
IN DEGREE PROJECT MECHANICAL ENGINEERING,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2021

3D Scanner
Scanning small objects and recreating them
visually as a mesh in a computer

CARL EGENÄS

AXEL SACILOTTO

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

3D Scanner

Scanning small objects and recreating them visually as a mesh in a computer

CARL EGENÄS, AXEL SACILOTTO

Bachelor’s Thesis at ITM
Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA-ITM-EX 2021:39

Abstract
The purpose of this project was to construct a 3D scanner
capable of scanning smaller objects and visualize them in
a computer with satisfying accuracy. The goal was then to
generate an STL file able to be 3D printed in an attempt
at reverse engineering. Components, materials and tools
were provided by KTH to the best of their ability and a
budget of 1000 SEK was given to purchase components not
available at KTH.

The scanner was designed using Solid Edge and utilizes
two stepper motors to scan objects. One motor is used
to rotate a platform that the object is placed upon and
the second stepper motor is used to move an elevator on
which a distance sensor is mounted. By keeping track of
the elevator’s height in conjunction with the rotation of
the object, the distance measured by the sensor can be
converted into a point in a Cartesian coordinate system.

Several different methods were tested in order to see
how results varied. Firstly, the density of scanned points
was increased, meaning that the sensor returned values
more often as the stepper motor was rotating. Secondly,
multiple measurements were made for a single point to de-
termine an average distance and in that way reduce noise
and uncertainty.

Placing a single laser sensor perpendicular to the object-
rotating plate proved to be the optimal arrangement in
terms of accuracy with the limited budget provided for this
project. The scans are very time consuming which makes it
important to decide whether to prioritize speed or accuracy.

Keywords: Mechatronics, 3D Scanner, Arduino, Stepper
Motor, Mesh

Referat
3D-Scanner

Syftet med detta projekt var att konstruera en 3D-scanner
kapabel att scanna mindre objekt och visualisera dem i en
dator med tillfredsställande resultat. Målet var sedan att
generera en STL-fil som g̊ar att skriva ut i 3D-skrivare för
att försöka använda sig av reverse engineering. Komponen-
ter, material och verktyg förs̊ags av KTH s̊a gott det gick
och en budget p̊a 1000 kr var tillgänglig för att inhandla
komponenter som inte fanns p̊a KTH.

Skannern designades med hjälp av Solid Edge och anv-
änder sig av tv̊a stegmotorer för att skanna object. En mo-
tor användes för att rotera den plattform som objektet pla-
cerades p̊a och den andra stegmotorn användes för att flyt-
ta en hiss varp̊a en avst̊andssensor monterades. Genom att
h̊alla koll p̊a hissens höjd i kombination med rotationen av
objektet kan avst̊andet som sensorn uppmäter konverteras
till en punkt i det kartesiska koordinatsystemet.

Ett flertal metoder testades för att undersöka hur resul-
taten varierade. För det första ökades densiteten av skanna-
de punkter, det vill säga sensorn returnerade värden oftare
än stegmotorn roterade. För det andra genomfördes ett fler-
tal mätningar för varje enskild punkt för att bestämma ett
medelavst̊and och p̊a s̊a sätt minimera brus och osäkerhet.

Att placera en enstaka lasersensor vinkelrätt mot ob-
jektroterande plattan visade sig vara det optimala arrange-
manget för noggrannhet med den begränsade budgeten för
det här projektet. Inskanningarna är väldigt tidskrävande
vilket gör det viktigt att bestämma sig för att prioritera
snabbhet eller noggrannhet.

Nyckelord: Mekatronik, 3D-Scanner, Arduino,
Stegmotor, Mesh

Acknowledgements

We would like to thank our supervisor and examiner Nihad Subasic for providing
lectures and guidance for the full duration of this project. Furthermore, we thank
the assistants Amir Avdic and Malin Lundvall for sharing their knowledge and
helping us in our times of need. We would also like to thank Staffan Qvarnström
för ordering and providing material and components to all projects. Lastly we thank
the School of Industrial Engineering and Management for providing us with various
materials and all the equipment needed to complete the project.

Carl Egenäs, Axel Sacilotto
Stockholm, May 2021

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Scope . 2
1.4 Method . 2

2 Theory 3
2.1 An overview and important mechanisms 3
2.2 Distance sensor . 4

2.2.1 Scanning methods . 4
2.3 Microcontroller . 4
2.4 Stepper motor . 5
2.5 Stepper motor driver . 6
2.6 OLED I2C SH1106 1.3” display . 6
2.7 Visualization . 7

3 Demonstrator 9
3.1 Acumen Simulation . 10
3.2 Hardware . 10

3.2.1 Base plate . 11
3.2.2 Spinning platform . 11
3.2.3 Elevator mechanism and distance sensor 12
3.2.4 Circuitry . 14

3.3 Software . 15
3.3.1 Collecting data points . 15
3.3.2 Saving data points . 17
3.3.3 Visualization . 17

4 Experiments 19
4.1 Distance sensor accuracy . 19
4.2 Scan duration . 20

5 Results 23

6 Discussion 27
6.1 Accuracy of recreation . 27
6.2 Sensors and sensor arrangement . 27

7 Conclusion and future work 29
7.1 Conclusion . 29
7.2 Future work . 30

Bibliography 31

Appendices A-1

A Measurement Accuracy Experiment A-1
A.1 Python code . A-1
A.2 Graphs . A-4

B Arduino code B-1

C Acumen simulation C-1

D Steps taken in Meshlab to generate an STL file D-1

E Stepper motor datasheet E-1

List of Figures

1.1 The creation of a clay pot [2] . 1
1.2 A 3D printer in action [4] . 1

2.1 The Matter and Form MFS1V1 3D Scanner [5] 3
2.2 The triangulation scanning method [8] 4
2.3 Arduino UNO, the microcontroller board used in this project [10] 5
2.4 Simplified version of a stepper motor. Motion left to right: Step, half

step, next step. Made with Google Presentations 5
2.5 DRV8825 stepper motor driver [15] . 6
2.6 Table of how to achieve different levels of microstepping [13] 6
2.7 I2C OLED display [18] . 6
2.8 An illustration of the conversion from a point cloud (left) to a mesh [20]

(right) . 7

3.1 The 3D Scanner designed in Solid Edge, image rendered in Keyshot . . 9
3.2 A simulation of the object-rotating plate and the elevator mechanism.

Picture taken in the Acumen environment 10
3.3 The base plate with walls designed in Solid Edge, image rendered with

Keyshot . 11
3.4 The spinning mechanism, made in Solid Edge and rendered in Keyshot 12
3.5 A close-up image of the spinning platform and the rubber added to

increase friction. Picture taken by Axel Sacilotto 12
3.6 The elevator design, made in Solid Edge and image rendered in Keyshot 13
3.7 VL6180X LiDAR distance sensor from Adafruit [23] 13
3.8 How the sensor is mounted on the elevator, made in Solid Edge, image

rendered in Keyshot . 14
3.9 How the VL53L0X sensor from M5Stack could be mounted on the same

elevator, designed in Solid Edge, image rendered in Keyshot 14
3.10 The circuitry, made with Tinkercad and Google Presentations 15
3.11 Object-rotating plate (green). Point A is the measured point and point

B is the coordinate calculated adjusted for the rotation, made with draw.io 16
3.12 Flow chart of the program that collects and saves data points, made with

draw.io . 16

3.13 An example of the conversion from points to a mesh using Meshlab,
pictures taken in Meshlab . 17

4.1 The spread as a function of the amount of measurements per average,
from Google Sheets . 20

4.2 The time required to complete a full rotation plotted against the amount
of measurements used to get a final value for each point, from Google
Sheets . 21

5.1 A stone model of a madeleine cake, the object used to compare different
levels of accuracy visually. Picture taken by Axel Sacilotto 23

