnerability of the king to check, vulnerability of the
opponent’s queen, and a multitude of other parameters. Stockfish can be set to play
with varying level of skill, which is done by limiting the computing time and search
depth. If Stockfish is given enough time it will be unbeatable by any human chess
player [4].

2.3.3 PyPose
Since the ArbotiX-M robocontroller is based on an Arduino, there is no way of
controlling it with Python from a computer by default. The PyPose project is a
program which provides the user a way of sending data packages to the ArbotiX-M
from Python. By uploading the PyPose program to the microcontroller, it will act as
a pass through so the Raspberry Pi can communicate directly with the servo motors.
The PyPose project provides the Raspberry Pi with a driver which effectively allows
you to get and set registers on any connected Dynamixel device via a FTDI-USB
cable [18].

7

Chapter 3

Demonstrator

This chapter considers the construction of the robotic prototype used in this project.

3.1 Construction
The construction of the prototype consists of a robotic arm that stands on a wooden
box which is attached to a plywood table. The chessboard is painted on the plywood
table and is at a set distance from the robotic arm.

An overhead picture of the robot arm can be seen in Figure 3.1 on page 10.

3.1.1 Robotic Arm

The robot arm begins with a heavy aluminum cube which is attached to the wooden
box by four screws. An axle is inserted vertically into the cube and held in place
by a set screw. The bottom aluminum profile rides on the axle using two bearing
housings, as seen in Figure 3.2a on page 11. The top aluminum profile is similarly
attached at the rear end of the bottom profile, as seen in Figure 3.3a on page 11.
This allows the arm to rotate freely around both axles.

On top of each steel axle, located at the rotation points, a cogwheel is attached
to the aluminum profile. By controlling an intermeshing gear, which is set in place
by attaching the Dynamixel AX-12A [11] to a custom made engine mount next to
the cogwheel, movement can be generated in the arm. This can be seen in Figures
3.2b and 3.3b on page 11.

3.2 Hardware
The Raspberry Pi [7] acts as the brain of the robot. All necessary coding for
controlling the servomotors, as well as running the chess engine and voice recognition
programs, is done from here.

The microcontroller, ArbotiX-M [8], acts as a middleman between the Raspberry
Pi and the Dynamixel AX-12A [11] servomotors. The microcontroller is required

9

CHAPTER 3. DEMONSTRATOR

to control the servomotors as they run on arduino based programming and for its
higher power demand (12V).

To position the arm at the desired x- and y-coordinate the Dynamixel Ax-12A
servomotors are used. Because of their ability to receive and store position and
speed data, they are very effective for calibrating the coordinates of each square on
the chessboard, as well as regulating speed for achieving high precision.

For picking up and dropping off chess pieces, an electromagnet is attached to a
gear rack which is intermeshed with the cogwheel being controlled by the RC servo.

The RC servo used is actually a continuous rotation servo. What this means is
that instead of maintaining a position when applied with a pulse signal, the servo
will continuously rotate clockwise or counterclockwise depending on the pulse signal.
Because of this, measurements are made to adjust how long the servo should rotate
for the electromagnet to reach a certain chess piece.

When a chess piece is to be lifted, the servo will rotate until a custom made limit
switch receives signal. The limit switch is made using a screw that is connected to
power and located on the gear rack, and a copperplate connected to ground and
located on the bottom rear end of the upper aluminum profile. When the screw
touches the copper plate, the circuit is complete and the switch receives signal which
is programmed to stop the servo from rotating further.

The final component is a USB microphone connected directly to the Raspberry
Pi. This is to be used by the human player to decide his/her move.

A complete list and wiring diagram, Figure 3.4, of the included electronic com-
ponents can be found on page 12.

Figure 3.1: Overhead picture of robot.

10

3.2. HARDWARE

(a) Lower arm axle and bearing housings. (b) Overhead picture of lower arm gears.

Figure 3.2: Lower arm point of rotation.

(a) Upper arm axle and bearing housings. (b) Overhead picture of upper arm gears.

Figure 3.3: Upper arm point of rotation.

11

CHAPTER 3. DEMONSTRATOR

Below follows a list of all hardware components used, thse are connected as seen
in Figure 3.4.

1. 12V Power Supply

2. 5V Power Supply

3. Dynamixel AX-12A Servo Motors

4. USB Microphone

5. Limit Switch

6. RC Servo

7. Electromagnet

8. ArbotiX-M Robocontroller

9. FTDI Cable

10. Breadboard with a Solid State Relay

11. Raspberry Pi 4

Figure 3.4: A wiring diagram of all the hardware components, made using Fritzing
[19].

12

3.3. SOFTWARE

3.3 Software
All software is written in Python on the Raspberry Pi [7].

3.3.1 Main program
The main file consists of a loop which keeps iterating as long as the chess game is
still in play. Five python classes were created for different purposes, taking care of
arm movement, gripper movement, chess engine handling and speech recognition.
These are integrated in the main file for a more organized structure and keeps the
main file short and concise. Figure A.1 on page 22 in Appendix shows a state
diagram of how the main file operates.