5.2 Scan 1: 1 measurement per point and 2 mm between horizontal layers . 24
5.3 Scan 2: 1 measurement per point and 1 mm between horizontal layers . 24
5.4 Scan 3: 5 measurements per point and 2 mm between horizontal layers . 24
5.5 Scan 4: 5 measurements per point and 1 mm between horizontal layers . 25

A.1 Counting every measurement . A-4
A.2 Average of five measurements . A-4
A.3 Average of ten measurements . A-4
A.4 Average of 50 measurements . A-4
A.5 Average of 200 measurements . A-5

D.1 Step 1: Import a mesh . D-1
D.2 Step 2: Choose a text document with each row containing x- y and z-

coordinates separated by either semicolon, comma or space. Choose the
appropriate separator for your file . D-1

D.3 Step 3: When you see the points on the screen it is time to compute
normals as shown here . D-2

D.4 Step 4: Use the default settings and choose ”Apply” D-2
D.5 Step 5: Now it should look something like this D-2
D.6 Step 6: The next step is to create the mesh, which is done as shown here D-3
D.7 Step 7: Once again, use the default settings and hit ”Apply” D-4
D.8 Step 8: If the surface of the mesh is inside out (it looks dark) simply

invert faces orientation as shown here D-5
D.9 Step 9: Hit ”Apply” . D-6
D.10 Step 10: On the right side of the screen, click the eye next to your file

of points to hide the points . D-6
D.11 Step 11: Your mesh is now done and should look something like this . . D-6
D.12 Step 12: To export the file, first select your Poisson mesh D-6
D.13 Step 13: Then choose ”Export Mesh As...” D-7
D.14 Step 14: Choose a name for your file and select STL File Format D-7
D.15 Step 15: Now the STL file can be saved and opened in other 3D envi-

ronments or be 3D printed . D-7

List of Tables

4.1 Experiment of the sensor’s accuracy and how to reduce uncertainty by
using an average of multiple measurements. 19

4.2 Time necessary to complete a full rotation with different accuracy. . . . 20

5.1 Time necessary to complete 3D scan of the madeleine model with differ-
ent levels of accuracy . 25

List of abbreviations

3D Three-Dimensional
ADC Analog to Digital Converter
CAD Computer Aided Design
CPU Central Processing Unit
DAC Digital to Analog Converter
DC Direct Current
F Farad
FOV Field Of View
GND Ground (electrical)
KTH Kungliga Tekniska Högskolan (Royal Institute of Technology)
LiDAR Light Detection And Ranging
OLED Organic Light-Emitting Diode
RAM Random Access Memory
ROM Read Only Memory
SEK Swedish Krona
STL Standard Triangle Language (file format)
TOF Time-Of-Flight
V Volt
VMOT Voltage Motor

Chapter 1

Introduction

This chapter contains an introduction to the relevant subjects, the purpose and
scope of the project and a brief explanation of the method.

1.1 Background
Echolocation, the use of sound to locate objects, is in theory a simple concept that
animals, like the bat, use in order to navigate [1] and hunt for food. Despite being
the basis for old, yet advanced technologies like radar and sonar, it is not that
widely available for the average consumer. Although, this is beginning to change
as the 2020 iPhone 12 Pro series was launched with a LiDAR sensor, making the
technology more accessible to the masses.

The story is similar for 3D printing, a technology that can trace its roots far back
in time when humans manually “3D printed” clay pots [2] layer by layer, as seen in
Figure 1.1. Today the process is automated, see Figure 1.2, and at the forefront of
modern technology. However, 3D printing is often a complicated story that requires
expensive equipment which makes it rare for ordinary people to be exposed to the
technology outside of big industries. 3D printing has many applications today [3]
including medical, aerospace and automotive.

Figure 1.1: The creation of a
clay pot [2]

Figure 1.2: A 3D printer in ac-
tion [4]

1

CHAPTER 1. INTRODUCTION

1.2 Purpose
The purpose of this project is to design and construct a device that, with the
help of a distance sensor, can scan smaller objects and recreate them visually on a
screen. That visual recreation will then be used to 3D print a copy of the object in
an attempt at reverse engineering. The following three research questions will be
explored in the project:

• With what degree of accuracy can the three-dimensional object be recreated
in a computer?

• How long does it take to create the visualization of the object?

• What arrangement of sensors will yield the best results in terms of accuracy?

1.3 Scope
The 3D scanner created in this project will be a cheaper and simpler model than
what is currently available on the market. It will contain resources supplied by
KTH, including a microcontroller, cables and other components as well as access to
tools, and a budget of 1000 SEK for additional purchases.

1.4 Method
The first step is to gather relevant information regarding sensors and other potential
components for the project in order to understand the limitations and potential
obstacles that might be encountered. The construction and coding of the scanner
will be a process of trial and error apart from what can be planned in theory. To
design the prototype, the 3D CAD program Solid Edge will be used, with some
parts being 3D printed from there directly. Once the construction is completed, the
code will be tested and altered based upon experiments in order to find the optimal
solution or solutions for capturing the scanned object in detail.

2

Chapter 2

Theory

This chapter covers the relevant theory behind the project in general and specifically
the theory relevant to our research questions.

2.1 An overview and important mechanisms

The 3D scanning device created in this project will be based on the mechanisms
of the scanner depicted in Figure 2.1. It will consist of a rotating platform and an
elevator mechanism, both of which will help scan the entire object. The object will
sit on the platform and the distance sensor will be mounted on the elevator which
will move up and down by rotating a threaded rod passing through a nut fastened
in the middle of the elevator.

Figure 2.1: The Matter and Form MFS1V1 3D Scanner [5]

Both the rotation of the platform and the threaded rod will come from stepper
motors. More about those can be found in Section 2.4. The motors and the distance
sensor will be controlled by an Arduino UNO microcontroller, described in Section
2.3.

3

CHAPTER 2. THEORY

2.2 Distance sensor
A distance sensor is a component that measures the distance between itself and the
nearest object straight ahead of the sensor by combining both a transmitter and
receiver in one component. There are different ways of measuring distance and two
common ones are explained in Section 2.2.1.

2.2.1 Scanning methods

Time-of-flight (TOF) is a method which uses a pulse [6] of laser or sound and
calculates the distance by measuring the time it takes for the pulse to return. In the
case of a laser sensor, the speed of light is used to calculate the distance travelled
by the laser beam. It is calculated using Equation 2.1:

Distance = c · t2 , (2.1)

where c is the speed of light and t is the time it takes for the laser beam to return
to the source.

Triangulation is a method optimized for short distance measurements [6] where
great accuracy is required. It makes use of a laser diode and an image sensor [7]
and calculates the angle at which the laser beam hits the sensor, as seen in Figure
2.2. It requires expensive image sensors to achieve such high accuracy.

Figure 2.2: The triangulation scanning method [8]

2.3 Microcontroller
A microcontroller is a small computer optimized for certain simple tasks. This in-
cludes programmable analog and digital reading and writing and support for pulse

4

2.4. STEPPER MOTOR

width modulation. Functionality varies between models but microcontrollers gen-
erally consist of a central processing unit [9] (CPU), that can best be described
as the brain of the controller, handling calculations and logic among other things.
They also typically have input and output ports, memory in form of random access
memory (RAM) and read only memory (ROM), analog to digital converters (ADC)
and lastly digital to analog converters (DAC).

Figure 2.3: Arduino UNO, the microcontroller board used in this project [10]

2.4 Stepper motor
A stepper motor is a variant of the common DC motor and generally consists of
a permanent magnet as a rotor surrounded by several electromagnets arranged in
groups [11], or so called phases. By turning different phases on and off in a certain
sequence a step is completed, hence the name step or stepper motor, see Figure
2.4. Since the rotation is done step by step, it is possible to accurately control

Figure 2.4: Simplified version of a stepper motor. Motion left to right: Step, half
step, next step. Made with Google Presentations

the position of the motor without any feedback from sensors and achieve the same
functionality [12] as the traditional servo motor. Furthermore, unlike the traditional
servo motor, a stepper motor allows for an unlimited range of motion and is thus
highly practical when accurate and continuous rotation is required. Lastly, it is also

5

CHAPTER 2. THEORY

possible to have a partial step motion where the rotor is rotated a half, eighth or
even smaller increments of a step, but in order to do so, a stepper motor driver is
required.