3.3.2 Chess
To be able to play chess versus a computer we imported Stockfish [4]. Given any
chess position Stockfish will return the best possible move. This is used to determine
the robots move which is then sent to the movement class. To be able to set up a
virtual chess board a chess package was imported. This allowed for an easy way to
handle chess related actions such as a check for legal moves and look for a check
mate.

3.3.3 Speech
Using the USB microphone, the Raspberry Pi [7] listens to what the human player
says and then searches the text string for a chess piece and a chess board coordinate.
This is then later translated into a legal chess move, such as ”g1f3” using the
imported chess package. If no legal move is detected, the program listens for a new
input by the player.

3.3.4 Movement
Given a chess move, this part will determine if its a capture, normal move or a
castling move and then move the arm to the correct position. All the motor values
for each position are stored in a dictionary which makes them easy to retrieve.

3.3.5 Gripper
To pick up a piece, the program lowers the gripper to the corresponding piece height
and then turns the electromagnet on. To drop off a piece the electromagnet turns
off. The electromagnet is switched on using a control signal from a Raspberry Pi
GPIO pin which turns on a solid state relay. This allows for a higher voltage than
what the Raspberry Pi can output.

13

Chapter 4

Results

The parts of the robot that had the most impact on precision were the following:

• Sturdiness of aluminum profiles.

• Ratio between the gears used for transmitting rotational motion from servo
to arm.

• Gear mesh contact ratio.

• Area of magnetized surface on the electromagnet.

The speed of the robot arm was increased whilst not carrying any chess piece to
improve the overall speed. For white to castle on the king side it took 33 seconds
to fully complete the move compared to 35 seconds before. When a larger gear was
installed on the RC servo it increased the pickup speed and thus decreasing the time
required by 2 seconds making it a final 31 seconds to castle the king and rook.

15

Chapter 5

Discussion & Conclusion

This chapter discusses the results and research questions, concludes the project and
suggests future development.

5.1 Discussion

The aluminum profiles used in this project had one flaw which quite severely reduced
the precision, it had one face open. Because two bearing housings had to be attached
on a face surface of the profile, it was necessary to turn the profile with the open
side facing sideways. This made the arms, especially the lower one, twist and bend
when more weight was added across the robot arm. This resulted in swaying and
the electromagnet not having a perfect vertical facing.

The cogwheel attached to the top of each axle was too big when compared to
the gear on the servos. The high gear ratio led to less precise movement as a small
rotation from the servo leads to a rather big motion in the arm.

The gear mesh contact ratio, meaning how much of the cogs are in touch with
each other, had a great impact on precision. Low ratio would lead to sway and a
much less smooth movement in the arm. This was resolved using slide-able engine
mounts for the Dynamixel AX-12A servos so the gears could first be pushed in place
before tightening the screws holding the mount.

Even though the coordinates of each chessboard square was finely calibrated, it
was discovered that the pin on the chess pieces would attach to the electromagnet
a little bit different every time. This led to the placement of chess pieces would get
worse for every additional move. This was, however, quite easily resolved using a
plastic cone at the tip of the electromagnet. The cone would help guide the chess
piece toward the center of the magnet, resulting in consistent pick up and drop off.

To increase the speed, or rather decrease the time taken, of a move at no cost
in precision, two applications proved to be especially effective.

First, increasing the Dynamixel AX-12A rotation speed by 100% when it was not
currently moving a chess piece. This is important since if the speed was increased
too high when a chess piece was being lifted, the electromagnet would loose its grip

17

CHAPTER 5. DISCUSSION & CONCLUSION

and the piece would drop. If the speed was increased by more than 100%, the torque
would be too high, leading to the gears slipping, displacing the arm and lowering
precision significantly.

Second, changing the cogwheel of the RC servo to a larger one. Since the RC
servo is simply used to raising or lowering the electromagnet, it did not matter as
much to have precise movement. A larger cogwheel leads to a higher linear speed
in the gear rack and thus decreasing its travel time.

5.2 Conclusion
The research questions were answered and the project can be considered successful.
The robot was able to recognize a move and physically execute it, however, there
are room for improvement.

The points brought up in the discussion would lead to a much faster and precise
movement, if resolved. Also, it was found that increasing the surface area of the
pins located at the top of each chess piece reduced sway of the piece and risk of
dropping due to heavy load.

5.3 Future Work
A possible addition to the robot could be a LED display which would be used to
show the user what the robot is doing at that very moment, whether it’s listening
for a move, calculating a move or executing a move. The display could also be used
as a menu if one would like to change the difficulty of the chess engine or maybe
change mode to two humans playing against each other.

Another addition could be a speaker which would be used for multiple purposes
such as telling the current location of a chess piece, the move the robot is currently
doing or any other information the player would be interested in. This would be
particularly useful if designing the robot for people with eye disorders.

18

Bibliography

[1] P. Hitlin, L. Rainie, N. Hatley, A. Smith, P. van Kessel, B. Broderick, M.
Duggan, A. Perrin, M. Porteus, S. Greenwood, D. Page, and O. O’Hea. (2016).
Research in the crowdsourcing age, a case study, 1. what is mechanical turk?,
Available at: https://www.pewresearch.org/internet/2016/07/11/what-
is-mechanical-turk/ [Accessed 01/20/2021].