2.5 Stepper motor driver

A stepper motor driver is a component that, unlike a microcontroller, can handle
the relatively high amounts of current and voltage that a stepper motor requires
and also allows for control of the motor with the use of a standard signal of 5 or
3,3 V from a microcontroller. Moreover, by giving signal to one or more of the M
ports, see Figure 2.5, it is possible to divide the step resolution [13] into halves,
eighths and all the way down to 1/32th thus giving even more control of the steps,
see Figure 2.6. The driver has a potentiometer that can set a current limit to not
exceed the current rating of the stepper motor. It needs a motor supply voltage of
8,2-45 V connected across VMOT and GND [14], but to avoid voltage spikes above
45 V, it is wise to put a large capacitor across VMOT and GND, see Figure 2.5.

Figure 2.5: DRV8825
stepper motor driver [15]

Figure 2.6: Table of how to achieve different levels
of microstepping [13]

2.6 OLED I2C SH1106 1.3” display

This display can be used do present different patterns, data or text sent from
the Arduino microcontroller. It uses the SH1106 driver [16] and therefore the
Adafruit SH1106 library [17] is needed to connect the display to the arduino. The
display is depicted in Figure 2.7.

Figure 2.7: I2C OLED display [18]

6

2.7. VISUALIZATION

2.7 Visualization
To be able to create a three-dimensional visualization in a computer, software able
to process the point data is needed. Each measurement from the distance sensor
corresponds to a point in a Cartesian coordinate system. The point cloud, which is
a large collection of points, will be converted to a mesh, as shown in Figure 2.8. The
mesh is a collection of triangular connections [19] between the points in the point
cloud. This creates a surface with the purpose of resembling the scanned object as
closely as possible.

Figure 2.8: An illustration of the conversion from a point cloud (left) to a mesh
[20] (right)

7

Chapter 3

Demonstrator

This chapter covers the design, simulation and construction of the demonstrator,
the included circuitry as well as the software necessary to make everything work.

Figure 3.1: The 3D Scanner designed in Solid Edge, image rendered in Keyshot

9

CHAPTER 3. DEMONSTRATOR

3.1 Acumen Simulation

The movement of the elevator and the rotation of the object-rotating plate was
simulated using Acumen [21] with the aim of visualizing the scanning process and
confirm that everything moved and worked as intended. Acumen is a program based
on the programming language Java and allows the user to simulate movements in
an accessible environment that requires very little prior programming experience.

Figure 3.2: A simulation of the object-rotating plate and the elevator mechanism.
Picture taken in the Acumen environment

Figure 3.2 shows an early simulation of the elevator (right) and object-rotating
plate (left) based on a simplified version of the 3D-scanner with only the moving
parts included.

3.2 Hardware

The hardware used to construct the prototype includes various parts designed in
the 3D CAD program Solid Edge and those parts came to life through 3D printing.
It also includes two stepper motors, an Arduino UNO microcontroller, a VL6180X
distance sensor, three steel rods, one of which is threaded, a nut and screws of
various sizes to fasten different components.

10

3.2. HARDWARE

3.2.1 Base plate

The base plate was designed in Solid Edge and helps keep the whole structure in
place. It is equipped with enclosing support for both stepper motors and the two
steel rods on either side of the elevator (see Section 3.2.3). It is also surrounded by
a slot to permit the installation of module-like walls, as seen in Figure 3.3. These
walls are used to fasten, from left to right in Figure 3.3: the Arduino UNO, the
OLED display and finally a breadboard.

Figure 3.3: The base plate with walls designed in Solid Edge, image rendered with
Keyshot

3.2.2 Spinning platform

The spinning platform is powered by a KH56KM2-801 stepper motor from Japan
Servo which rotates 1,8◦ per step, or 200 steps per revolution. The object meant
to be scanned will sit on the surface of the platform and rotate around the stepper
motor’s axis of revolution. The mechanism is portrayed in Figure 3.4.

The motor is larger and more powerful than necessary for most light objects,
but this problem was counteracted in a couple of ways. Firstly, by adding friction to
the spinning platform’s surface and secondly, by reducing the motor’s torque. The
added friction to the surface helps the object stay in place and not slip when the
motor takes very aggressive and distinct steps. Friction was added by using a worn
XIOM Sigma I Pro table tennis rubber, as depicted in Figure 3.5. To maximize
friction, the rubber was turned upside down, leaving the side with traces of glue
facing up. The lateral area of the spinning platform was then wrapped with Butterly
side tape, more commonly used to protect table tennis rubbers.

The motor’s torque was reduced with the use of the stepper motor driver. Firsty,
the potentiometer was turned to allow as little current as possible to pass to the
motor while still being able to rotate normally. Secondly, the use of microsteps

11

CHAPTER 3. DEMONSTRATOR

Figure 3.4: The spinning mech-
anism, made in Solid Edge and
rendered in Keyshot

Figure 3.5: A close-up image of the
spinning platform and the rubber added to
increase friction. Picture taken by Axel
Sacilotto

was implemented, forcing the motor to take 16 microsteps for every step, further
reducing its torque.

The stepper motor needs 200 steps to complete a full revolution. This means
that an object with an average radius perpendicular to the axis of rotation of r, will
be measured in increments of 1/200th of its circumference. This means the average
difference between measured points on the surface of the object can be calculated
with the following formula:

dstep = 2
200πr. (3.1)

If r assumes the typical value of 3 cm, it will result in an average distance between
points of 0,94 mm. If this does not yield a satisfying result, measurements can be
taken after a certain amount of microsteps instead of a whole step.

3.2.3 Elevator mechanism and distance sensor

The elevator is powered by a TS3214N61 stepper motor from Tamagawa Seiki and
its only purpose is to move the distance sensor up and down to collect all the
necessary point data. On either side of the stepper motor there is a steel rod to
guide the sensor and keep it in place. The vertical motion of the elevator is made
possible by spinning a threaded rod through a nut resulting in a moved distance
equal to the lead of the thread per full revolution. The transmission of the motor’s
torque to the threaded rod is achieved through the use of a shaft coupling designed

12

3.2. HARDWARE

in Solid Edge. All the components that make up the elevator are shown in Figure
3.6.

Figure 3.6: The elevator design, made in Solid Edge and image rendered in
Keyshot

The threaded rod is of size M6 with a lead of 1 mm. This means that for every
complete revolution of the stepper motor, the distance sensor will move vertically 1
mm in the desired direction. Thus it would be possible to rotate the stepper motor
fewer steps and move the distance sensor an even shorter distance before making
the next measurement if an even higher resolution is desired.

The sensor used in this project is the VL6180X sensor from Adafruit, shown in
Figure 3.7. It is a laser TOF sensor with a range between 5-100 mm [22].

Figure 3.7: VL6180X LiDAR distance sensor from Adafruit [23]

13

CHAPTER 3. DEMONSTRATOR

The sensor is fastened as shown in Figure 3.8. It makes use of several small
modules to easily remove and replace the sensor with a different one if circumstances
change. It is fastened by sliding it into the slots on the elevator and also comes with
a small tunnel to guide the wires. The design was first destined for the VL53L0X
distance sensor from M5Stack, as seen in Figure 3.9. The reason was that it had
a simple design for mounting with its Lego-compatible holes [24]. Though the
measuring range of the VL53L0X is up to two meters and therefore the VL6180X
is more suitable for small distances like this with its maximum range of 100 mm.

Figure 3.8: How the sensor is
mounted on the elevator, made
in Solid Edge, image rendered in
Keyshot

Figure 3.9: How the VL53L0X
sensor from M5Stack could be
mounted on the same elevator,
designed in Solid Edge, image
rendered in Keyshot

3.2.4 Circuitry

The circuitry consists of one Arduino uno, two DVR8825 stepper motor drivers,
one 470µF capacitor, a TS3214N61 stepper motor, a KH56KM2-801 stepper motor,
one I2C OLED display, one 12V battery and a VL6180X LiDAR distance sensor.
Figure 3.10 shows how the components are connected to each other. Most wiring was
soldered using multistranded wires and the stepper motor drivers were connected
using a breadboard.

14

3.3. SOFTWARE

Figure 3.10: The circuitry, made with Tinkercad and Google Presentations

3.3 Software
This section will cover the Arduino code and the software used to import the point
data and convert it to a mesh ready to be 3D printed.

3.3.1 Collecting data points

The data collecting software is represented by the flow chart in Figure 3.12 and
is based around a Cartesian coordinate system that is centered in the middle of
the object-rotating plate. Since the height, angle and distance are all known or
measurable parameters but are not known in terms of x, y and z, a translation is
needed. As shown in Figure 3.11, a point on the rotating plate can be interpreted
as a point on a cylinder and therefore cylindrical coordinates are used to determine
x, y and z:

x = r · cos θ (3.2)
y = r · sin θ (3.3)
z = z (3.4)

where θ is the known rotation of the object, z is the known height of the eleva-
tor/sensor and the radius r is calculated by:

r = distance to plate center −measured distance. (3.5)

15

CHAPTER 3. DEMONSTRATOR

Figure 3.11: Object-rotating plate (green). Point A is the measured point and
point B is the coordinate calculated adjusted for the rotation, made with draw.io

Figure 3.12: Flow chart of the program that collects and saves data points, made
with draw.io

16

3.3. SOFTWARE

3.3.2 Saving data points
In order to save the collected data points to a readable document, a text-file for
example, CoolTerm by Roger Mier’s Freeware [25] is used. CoolTerm allows the
user to save all the information that is printed to the Arduino’s serial monitor and
is thus very useful in this project.

3.3.3 Visualization
In order to visualize the object and initiate the reverse engineering process in the
computer, the points are imported as a text file with each row containing an x-, y-,
and z-coordinate. This project made use of Meshlab [26] to convert the points to a
mesh and export it as an STL-file able to be 3D printed. A generic example of this
process can be seen in Figure 3.13 where 10,000 points were randomly generated on
the boundaries of a parameterization of a torus.

(a) Points (b) Mesh

Figure 3.13: An example of the conversion from points to a mesh using Meshlab,
pictures taken in Meshlab

17

Chapter 4

Experiments

This chapter covers experiments regarding accuracy of the distance sensor and time
requirements to complete scans of different accuracy.

4.1 Distance sensor accuracy

The accuracy of the sensor was tested by placing an object at a fixed distance and
taking 1000 measurements. This was in order to get a large enough sample size
for the experiment. Table 4.1 shows the experiment where the 1000 measurements
were first evaluated on their own and then put into groups of five, ten, 50 and
200 to calculate averages. All results of these five methods were produced by a
program written in the Python language and every measurement was plotted using
Matplotlib [27]. The graphs and the python code can be found in Appendix A.

Measurements Average [mm] Max [mm] Min [mm] Spread (Max-Min) [mm]
One 43,966 48 40 8
Five 43,966 46 42,2 3,8
Ten 43,966 45,1 42,9 2,2
Fifty 43,966 44,48 43,54 0,94

Two hundred 43,966 44,29 43,645 0,645

Table 4.1: Experiment of the sensor’s accuracy and how to reduce uncertainty by
using an average of multiple measurements.

The experiment shows that in order to get a good rendition of the scanned
object, using an average of several measurements for each point might be required.
The spreads of the different methods were plotted to visualize the trend of how the
spread decreases with an increased amount of measurements. This is depicted in
Figure 4.1 where the trend shows that the spread decreases by about a factor of
four for every tenfold increase in the amount of measurements, although it slows
down a bit when approaching 200.

19

CHAPTER 4. EXPERIMENTS

Figure 4.1: The spread as a function of the amount of measurements per average,
from Google Sheets

However, more measurements require more time to complete and in order to de-
termine if the increased accuracy justifies the added time, an additional experiment
was conducted, described in Section 4.2.

4.2 Scan duration
The scan duration was measured by scanning a single layer of an object, meaning a
full rotation of the object on the same z-coordinate. This measurement was made
for the same categories as in Table 4.1 and the results are listed in Table 4.2.

Measurements per point Time per rotation [s]
One 6,865
Five 16,963
Ten 27,457
Fifty 111,925

Two hundred 426,864

Table 4.2: Time necessary to complete a full rotation with different accuracy.

The total time to complete a full scan will be roughly equal to the duration of
a single rotation multiplied with the amount of layers. The times from Table 4.2
can be seen plotted in Figure 4.2 where a clear linear trend can be seen. This is to
be expected since the time required to take a measurement is independent from the
rest of the program and more or less constant at similar distances.

20

4.2. SCAN DURATION

Figure 4.2: The time required to complete a full rotation plotted against the
amount of measurements used to get a final value for each point, from Google Sheets

21

Chapter 5

Results

This chapter covers the results of scanning a 32 mm tall french madeleine cake, as
shown in 5.1, with varying layer heights and numbers of measurements per step.
Figures 5.2 through 5.5 contain images of scanning results, all of which were taken
in the Meshlab environment.

Figure 5.1: A stone model of a madeleine cake, the object used to compare different
levels of accuracy visually. Picture taken by Axel Sacilotto

23

CHAPTER 5. RESULTS

(a) Points (b) Mesh

Figure 5.2: Scan 1: 1 measurement per point and 2 mm between horizontal layers

(a) Points (b) Mesh

Figure 5.3: Scan 2: 1 measurement per point and 1 mm between horizontal layers

(a) Points (b) Mesh

Figure 5.4: Scan 3: 5 measurements per point and 2 mm between horizontal layers

24

(a) Points (b) Mesh

Figure 5.5: Scan 4: 5 measurements per point and 1 mm between horizontal layers

Measurements per point Layer height [mm] Time to complete scan
Scan 1 1 2 3 min 56 s
Scan 2 1 1 6 min 41 s
Scan 3 5 2 6 min 58 s
Scan 4 5 1 12 min 11 s

Table 5.1: Time necessary to complete 3D scan of the madeleine model with dif-
ferent levels of accuracy

Since the madeleine cake is 32 mm tall while laying on the platform, as in Figure
5.1, the device needs to scan 16 layers for scan 1 & 2 and 32 layers for scan 3 & 4.

25

Chapter 6

Discussion

6.1 Accuracy of recreation

The results showed that in order to display a good rendition of the object, it is
crucial to collect a lot of data points and also do so accurately. Figures 5.2 and
5.3 showed that a single measurement per point gave reasonable accuracy but at
the cost of a rough and almost mountain-like surface. Thicker layers were preferred
in this case since the noise-like nature of the surface became amplified when layers
were close together, as shown in Figure 5.3.

The most accurate recreations were achieved when taking the average of several
measurements per point as shown in Figure 5.5, in combination with a thin layer
height. Using a five measurement average captured the largest amount of detail,
and if time had permitted would have been the version to be 3D printed, but
still showed some noise-like tendencies on the surface. This phenomenon emerges
because of the spread of measurements, but as shown in Table 4.1, the spread could
be reduced by increasing the number of measurements taken per point. Reducing
the spread should result in even better accuracy but the scanning time would be
greatly increased as well.

Lastly, the accuracy could also be increased by lowering the layer thickness
in combination with a large number of measurements per point. There is also the
possibility of scanning more than 200 points per revolution of the platform by taking
advantage of the microsteps beyond just decreasing the torque. To conclude, there
are numerous ways to increase the accuracy of the scan but they all come at the
cost of increasing scanning time, perhaps to an unsustainable level.