[2] J. Ericson and A. Westermark. (2020). Checkmate, Remote arduino powered
chess, Degree Project in Technology, First Cycle, Available at: https://
www.diva- portal.org/smash/get/diva2: 1462109/FULLTEXT01.pdf
[Accessed 01/21/2021].

[3] F. Baldhagen and A. Hedström. (2020). Chess playing robot, Robotic arm
capable of playing chess, Degree Project in Technology, First Cycle, Available
at: https : / / www . diva - portal . org /smash/get/diva2:1462118/
FULLTEXT01.pdf [Accessed 01/21/2021].

[4] S. Nicolet, U. Corzo, S. Kiminki, nodchip, and J. VandeVondele. (2021). Stock-
fish/readme.md, Overview, Available at: https://github.com/official-
stockfish/Stockfish/blob/master/README.md [Accessed 02/20/2021].

[5] Acumen, Available at: http://www.acumen- language.org/ [Accessed
03/24/2021].

[6] Scara robots, The right choice for your application, Available at: https: //
www.fanuc.eu/de/en/robots/robot- filter- page/scara- series/
selection-support [Accessed 01/28/2021].

[7] Raspberry pi, Faqs, Available at: https : / / www . raspberrypi . org /
documentation/faqs/ [Accessed 01/30/2021].

[8] Trossen robotics, Arbotix-m robocontroller, Available at: https://www.
trossenrobotics . com / p / arbotix - robot - controller . aspx [Accessed
01/30/2021].

[9] Raspberry pi 4 computer model b 4gb, Product details, Available at: https: //
www.seeedstudio.com/Raspberry- Pi- 4- Computer- Model- B- 4GB-
p-4077.html [Accessed 04/20/2021].

[10] D. Sawicz. (). Hobby servo, Fundamentals, Available at: http://www.princeton.
edu/˜mae412/TEXT/NTRAK2002/292-302.pdf [Accessed 02/12/2021].

[11] Robotis, Dynamixel ax-12a, Available at: https : / / www . robotis . us /
dynamixel-ax-12a/ [Accessed 02/12/2021].19

https://www.pewresearch.org/internet/2016/07/11/what-is-mechanical-turk/
https://www.pewresearch.org/internet/2016/07/11/what-is-mechanical-turk/
https://www.diva-portal.org/smash/get/diva2:1462109/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1462109/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1462118/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1462118/FULLTEXT01.pdf
https://github.com/official-stockfish/Stockfish/blob/master/README.md
https://github.com/official-stockfish/Stockfish/blob/master/README.md
http://www.acumen-language.org/
https://www.fanuc.eu/de/en/robots/robot-filter-page/scara-series/selection-support
https://www.fanuc.eu/de/en/robots/robot-filter-page/scara-series/selection-support
https://www.fanuc.eu/de/en/robots/robot-filter-page/scara-series/selection-support
https://www.raspberrypi.org/documentation/faqs/
https://www.raspberrypi.org/documentation/faqs/
https://www.trossenrobotics.com/p/arbotix-robot-controller.aspx
https://www.trossenrobotics.com/p/arbotix-robot-controller.aspx
https://www.seeedstudio.com/Raspberry-Pi-4-Computer-Model-B-4GB-p-4077.html
https://www.seeedstudio.com/Raspberry-Pi-4-Computer-Model-B-4GB-p-4077.html
https://www.seeedstudio.com/Raspberry-Pi-4-Computer-Model-B-4GB-p-4077.html
http://www.princeton.edu/~mae412/TEXT/NTRAK2002/292-302.pdf
http://www.princeton.edu/~mae412/TEXT/NTRAK2002/292-302.pdf
https://www.robotis.us/dynamixel-ax-12a/
https://www.robotis.us/dynamixel-ax-12a/

BIBLIOGRAPHY

[12] Trossen robotics, Dynamixel ax-12a robot actuator, Available at: https:
//www.trossenrobotics.com/dynamixel- ax- 12- robot- actuator.aspx
[Accessed 04/20/2021].

[13] R. Nave. Hyperphysics, Electromagnet, Available at: http://hyperphysics. phy-
astr.gsu.edu/hbase/magnetic/elemag.html [Accessed 02/13/2021].

[14] Ftdi chip, Ttl-232r-5v, Available at: https://ftdichip.com/products/
ttl-232r-5v/ [Accessed 02/13/2021].

[15] kh86. (2011). Cytron technologies, How rc servo works?, Available at: https:
//tutorial.cytron.io/2011/09/19/how- rc- servo- works/ [Accessed
03/15/2021].

[16] (2020). Engineers garage, Controlling servo motor with stm32f103 microcon-
troller using stm32cubemx code configurator by stmicroelectronics and keil
uvision 5 ide for cortex m1 series microcontrollers, Available at: https://
www.engineersgarage.com/electronic- projects/interfacing- servo-
motor-with-stm32/ [Accessed 03/15/2021].

[17] Python, What is python? executive summary, Available at: https://www.
python.org/doc/essays/blurb/ [Accessed 02/10/2021].

[18] Arbotix robocontroller, Pypose introduction, Available at: http://vanadiumlabs.
github.io/pypose/ [Accessed 02/20/2021].

[19] Fritzing, Electronics made easy, Available at: https://fritzing.org/
[Accessed 04/25/2021].

[20] Creatly, Your visual workspace, Available at: https : / / creately . com
[Accessed 04/25/2021].

20

https://www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx
https://www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/elemag.html
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/elemag.html
https://ftdichip.com/products/ttl-232r-5v/
https://ftdichip.com/products/ttl-232r-5v/
https://tutorial.cytron.io/2011/09/19/how-rc-servo-works/
https://tutorial.cytron.io/2011/09/19/how-rc-servo-works/
https://www.engineersgarage.com/electronic-projects/interfacing-servo-motor-with-stm32/
https://www.engineersgarage.com/electronic-projects/interfacing-servo-motor-with-stm32/
https://www.engineersgarage.com/electronic-projects/interfacing-servo-motor-with-stm32/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
http://vanadiumlabs.github.io/pypose/
http://vanadiumlabs.github.io/pypose/
https://fritzing.org/
https://creately.com

Appendix A

PiChess State Diagram

21

APPENDIX A. PICHESS STATE DIAGRAM

Figure A.1: State diagram of PiChess, made using Creatly [20].

22

Appendix B

Python Code

23

Voice controlled robotic chess player
R'o'ststyrd robotisk schackspelare
Datum : 2021 - 05 - 09
Written by : Axel Sernelin and Oscar de Brito Lingman
Examinator : Nihad Subasic
TRITA-ITM-EX 2021:51
Kurskod : MF133X

Bachelor's Thesis in Mechatronics at KTH

################# Main File #################

from stockfish_engine import StockfishEngine
from speech_engine import SpeechEngine
from movement_engine import MovementEngine
from arm_movement import ArmMovement
import chess

board = chess.Board()
stockfish = StockfishEngine()
mic = SpeechEngine()
movement = MovementEngine()
arm = ArmMovement()

f = open("last_position.txt", "w") # saves the last position in case of a crash
arm._is_moving()# needs to call this function for the arms to be able to set speed
move = None
run = True
while run:
 while move is None: # looks for a legal move until found

[piece, square] = mic.get_square_and_piece() # gets the piece and square from
microphone

if piece and square is not None: # if both were found it tests if there is a
legal move with those two conditions

move = stockfish.get_player_move(board, piece, chess.WHITE, square)
 movement.execute_move(move, board) # executes the move with robot arm when a
legal one is found
 board.push(move) # updates the virtual board

f.write(board.fen()) # writes last position to file
print(board) if you wanna se the board in the console
move = stockfish.get_best_engine_move(board) # gets stockfish response move
movement.execute_move(move, board) # executes the move with robot arm
board.push(move) # updates virtual board
f.write(board.fen()) # writes last position to file
print(board)
move = None # resets move to None
if board.is_game_over() # if game is over, the program shuts off

run = False
f.close()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35

36
37
38
39
40
41
42
43
44
45
46
47

Voice controlled robotic chess player
R'o'ststyrd robotisk schackspelare
Datum : 2021 - 05 - 09
Written by : Axel Sernelin and Oscar de Brito Lingman
Examinator : Nihad Subasic
TRITA-ITM-EX 2021:51
Kurskod : MF133X

Bachelor's Thesis in Mechatronics at KTH

from driver import Driver
from ax12 import *

servo_1 = 1 # id for dynamixel servos
servo_2 = 2
servos = [servo_2, servo_1]
default_speed = [50, 50]

def _register_bytes_to_value(register_bytes): # takes the bytes given from dynamixel
and returns it as a value
 return register_bytes[0] + (register_bytes[1]<<8)

class ArmMovement: # handles movement of the dynamixel servos which controls the arm
 def __init__(self, port="/dev/ttyUSB0"):

self.coordinates_dict = {"a8" : [790, 570], "b8" : [735, 635],
"a7" : [760, 530], "b7" : [705, 595],
"a6" : [745, 480], "b6" : [685, 545],
"a5" : [740, 420], "b5" : [665, 485],
"a4" : [735, 355], "b4" : [665, 425],
"a3" : [750, 270], "b3" : [680, 340],
"a2" : [765, 175], "b2" : [700, 250],
"a1" : [800, 55], "b1" : [715, 155],
"c8" : [680, 705], "d8" : [610, 765],
"c7" : [645, 660], "d7" : [570, 720],
"c6" : [620, 605], "d6" : [550, 665],
"c5" : [610, 550], "d5" : [540, 600],
"c4" : [610, 480], "d4" : [540, 535],
"c3" : [620, 400], "d3" : [550, 450],
"c2" : [635, 315], "d2" : [570, 370],
"c1" : [665, 210], "d1" : [600, 270],
"e8" : [535, 825], "f8" : [440, 880],
"e7" : [495, 775], "f7" : [410, 815],
"e6" : [475, 715], "f6" : [395, 755],
"e5" : [470, 650], "f5" : [400, 685],
"e4" : [475, 575], "f4" : [405, 610],
"e3" : [485, 500], "f3" : [425, 530],
"e2" : [505, 415], "f2" : [450, 445],
"e1" : [540, 315], "f1" : [480, 345],
"g8" : [330, 920], "h8" : [200, 945],
"g7" : [310, 850], "h7" : [205, 875],
"g6" : [305, 790], "h6" : [215, 805],
"g5" : [315, 715], "h5" : [240, 730],
"g4" : [335, 640], "h4" : [270, 655],
"g3" : [360, 555], "h3" : [300, 575],
"g2" : [390, 470], "h2" : [330, 490],
"g1" : [425, 370], "h1" : [375, 390]
} # stores all the servo motor values for each