6.2 Sensors and sensor arrangement

During the initial stages of the project, ultrasonic distance sensors or combinations
of several sensors in order to get the most accurate measurements possible were
considered, but in the end the decision was made to use a single LiDAR sensor
instead. The reason for not going with an ultrasonic distance sensor was mainly

27

CHAPTER 6. DISCUSSION

because of the large field of view that a normal ultrasonic sensor possesses, varying
between models but up to 15◦ in some [28] cases. A large FOV would not allow
the sensor to distinguish between points situated closely together on the object,
resulting in a distorted recreation.

The results showed that a single LiDAR sensor gave decent accuracy, and that
turning away from an ultrasonic sensor was a good choice. The results also con-
firmed the suspicion that using the average of a number of measurements improved
accuracy greatly, as suggested in experiment 4.1.

28

Chapter 7

Conclusion and future work

7.1 Conclusion
To conclude the project, the research questions stated in section 1.2 are answered:

• With what degree of accuracy can the three-dimensional object be recreated in
a computer?

There are many ways to tweak different parameters to increase accuracy and the
results can range from a bit noisy to a fair degree of accuracy. With only one
measurement per point, one can expect an error of about ±4 mm and with an
average of five measurements per point, the error is reduced to ±1,9 mm. The way
to deal with the error of the sensor is simply by taking the average of a large enough
sample of measurements for every point. This is the most important thing since
unevenness due to low density of points can be smoothed out in post processing with
the right knowledge. If 200 measurements were to be used to get a good average
for every point, the error would be reduced to ± 0,3225 mm.

• How long does it take to create the visualization of the object?

The simplest scan tested in this project took 3 min 56 s for a height of 32 mm,
while the longest took 12 min 11 s. Depending on the height of the object and the
expected accuracy, the duration of the scan could land somewhere between these
two times but it would take significantly longer to scan a tall object with a high
degree of accuracy, say with an error below ± 1 mm. There are many parameters
in the Arduino code that can be changed to impact the scanning time but to get a
sufficiently accurate scan, one can expect to scan for 10 minutes at the very least.

• What arrangement of sensors will yield the best results in terms of accuracy?

In terms of using the approach of a single TOF sensor, using a short distance
LiDAR sensor was the preferable method over, for example, an ultrasonic sensor. It
is hard to compare to other systems since none were tested, but in theory it would

29

CHAPTER 7. CONCLUSION AND FUTURE WORK

seem that the biggest obstacle was money and that the approach of this project was
the superior one.

7.2 Future work
There are a couple of things that could be changed in order to improve the scanner
in the future. First and foremost, the long scanning time is arguably the biggest
problem and methods to shorten it by reducing the time needed to collect all the
data points would be a welcomed addition to the project. The argument could be
made that arranging several sensors around the object would speed up the scanning
process while retaining a good level of accuracy since each sensor would only need
to cover a small part of the object. However, if such an alteration is made, the
elevator could require additional support to keep it stable by incorporating at least
two stepper motors in the elevator design, placing them on opposite sides of the
object-rotating plate.

Another alteration that could be made is to replace the large stepper motor used
to rotate the object with a less powerful version since the motor was too powerful
in most cases and required both tuning and a sticky surface in order to keep objects
from falling of the edge. Using a smaller motor would also allow for the design to be
more compact and user friendly. This is something that could be greatly improved
since this design was not very practical but rather was only focused on the goal of
being able to scan objects successfully.

Lastly, some quality of life improvement could be made adding buttons for start-
ing, stopping and resetting the scanning process as well as upgrading the OLED
display and the programming in order to visualize the object being scanned in real
time on the display.

30

Bibliography

[1] Bat Conservation Trust. Flight, food and echolocation. url: https://www.
bats.org.uk/about- bats/flight- food- and- echolocation. (accessed:
2021-05-07).

[2] Tomorrow’s world today. A Brief History of Pottery. url: https://www.
tomorrowsworldtoday.com/2018/08/01/a-brief-history-of-pottery/.
(accessed: 2021-02-15).

[3] 3D Printing Industry. The Free Beginners Guide. url: https://3dprintingindustry.
com/3d-printing-basics-free-beginners-guide/#01-basics. (accessed:
2021-04-01).

[4] Paul Godfrey. 3D Printing: The shape of things to come. url: https://
satelliteprome.com/interviews/3d-printing-the-shape-of-things-
to-come/. (accessed: 2021-02-15).

[5] Conrad.se. Matter and Form MFS1V1 3D-scanner. url: https : / / www .
conrad.se/p/matter-and-form-mfs1v1-3d-scanner-1555134. (accessed:
2021-04-01).

[6] Johan Moberg. “3d scanner: Accuracy, performance and challenges with a
low cost 3d scanning platform”. Degree project, first cycle, 15 credits. KTH
Royal Institute of Technology, 2017, pp. 2–34. url: https://www.diva-
portal.org/smash/get/diva2:1200549/FULLTEXT01.pdf.

[7] João Guilherme DM França et al. “A 3D scanning system based on laser
triangulation and variable field of view”. In: IEEE International Conference
on Image Processing 2005. Vol. 1. IEEE. 2005, pp. I–425. doi: https://doi.
org/10.1109/ICIP.2005.1529778.

[8] Movimed. What is Laser Triangulation? url: https://www.movimed.com/
knowledgebase/what-is-laser-triangulation/. (accessed: 2021-04-09).

[9] Electronics Hub. Basics of Microcontrollers – History, Structure and Ap-
plications. url: https://www.electronicshub.org/microcontrollers-
basics-structure-applications/. (accessed: 2021-05-05).

[10] Antratek. Arduino UNO. url: https://www.antratek.com/arduino-uno.
(accessed: 2021-04-01).

31

https://www.bats.org.uk/about-bats/flight-food-and-echolocation
https://www.bats.org.uk/about-bats/flight-food-and-echolocation
https://www.tomorrowsworldtoday.com/2018/08/01/a-brief-history-of-pottery/
https://www.tomorrowsworldtoday.com/2018/08/01/a-brief-history-of-pottery/
https://3dprintingindustry.com/3d-printing-basics-free-beginners-guide/#01-basics
https://3dprintingindustry.com/3d-printing-basics-free-beginners-guide/#01-basics
https://satelliteprome.com/interviews/3d-printing-the-shape-of-things-to-come/
https://satelliteprome.com/interviews/3d-printing-the-shape-of-things-to-come/
https://satelliteprome.com/interviews/3d-printing-the-shape-of-things-to-come/
https://www.conrad.se/p/matter-and-form-mfs1v1-3d-scanner-1555134
https://www.conrad.se/p/matter-and-form-mfs1v1-3d-scanner-1555134
https://www.diva-portal.org/smash/get/diva2:1200549/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1200549/FULLTEXT01.pdf
https://doi.org/https://doi.org/10.1109/ICIP.2005.1529778
https://doi.org/https://doi.org/10.1109/ICIP.2005.1529778
https://www.movimed.com/knowledgebase/what-is-laser-triangulation/
https://www.movimed.com/knowledgebase/what-is-laser-triangulation/
https://www.electronicshub.org/microcontrollers-basics-structure-applications/
https://www.electronicshub.org/microcontrollers-basics-structure-applications/
https://www.antratek.com/arduino-uno

BIBLIOGRAPHY

[11] Additional information regarding stepper motors. Stepper motors. url: https:
//www.explainthatstuff.com/how- stepper- motors- work.html. (ac-
cessed: 2021-04-01).

[12] Information regarding the inner workings of a stepper motor. How a stepper
motor works. url: https : / / howtomechatronics . com / how - it - works /
electrical-engineering/stepper-motor/. (accessed: 01.04.2021).

[13] Texas Instruments. DRV8825 Stepper Motor Controller IC datasheet. url:
https://www.electrokit.com/uploads/productfile/41016/drv8825.
pdf. (accessed: 2021-05-08).