individual chess board square

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57

self.driver = Driver(port=port) # opens up the driver on the given usb port
via the FTDI cable. Uses serial communication

 def get_coordinate(self, square): # returns the servo motor values of a given
square

return(self.coordinates_dict.get(square, None)) # returns None if invalid
square

 def move_to_square(self, square, speed): # moves the arm to a given square
self.move(self.get_coordinate(square), speed)

 def home_position(self):
speed = [100, 100] # moves the arm to the home position
self.move([80, 680], speed)

 def drop_position(self): # moves the arm to the drop piece position
self.move([900, 150], default_speed)

 def startup_calibrate(self): # turns the motors to its end position for
calibration use

self.move([0, 1023], default_speed)

 def current_position(self): # returns both servos positions
return self._values_for_register(P_PRESENT_POSITION_L) # register id from

ax12

 def _values_for_register(self, register): # returns two values given what
register id you request

return [_register_bytes_to_value(self.driver.getReg(index, register, 2)) for
index in servos]

 def _is_moving(self): # returns True if any of the servos is moving, else False
return any([self.driver.getReg(index, P_MOVING, 1) == 1 for index in servos])

 def set_speed(self, speed): # sets the moving speed of both servos
for i in servos:

self.driver.setReg(i, P_GOAL_SPEED_L, [speed[i%2]%256, speed[i%2]>>8])

 def move(self, goal_position, speed): # moves the servos to a given position with
a default speed

self.set_speed(speed)
for i in servos:

self.driver.setReg(i, P_GOAL_POSITION_L, [goal_position[i%2]%256,
goal_position[i%2]>>8])

58

59
60

61

62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77

78
79

80

81
82
83
84
85
86
87
88
89

90
91
92

93

Voice controlled robotic chess player
R'o'ststyrd robotisk schackspelare
Datum : 2021 - 05 - 09
Written by : Axel Sernelin and Oscar de Brito Lingman
Examinator : Nihad Subasic
TRITA-ITM-EX 2021:51
Kurskod : MF133X

Bachelor's Thesis in Mechatronics at KTH

import RPi.GPIO as GPIO
from time import sleep
import chess

electromagnet_pin = 21 # GPIO pin id's
servo_pin = 17
sensor_pin = 4

pieces = {
'p': 2.6,
'r': 2.7,
'n': 2.4,
'b': 2.2,
'k': 1.9,
'q': 2
} # corresponds to the height of the piece (seconds)

class Gripper(object): # handles movement of the gripper
 def __init__(self):

GPIO.setmode(GPIO.BCM) # uses Broadcom SOC channel pin numbering, use
GPIO.BOARD for "normal numbering"

GPIO.setwarnings(False) # disables consol warning messages
GPIO.setup(servo_pin, GPIO.OUT) # sets pins to outputs
GPIO.setup(electromagnet_pin, GPIO.OUT)
GPIO.setup(sensor_pin, GPIO.IN) # sets sensor pin as input

 def move_down(self, t): # moves the gripper down for t seconds
pwm = GPIO.PWM(servo_pin, 50) # 50 Hz
pwm.start(0) # starts pwm signal
pwm.ChangeDutyCycle(1.5) # down motion
sleep(t) # waits for t seconds
pwm.ChangeDutyCycle(0) # stops servo
pwm.stop() # stops pwm signal

 def move_up(self): # moves the gripper up until the sensor at pin 4 is HIGH
pwm = GPIO.PWM(servo_pin, 50) # 50 Hz
pwm.start(0) # starts pwm signal
pwm.ChangeDutyCycle(12.5) # up motion
while GPIO.input(sensor_pin) == GPIO.LOW: # waits for signal

print("Waiting for sensor...")
pass

pwm.ChangeDutyCycle(0) # stops servo
pwm.stop() # stops pwm signal

 def electromagnet(self, on): # turns on/off magnet
output = GPIO.HIGH if on else GPIO.LOW # if true then high otherwise low.

Controls the solid state relay which is wired up to the electromagnet
GPIO.output(electromagnet_pin, output)

 def pickup(self, piece): # picks up a piece

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58

t = pieces[piece] # gets the height of the piece to pickup (seconds)
self.move_down(t) # moves down
sleep(0.2)
self.electromagnet(True) # turns on the electromagnet
sleep(0.2)
self.move_up() # moves all the way up

 def dropoff(self, piece): # drops off a piece
t = pieces[piece] # gets the height of the piece to pickup (seconds)
self.move_down(t) # moves down
sleep(0.2)
self.electromagnet(False) # turns off the electromagnet
sleep(0.2)
self.move_up() # moves all the way up

 def discard_piece(self): # discards a captured piece
self.move_down(0.5) # moves down for 0.5s
sleep(0.2)
self.electromagnet(False) # turns off electromagnet
self.move_up() # moves all the way up

 def go_to_idle(self): # puts the gripper at a distance closer to the pieces to
save time

move_down(1) # moves down for x seconds

 def cleanup(self): # clears the gpio pins
GPIO.cleanup()

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84

Voice controlled robotic chess player
R'o'ststyrd robotisk schackspelare
Datum : 2021 - 05 - 09
Written by : Axel Sernelin and Oscar de Brito Lingman
Examinator : Nihad Subasic
TRITA-ITM-EX 2021:51
Kurskod : MF133X

Bachelor's Thesis in Mechatronics at KTH

from arm_movement import ArmMovement
from gripper import Gripper
import chess

default_speed = [40, 40] # slow speed
fast_speed = [80, 80] # fast speed

class MovementEngine: # handles logic to decide how the arm should move given a move
 def __init__(self):

self.gripper = Gripper()
self.arm = ArmMovement()

 def convert_to_square(self, square): # converts a square string to a chess.SQUARE
integer

file = ord(square[0]) - 97 # converts the file string to the corresponing
file id

rank = ord(square[1]) - 49 # converts the rank string to the corresponing
rank id

return chess.square(file,rank) # returns the chess square id given the file
and rank

 def piece_at(self, square, board): # returns the current piece at a given square
in a given board position

piece = board.piece_at(self.convert_to_square(square)) # gets the chess.PIECE
on given square

if piece is not None:
return str(piece).lower() # returns as a lowercase string if not None

else:
return None # returns None if piece is None

 def capture(self, move, board): # handles the movement if the chess move is a
capture

goal_square = move[-2:] # gets the square where the captured piece is
piece = self.piece_at(goal_square, board) # gets the piece which is captured
self.arm.move_to_square(goal_square, fast_speed) # moves to the captured

piece
while self.arm._is_moving(): # waits until its at its destination

print("Moving to: " + goal_square)
pass

self.gripper.pickup(piece) # picks up the captured piece
self.arm.drop_position() # moves the arm to the discard piece position
while self.arm._is_moving(): # waits until its at its destination

print("Moving to drop position...")
pass

self.gripper.discard_piece() # gripper drops piece
self.make_move(move, board) # after piece is discarded it makes a normal

move.
pass

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25

26

27
28

29

30
31
32
33
34
35

36
37
38

39
40
41
42
43
44
45
46
47
48

49
50

 def make_move(self, move, board): # handles the movement if the chess move is a
normal move

start_square = move[:2] # gets the square where the piece is
goal_square = move[-2:] # gets the square where the piece is going to
piece = self.piece_at(start_square, board) # gets the piece which is to be

moved
self.arm.move_to_square(start_square, fast_speed) # moves the arm to the

piece
while self.arm._is_moving(): # waits until its at its destination

print("Moving to: " + start_square)
pass

self.gripper.pickup(piece) # gripper picks up the piece
self.arm.move_to_square(goal_square, default_speed) # arm moves to the square

where it is to be placed
while self.arm._is_moving(): # waits until its at its destination

print("Moving to: " + goal_square)
pass

self.gripper.dropoff(piece) # gripper drops off the piece
self.arm.home_position() # moves back to home position

 def castle(self, move, board):
move_string = str(move) # converts move to a string
if board.is_kingside_castling(move):

if board.turn: # if its white and kingside castle
self.make_move(move_string, board) # makes the king move
rook_move = "h1f1"
self.make_move(rook_move, board) # makes the rook move

else: # if its black and kingside castle
self.make_move(move_string, board) # makes the king move
rook_move = "h8f8"
self.make_move(rook_move, board) # makes the rook move

elif board.is_queenside_castling(move):
if board.turn: # if its white and queenside castle

self.make_move(move_string, board) # makes the king move
rook_move = "a1d1"
self.make_move(rook_move, board) # makes the rook move

else: # if its black and queenside castle
self.make_move(move_string, board) # makes the king move
rook_move = "a8d8"
self.make_move(rook_move, board) # makes the roob move

 def is_capture(self, move, board): # checks if the chess move is a capture or not
goal_square = move[-2:] # gets the destination square of the move
return True if self.piece_at(goal_square, board) is not None else False #if

the square where the piece is to be placed is not empty, it is a capture

 def execute_move(self, move, board): # decides what type of move it is and then
executes it

move_string = str(move) # converts move to a string
if board.is_castling(move): # if castle

self.castle(move, board)
elif self.is_capture(move_string, board): # if capture

self.capture(move_string, board)
else:

self.make_move(move_string, board) #else normal move

51

52
53
54

55

56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93

94
95
96
97
98
99

100

Voice controlled robotic chess player
R'o'ststyrd robotisk schackspelare
Datum : 2021 - 05 - 09
Written by : Axel Sernelin and Oscar de Brito Lingman
Examinator : Nihad Subasic
TRITA-ITM-EX 2021:51
Kurskod : MF133X