[14] Pololu. DRV8825 Stepper Motor Driver Carrier, High Current. url: https:
//www.pololu.com/product/2133. (accessed: 2021-04-01).

[15] Makerguides. Arduino UNO. url: https://www.makerguides.com/drv8825-
stepper-motor-driver-arduino-tutorial/. (accessed: 2021-05-08).

[16] Learn Robotics. OLED Display with Arduino Tutorial. url: https://www.
learnrobotics.org/blog/oled-display-arduino/. (accessed: 2021-04-20).

[17] wonho-maker. Adafruit SH1106. url: https://www.learnrobotics.org/
blog/oled-display-arduino/. (accessed: 2021-04-20).

[18] makerlab-electronics. I2C OLED display. url: https : / / www . makerlab -
electronics.com/product/1-3-i2c-oled-display/. (accessed: 2021-05-
07).

[19] A Kumar, PK Jain, and PM Pathak. “Industrial application of point cloud/STL
data for reverse engineering”. In: DAAAM International Scientific Book (2012),
pp. 445–462. doi: https://doi.org/10.2507/daaam.scibook.2012.38.

[20] Ph.D. Florent Poux. 5-Step Guide to generate 3D meshes from point clouds
with Python. url: https://towardsdatascience.com/5-step-guide-to-
generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba.
(accessed: 2021-02-15).

[21] Acumen. url: http : / / www . acumen - language . org / p / download . html.
(accessed: 2021-04-01).

[22] ST. Proximity and ambient light sensing (ALS) module. url: https://cdn-
learn.adafruit.com/assets/assets/000/037/608/original/VL6180X_
datasheet.pdf. (accessed: 2021-04-15).

[23] Adafruit. Adafruit VL6180X Time of Flight Distance Ranging Sensor (VL6180)
- STEMMA QT. url: https://www.adafruit.com/product/3316. (ac-
cessed: 2021-05-03).

[24] M5Stack. M5Stack VL53L0X datasheet. url: https://www.elfa.se/Web/
Downloads/_t/ds/U010_eng_tds.pdf. (accessed: 2021-04-01).

[25] Roger Meier. CoolTerm. url: https://freeware.the-meiers.org/.
[26] Meshlab. url: meshlab.net. (accessed: 2021-04-01).

32

https://www.explainthatstuff.com/how-stepper-motors-work.html
https://www.explainthatstuff.com/how-stepper-motors-work.html
https://howtomechatronics.com/how-it-works/electrical-engineering/stepper-motor/
https://howtomechatronics.com/how-it-works/electrical-engineering/stepper-motor/
https://www.electrokit.com/uploads/productfile/41016/drv8825.pdf
https://www.electrokit.com/uploads/productfile/41016/drv8825.pdf
https://www.pololu.com/product/2133
https://www.pololu.com/product/2133
https://www.makerguides.com/drv8825-stepper-motor-driver-arduino-tutorial/
https://www.makerguides.com/drv8825-stepper-motor-driver-arduino-tutorial/
https://www.learnrobotics.org/blog/oled-display-arduino/
https://www.learnrobotics.org/blog/oled-display-arduino/
https://www.learnrobotics.org/blog/oled-display-arduino/
https://www.learnrobotics.org/blog/oled-display-arduino/
https://www.makerlab-electronics.com/product/1-3-i2c-oled-display/
https://www.makerlab-electronics.com/product/1-3-i2c-oled-display/
https://doi.org/https://doi.org/10.2507/daaam.scibook.2012.38
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
http://www.acumen-language.org/p/download.html
https://cdn-learn.adafruit.com/assets/assets/000/037/608/original/VL6180X_datasheet.pdf
https://cdn-learn.adafruit.com/assets/assets/000/037/608/original/VL6180X_datasheet.pdf
https://cdn-learn.adafruit.com/assets/assets/000/037/608/original/VL6180X_datasheet.pdf
https://www.adafruit.com/product/3316
https://www.elfa.se/Web/Downloads/_t/ds/U010_eng_tds.pdf
https://www.elfa.se/Web/Downloads/_t/ds/U010_eng_tds.pdf
https://freeware.the-meiers.org/
meshlab.net

BIBLIOGRAPHY

[27] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: https://doi.org/10.
1109/MCSE.2007.55.

[28] cdon.se. Ultrasonic distance sensor HC-SR04. url: https://cdon.se/bygg-
verktyg/ultraljuds-distans-matare-hc-sr04-passar-till-arduino-
p49319705?gclid=CjwKCAjwkN6EBhBNEiwADVfya4G7AWFAKbk3dVSdIcweU9DnmykmRZcda-
CgWXJ5Y28-zaUlv0Ql0RoC-YYQAvD_BwE&gclsrc=aw.ds#fo_c=1753&fo_k=
140e53412bd846816291b3b8fe4b9fc7&fo_s=gplase. (accessed: 2021-04-25).

33

https://doi.org/https://doi.org/10.1109/MCSE.2007.55
https://doi.org/https://doi.org/10.1109/MCSE.2007.55
https://cdon.se/bygg-verktyg/ultraljuds-distans-matare-hc-sr04-passar-till-arduino-p49319705?gclid=CjwKCAjwkN6EBhBNEiwADVfya4G7AWFAKbk3dVSdIcweU9DnmykmRZcda-CgWXJ5Y28-zaUlv0Ql0RoC-YYQAvD_BwE&gclsrc=aw.ds#fo_c=1753&fo_k=140e53412bd846816291b3b8fe4b9fc7&fo_s=gplase
https://cdon.se/bygg-verktyg/ultraljuds-distans-matare-hc-sr04-passar-till-arduino-p49319705?gclid=CjwKCAjwkN6EBhBNEiwADVfya4G7AWFAKbk3dVSdIcweU9DnmykmRZcda-CgWXJ5Y28-zaUlv0Ql0RoC-YYQAvD_BwE&gclsrc=aw.ds#fo_c=1753&fo_k=140e53412bd846816291b3b8fe4b9fc7&fo_s=gplase
https://cdon.se/bygg-verktyg/ultraljuds-distans-matare-hc-sr04-passar-till-arduino-p49319705?gclid=CjwKCAjwkN6EBhBNEiwADVfya4G7AWFAKbk3dVSdIcweU9DnmykmRZcda-CgWXJ5Y28-zaUlv0Ql0RoC-YYQAvD_BwE&gclsrc=aw.ds#fo_c=1753&fo_k=140e53412bd846816291b3b8fe4b9fc7&fo_s=gplase
https://cdon.se/bygg-verktyg/ultraljuds-distans-matare-hc-sr04-passar-till-arduino-p49319705?gclid=CjwKCAjwkN6EBhBNEiwADVfya4G7AWFAKbk3dVSdIcweU9DnmykmRZcda-CgWXJ5Y28-zaUlv0Ql0RoC-YYQAvD_BwE&gclsrc=aw.ds#fo_c=1753&fo_k=140e53412bd846816291b3b8fe4b9fc7&fo_s=gplase
https://cdon.se/bygg-verktyg/ultraljuds-distans-matare-hc-sr04-passar-till-arduino-p49319705?gclid=CjwKCAjwkN6EBhBNEiwADVfya4G7AWFAKbk3dVSdIcweU9DnmykmRZcda-CgWXJ5Y28-zaUlv0Ql0RoC-YYQAvD_BwE&gclsrc=aw.ds#fo_c=1753&fo_k=140e53412bd846816291b3b8fe4b9fc7&fo_s=gplase

Appendix A

Measurement Accuracy Experiment

This appendix presents graphs of all measurements from the experiment in Table
4.1 as well as the python code to generate the graphs and the key figures presented
in the aforementioned table.

A.1 Python code

""" Testing the accuracy of the VL6180X sensor

By: Carl Egenäs, Axel Sacilotto
Course: MF133X - Bachelor's thesis in mechatronics
Date: 2021-05-09

This code takes a text file of measurements and examines how the
measurement error can be reduced by putting values in groups of
different sizes and using the average of values in each group.
This simulates taking multiple measurements for each point and
then using the average of those measurements to determine the
distance to that point.