Bachelor's Thesis in Mechatronics at KTH

from chess import uci

squares = ['a1', 'b1', 'c1', 'd1', 'e1', 'f1', 'g1', 'h1',
'a2', 'b2', 'c2', 'd2', 'e2', 'f2', 'g2', 'h2',
'a3', 'b3', 'c3', 'd3', 'e3', 'f3', 'g3', 'h3',
'a4', 'b4', 'c4', 'd4', 'e4', 'f4', 'g4', 'h4',
'a5', 'b5', 'c5', 'd5', 'e5', 'f5', 'g5', 'h5',
'a6', 'b6', 'c6', 'd6', 'e6', 'f6', 'g6', 'h6',
'a7', 'b7', 'c7', 'd7', 'e7', 'f7', 'g7', 'h7',
'a8', 'b8', 'c8', 'd8', 'e8', 'f8', 'g8', 'h8'] # list which stores all

squares

class StockfishEngine(object): #handles chess moves and positions
 def __init__(self):

self._engine = uci.popen_engine('stockfish') #opens up an instance of the
stockfish engine

self._engine.uci()

 def get_best_engine_move(self, board): # gets stockfish engine's best move given
the current position

self._engine.position(board) # feeds the board to stockfish
result = self._engine.go(movetime=1000) # lets stockfish calculate all the

possible lines for 1000ms
return result.bestmove # returns the best move in the current position

 def get_current_piece(self, board, square): # returns what piece is at requested
square and converts it to a lowercase lette.

return str(board.piece_at(square)).lower()

 def try_legal_move(self, board, suggested_move): # returns the move if its legal,
otherwise returns None

legal_moves_dict = {str(move) : move for move in board.legal_moves } #
creates a dictionary with moves in a string format as key and chess moves as item

move = legal_moves_dict.get(suggested_move, None) # returns None if non legal
move

return move # retuns the move

 def square_name(self, square): # given a squares id (0-63, integer), it returns
the name of the square as a string

return squares[square]

 def get_pieces(self, board, piece_type, piece_color): # gets all pieces and their
positions on the board and returns a list

return [square for square in board.pieces(piece_type, piece_color)]

 def get_player_move(self, board, piece_type, piece_color, destination_square): #
takes a piecetype and a destination and returns the legal move which it can do

moves = []
pieces_on_board = self.get_pieces(board, piece_type, piece_color) # gets the

pieces of the given types positions on the board

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24

25
26
27

28
29

30
31
32

33
34
35

36

37

38
39
40

41
42
43

44
45
46

47
48

for square in pieces_on_board:
square = self.square_name(square) # gets the square names of the squares
move = self.try_legal_move(board, square+destination_square) # tries

which of the moves is a legal move
if move is not None:

moves.append(move) # appends the move to a list if its not None
return moves[0] if moves else None #returns the first legal move, else None

49
50
51

52
53
54

Voice controlled robotic chess player
R'o'ststyrd robotisk schackspelare
Datum : 2021 - 05 - 09
Written by : Axel Sernelin and Oscar de Brito Lingman
Examinator : Nihad Subasic
TRITA-ITM-EX 2021:51
Kurskod : MF133X

Bachelor's Thesis in Mechatronics at KTH

import speech_recognition as sr
import chess
import re # regular expression package

pieces_dict = {
"knight" : chess.KNIGHT,
"knights" : chess.KNIGHT,
"nights" : chess.KNIGHT,
"night" : chess.KNIGHT,
"nite" : chess.KNIGHT,
"light" : chess.KNIGHT,
"wright" : chess.KNIGHT,
"height" : chess.KNIGHT,
"fight" : chess.KNIGHT,
"sight" : chess.KNIGHT,
"site" : chess.KNIGHT,
"horse" : chess.KNIGHT,
"whores" : chess.KNIGHT,
"9th" : chess.KNIGHT,
"nike" : chess.KNIGHT,
"might" : chess.KNIGHT,

"pawn" : chess.PAWN,
"pan" : chess.PAWN,
"vaughn" : chess.PAWN,
"paw" : chess.PAWN,
"prawn" : chess.PAWN,
"lawn" : chess.PAWN,
"dawn" : chess.PAWN,
"shaun" : chess.PAWN,
"spawn" : chess.PAWN,
"yawn" : chess.PAWN,
"pawns" : chess.PAWN,
"poem" : chess.PAWN,
"home" : chess.PAWN,
"on" : chess.PAWN,

"queen" : chess.QUEEN,
"wien" : chess.QUEEN,
"queens" : chess.QUEEN,

"rook" : chess.ROOK,
"rooks" : chess.ROOK,
"route" : chess.ROOK,
"rock" : chess.ROOK,
"roof" : chess.ROOK,
"brook" : chess.ROOK,
"brooke" : chess.ROOK,
"crook" : chess.ROOK,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

"king" : chess.KING,
"kings" : chess.KING,
"kong" : chess.KING,
"kill" : chess.KING,
"cling" : chess.KING,
"kin" : chess.KING,