"""
f = open("staticTestCoords.txt", "r") # File with 1000 measurements

#All measurements in one array:
one = f.readlines()

#Arrays with values after an average has been calculated from every
group of five, ten, 50 and 200 measurements:
five = []
ten = []
fifty = []

A-1

APPENDIX A. MEASUREMENT ACCURACY EXPERIMENT

twohun = []

Measurements are entered into an array:
for i in range(0, len(one)):

one[i] = int(one[i])

counter = 0

#Groups of five
sum_5 = 0
for x in one:

sum_5 += x
counter += 1
if(counter==5):

five.append(sum_5/5)
counter = 0
sum_5 = 0

#Groups of ten:
sum_10 = 0
for y in five:

sum_10 += y
counter += 1
if(counter==2):

ten.append(sum_10/2)
counter = 0
sum_10 = 0

#Groups of 50:
sum_50 = 0
for z in ten:

sum_50 += z
counter += 1
if(counter==5):

fifty.append(sum_50/5)
counter = 0
sum_50 = 0

#Groups of 200:
sum_200 = 0
for w in fifty:

sum_200 += w
counter += 1
if(counter==4):

A-2

A.1. PYTHON CODE

twohun.append(sum_200/4)
counter = 0
sum_200 = 0

#This function returns the average of ALL measurements in the
selected array, the smallest and largest value, and the spread
between the largest and smallest:
def avMinMax(numbers):

return sum(numbers)/len(numbers), min(numbers), max(numbers),
max(numbers)-min(numbers)

av_one, min_one, max_one, spread_one = avMinMax(one)
av_five, min_five, max_five, spread_five = avMinMax(five)
av_ten, min_ten, max_ten, spread_ten = avMinMax(ten)
av_fifty, min_fifty, max_fifty, spread_fifty = avMinMax(fifty)
av_twohun, min_twohun, max_twohun, spread_twohun = avMinMax(twohun)

#Prints the results of the above function for all arrays:
print('av_one: ', av_one)
print('min_one: ', min_one)
print('max_one: ', max_one)
print('spread_one: ', spread_one)
print('')
print('av_five: ', av_five)
print('min_five: ', min_five)
print('max_five: ', max_five)
print('spread_five: ', spread_five)
print('')
print('av_ten: ', av_ten)
print('min_ten: ', min_ten)
print('max_ten: ', max_ten)
print('spread_ten: ', spread_ten)
print('')
print('av_fifty: ', av_fifty)
print('min_fifty: ', min_fifty)
print('max_fifty: ', max_fifty)
print('spread_fifty: ', spread_fifty)
print('')
print('av_twohun: ', av_twohun)
print('min_twohun: ', min_twohun)
print('max_twohun: ', max_twohun)
print('spread_twohun: ', spread_twohun)

#Plots all values of the selected array:

A-3

APPENDIX A. MEASUREMENT ACCURACY EXPERIMENT

import matplotlib.pyplot as plt
plt.plot(one) #Switch for each graph
plt.ylabel('Measurement value [mm]')
plt.xlabel('Measurements in chronological order')
plt.suptitle('No average') #Switch for each graph
plt.show()

A.2 Graphs

Figure A.1: Counting every measure-
ment

Figure A.2: Average of five measure-
ments

Figure A.3: Average of ten measure-
ments

Figure A.4: Average of 50 measure-
ments

A-4

A.2. GRAPHS

Figure A.5: Average of 200 measurements

A-5

Appendix B

Arduino code

/*
Degree project in mechanical engineering, first cycle, 15 credits
Course: MF133X - Bachelor's thesis in mechatronics
By: Carl Egenäs, Axel Sacilotto
Date: 2021-05-09

This code controls the entire process of the scanner.
It starts by finding the surface of the spinning platform
to begin scanning and then scans the object layer by layer
while storing all the scanned points. When the sensor no
longer detects an object or the elevator has reached its
highest point, the scanning ends and the OLED display shows
the duration of the scan.

The Wire.h and VL6180X.h libraries were downloaded from the
Arduino library manager.
The Adafruit_SH1106.h library was downloaded from Github via:
https://github.com/wonho-maker/Adafruit_SH1106
*/

// Distance sensor
#include <Wire.h>
#include <VL6180X.h>
VL6180X sensor;

//Stepper for object
#define dirPin_object 11
#define stepPin_object 10
#define microPin 5

// Stepper for elevator

B-1

APPENDIX B. ARDUINO CODE

#define dirPin_Z 2
#define stepPin_Z 3

//OLED display
#include <Adafruit_SH1106.h>
#define OLED_RESET 4
Adafruit_SH1106 display(OLED_RESET);

//Steps per revolution for the stepper motors
const int StepsPerRevolution = 200;

//Number of measurements to take the average of when scanning each point
const int MeasNum = 5;
const float RadPerStep = 2*PI/StepsPerRevolution; //Radians per step
const int microSteps = 16;
const int layerHeight = 1; //Levels the elevator moves up every time
unsigned long startTime;
unsigned long endTime;
unsigned long scanTime;

float CurrentRad_object = 0; //Keeps track of the angle the object has rotated
int CurrentZ = 0; //Keeps track of the location of the elevator
double MaxHeight = 120; // measured in mm as the maximum heigh of the scanned object
int lead = 1; //lead of the threaded rod in the elevator
int minDist = 17; //Smaller than this means the sensor is below the platform
int dis2Origo = 53; //Distance to origo (measured with the distance sensor)
double x; //For the coordinates
double y;
int z;

double Distance = 0; //Measured distance
boolean Done = false; //If the scan is done
boolean start = true; // If we are in the starting phase and haven't started scanning
boolean tooFarDown = false;
boolean tooFarUp = false;
boolean firstLayer = true;
boolean endScreen = false;

void setup() {
Serial.begin(9600);

Wire.begin();
sensor.init();
sensor.configureDefault();

B-2

sensor.setTimeout(500);

pinMode(dirPin_object, OUTPUT);
pinMode(stepPin_object, OUTPUT);
pinMode(dirPin_Z, OUTPUT);
pinMode(stepPin_Z, OUTPUT);

display.begin(SH1106_SWITCHCAPVCC, 0x3C);

display.display();
delay(2000);
display.clearDisplay();

}

void loop() {
if(start == true){

Start(); //Find start position before starting the scan
}
if(Done != true){ //When at start position, begin scanning

display.clearDisplay();
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(0,15);
display.println("Scanning");
display.println("object");
display.display();
Done = true;
digitalWrite(dirPin_object, LOW);

//Rotate the object a full revolution and measure the distance at every step
oneRev();
digitalWrite(dirPin_Z, HIGH);
UpOneStep(); //Then move on to the next layer
firstLayer = false;
//UpOneStep();

}
else if(endScreen != true){ //If Done, display the time it took and stop scanning

endScreen = true;
endTime = millis();
scanTime = (endTime-startTime)/1000;
display.clearDisplay();
display.setTextSize(2);
display.setTextColor(WHITE);

B-3

APPENDIX B. ARDUINO CODE

display.setCursor(0,15);
display.println("Done!");
display.print("Duration: ");
display.print(scanTime);
display.println("s");
display.display();
//Serial.println(" DONE!!! ");

}
}
void Start(){

display.clearDisplay();
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(0,15);
display.println("Finding");
display.println("start");
display.println("position");
display.display();

findHome();

start = false;
CurrentZ = 0;
UpOneStep();
startTime = millis();

}
void findHome(){ //Find the edge of the platform to start the scan

for(int a = 0; a<5; a++){
Distance += sensor.readRangeSingleMillimeters();

}
Distance = Distance / 5;
//Serial.println(Distance);
if(Distance < minDist){

Distance = 0;
tooFarDown = true;
digitalWrite(dirPin_Z, HIGH);
UpOneStep();
if(tooFarUp == false){

findHome();
}

}
else{

Distance = 0;
tooFarUp = true;