"bishop" : chess.BISHOP,
"bishops" : chess.BISHOP,
"shop" : chess.BISHOP,
"chop" : chess.BISHOP,
"shops" : chess.BISHOP
} #dictionary with similair sounding words

class SpeechEngine: #handles voice input and identifying the player move
 def __init__(self):

self.r = sr.Recognizer()
self.m = sr.Microphone()

 def listen_for_move(self):
text_string = None
with self.m as source: self.r.adjust_for_ambient_noise(source) # adjusts for

ambient noise
print("Listening...")
with self.m as source: audio = self.r.listen(source)
print("Got it! Analyzing move...")
try:

value = self.r.recognize_google(audio) # recognizes speech using Google
Speech Recognition

if str is bytes: # special handling to correctly print unicode
characters to standard output

text_string = format(value).encode("utf-8")
else:

text_string = format(value)
except sr.UnknownValueError: # error handling

print("Oops! Didn't catch that move, try again")
except sr.RequestError as e:

print("Uh oh! Couldn't request results from Google Speech Recognition
service; {0}".format(e))

return(text_string.lower() if text_string else None) # returns a lowercase
string if its not None

 def piece_finder(self, text_string): # gets the chess piece from the recorded
text string

string_split = text_string.split() # splits the string into a list
for word in string_split: # for each word in the string it checks if its in

the dictionary
piece = pieces_dict.get(word, None)
if piece is not None: # if theres a match, it returns the piece

return piece

 def square_finder(self, text_string): # gets the square where the piece is to
move to

square = re.search(r'[a-h]+[1-8]', text_string) # re expression to find a
coordinate in the string

if square is not None:
return square.group() # returns the square if its found

else:
return None

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84
85
86
87

88

89
90
91
92
93
94
95

96

97
98

99
100

101
102
103
104
105

106

107
108
109
110
111

Appendix C

Acumen

Figure C.1: Simulation of lifting movement, made using Acumen [5].

The following pages include the simulation code which was used in Acumen [5].

35

//Acumen simulation av hur en schackpjäs rör sig i vår robot
//Skapad av Axel Sernelin och Oscar de Brito Lingman
//ME133X Grupp 33
//Vi vet inte hur man ska få ett object att rotera kring en fix punkt så vi kunde
inte göra robotarmarna.
model Main(simulator) =
initially
c1 = create Cyl((0,0,0)), //skapar upp cylindern
c2 = create Chess(), //skapar upp brädet
x1=0, x1'=0, //sätter start position och hastigheter för de olika riktningarna
y1=0, y1'=0,
z1=2.75, z1'=0
always
if x1<3 //när x1 positionen så stannar den
then x1' = 1
else
x1' = 0,
if x1>=3 && y1 < 2 //när x1 positionen är uppnådd så startar y1 och kör tills y1 är i
position 2
then y1' = 1
else
y1' = 0,
if x1>=3 && y1 >= 2 && z1 > 0.75 //när x1 och y2 är i rätt position startar z1
hastigheten tills z1 positionen är på 0.75
then z1' = -1
else
z1' = 0,
c1.pos = (x1,y1,z1) //sätter cylinderns position
model Cyl(pos) =
initially
_3D = (),_Plot=()
always
_3D = (Cylinder center = pos + (0,0,0) //skapar cylinder med olika attribut och
position pos som justeras från huvudprogrammet
color = red
length = 1.5
radius = 0.25
rotation = (pi/2,0,0)
)
model Chess() =
initially
_3D = (
(Box center = (0,0,0) //skapar rutor som på ett schackbräde, ett block per ruta.
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (1,0,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (2,0,0)
color = black
length = 1
width = 1
height = 0.1
)

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
21

22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

(Box center = (3,0,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (4,0,0)
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (0,1,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (0,2,0)
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (0,3,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (0,4,0)
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (1,1,0)
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (1,2,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (1,3,0)
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (1,4,0)
color = white
length = 1
width = 1
height = 0.1
)

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

(Box center = (2,1,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (2,2,0)
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (2,3,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (2,4,0)
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (3,1,0)
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (3,2,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (3,3,0)
color = black
length = 1
width = 1
height = 0.1
)
(Box center = (3,4,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (4,1,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (4,2,0)
color = black
length = 1
width = 1
height = 0.1
)

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

(Box center = (4,3,0)
color = white
length = 1
width = 1
height = 0.1
)
(Box center = (4,4,0)
color = black
length = 1
width = 1
height = 0.1
))

177
178
179
180
181
182
183
184
185
186
187
188
189
190

TRITA-KTH-ITM 2021:51

www.kth.se

	Introduction
	Background
	Purpose
	Scope
	Method

	Theory
	SCARA
	Hardware
	Raspberry Pi 4
	ArbotiX-M Robocontroller
	Dynamixel AX-12A Servomotor
	Electromagnet
	FTDI cable
	RC Servo

	Software
	Python
	Stockfish
	PyPose

	Demonstrator
	Construction
	Robotic Arm

	Hardware
	Software
	Main program
	Chess
	Speech
	Movement
	Gripper

	Results
	Discussion & Conclusion
	Discussion
	Conclusion
	Future Work

	Bibliography
	Appendices
	PiChess State Diagram
	Python Code
	Acumen