B-4

if(tooFarDown == false){
digitalWrite(dirPin_Z, LOW);
UpOneStep();
findHome();

}
}

}

//Measures the desired amount of points and gives the global
// variable Distance the value to be used
void measure(){

for(int k=0; k<MeasNum; k++){
Distance += dis2Origo - sensor.readRangeSingleMillimeters();

}
Distance = Distance/MeasNum; // Calculate average

}
void oneRev(){

for(int j=0; j<StepsPerRevolution; j++){
measure();
//Serial.println(Distance);
if(Distance<dis2Origo+5){

Done = false;
CoordCalculator(Distance);
Distance = 0;

}
RotOneStep();

}
}

void RotOneStep(){ //This goes through the microsteps for every step
digitalWrite(microPin, HIGH);
for(int m = 0; m < microSteps; m++){

digitalWrite(stepPin_object, HIGH);
delayMicroseconds(1000);
digitalWrite(stepPin_object, LOW);
delayMicroseconds(1000);

}
CurrentRad_object +=RadPerStep;

}

void UpOneStep(){ // Moves the elevator up one level
for(int j = 0; j<layerHeight*StepsPerRevolution; j++){

digitalWrite(stepPin_Z,HIGH);
delay(4);

B-5

APPENDIX B. ARDUINO CODE

digitalWrite(stepPin_Z,LOW);
delay(4);

}
delay(200);
CurrentZ += layerHeight*lead;

}

//Takes the radius measured and converts it to x-, y-, and z-coordinates
void CoordCalculator(int dist){

x = dist * cos(CurrentRad_object);
y = dist * sin(CurrentRad_object);
z = CurrentZ;
Serial.print(x);
Serial.print("; ");
Serial.print(y);
Serial.print("; ");
Serial.println(z);
if(firstLayer){

//Draws a bottom layer to get a stable foundation for the object
for(double c = 1; c>0; c-=0.1){

Serial.print(c*x);
Serial.print("; ");
Serial.print(c*y);
Serial.print("; ");
Serial.println(0);

}
}

}

B-6

Appendix C

Acumen simulation

/*
Simulating the 3D Scanner

By: Carl Egenäs, Axel Sacilotto
Course: MF133X - Bachelor’s thesis in mechatronics
Date: 2021-05-09

Models the 3D scanner and simulates the important motion.
*/

model Support(pos) =
initially
_3D = ()
always
_3D = (// Rods + elevator stepper motor

Box center = pos + (0,0,7) // blue rods
color = blue
size = (4,0.5,0.5)
rotation = (pi/2,0,0),

Box center = pos + (0,0,-0.5)
color = blue
size = (4,0.5,0.5)
rotation = (pi/2,0,0),

Box center = pos + (1.75,0,3.25)
color = blue
size = (8,0.5,0.5)
rotation = (0,pi/2,0),

C-1

APPENDIX C. ACUMEN SIMULATION

Box center = pos + (-1.75,0,3.25)
color = blue
size = (8,0.5,0.5)
rotation = (0,pi/2,0),

// Rods between stepper motor with the red hat and the elevator
Box center = (1,1.25,-0.5) + pos
color = blue
size = (0.5,3,0.5)

Box center = (-1,1.25,-0.5) + pos
color = blue
size = (0.5,3,0.5),

// Stepper Motor for elevator
Box center = pos
color = blue
size = (2,2,1.5),
Cylinder center = pos + (0,0,1)
color = blue
size = (1.5,0.25)
rotation = (pi/2,0,0),

// Long green rod that connects to the stepper motor
Cylinder center = pos + (0,0,3.5)
color = green
size = (7.5,0.0625)
rotation = (pi/2, 0,0)
)

model Hiss(pos, a, D) =
initially
_3D = ()
always
_3D = (// Red elevator

Box center = pos + (0,0,3) + D // +D for movement upwards
color = red
size = (3,0.25,2),

// Distance sensor
Cylinder center = pos + (0.5,0.25,3) + D // Moving the entire thing
color = green
size = (0.5,0.25),

C-2

Cylinder center = pos + (-0.5,0.25,3) + D
color = green
size = (0.5,0.25)
)

model Servo(pos,a) =
initially
_3D = (), _Plot=()
always
_3D = (Box center = pos +(0,0,1) // "Stepper motor"

color = blue
size = (2,2,1.5),

Box center = pos // Baseplate
color = blue
size = (4,4,0.5),

// Attachment between stepper motor and the red plate
Cylinder center = pos +(0,0,2)
color = blue
size = (1.5,0.25)
rotation = (pi/2,0,0),

Cylinder center = pos +(0,0,2.5) // Red plate
color = red
size = (0.6,2)
rotation = (pi/2,0,a)
)

model Main(simulator) =
initially
// Creating objects and defining movement

c1 = create Support((0,0,0.5)),
c2 = create Hiss((0,0,0.5),0,(0,0,0)),
c3 = create Servo((0,4,0),0),

p = 0 , p' = 0, // prim (') equals velocity.
a = 0, a' = 0
always

a' = 0.1,
p' =0.25,
c2.D = (0,0,p), // Movement of elevator

C-3

APPENDIX C. ACUMEN SIMULATION

c3.a = a // Rotation of the red plate

C-4

Appendix D

Steps taken in Meshlab to generate an
STL file

This series of images shows how to turn a text file of coordinates into an STL file
using Meshlab. All images are taken in the Meshlab environment.

Figure D.1: Step 1: Import a mesh

Figure D.2: Step 2: Choose a text doc-
ument with each row containing x- y and
z-coordinates separated by either semi-
colon, comma or space. Choose the ap-
propriate separator for your file

D-1

APPENDIX D. STEPS TAKEN IN MESHLAB TO GENERATE AN STL FILE

Figure D.3: Step 3: When you see the points on the screen it is time to compute
normals as shown here

Figure D.4: Step 4: Use the default
settings and choose ”Apply”

Figure D.5: Step 5: Now
it should look something like
this

D-2

Figure D.6: Step 6: The next step is to create the mesh, which is done as shown
here

D-3

APPENDIX D. STEPS TAKEN IN MESHLAB TO GENERATE AN STL FILE

Figure D.7: Step 7: Once again, use the default settings and hit ”Apply”

D-4

Figure D.8: Step 8: If the surface of the mesh is inside out (it looks dark) simply
invert faces orientation as shown here

D-5

APPENDIX D. STEPS TAKEN IN MESHLAB TO GENERATE AN STL FILE

Figure D.9: Step 9: Hit ”Apply”

Figure D.10: Step 10: On the right
side of the screen, click the eye next to
your file of points to hide the points

Figure D.11: Step 11: Your mesh is
now done and should look something like
this

Figure D.12: Step 12: To export the
file, first select your Poisson mesh

D-6

Figure D.13: Step 13: Then choose
”Export Mesh As...”

Figure D.14: Step 14: Choose a name
for your file and select STL File Format

Figure D.15: Step 15: Now the STL file can be saved and opened in other 3D
environments or be 3D printed

D-7

Appendix E

Stepper motor datasheet

E-1

2-Phase Hybrid Stepping Motor

HIGH TORQUE, LOW VIBRATION AND LOW NOISE

1.8°

(STANDARD SPECIFICATIONS

M O D E L
KH56KM2

DRIVE METHOD BI-POLAR

INSULATION CLASS ––––––– JIS Class E (120°C 248°F) (UL VALUE : CLASS B 130°C 266°F)

–––––––

INSULATION RESISTANCE ––––––– 500VDC 100MΩmin.

DIELECTRIC STRENGTH ––––––– 500VAC 50HZ 1min.

OPERATING TEMP. RANGE °C 0 to 50

ALLOWABLE TEMP. RISE deg. 70

18

(DIMENSIONS unit = mm (inch)

54(2.13)

20.6±0.5

(0.81±0.02)

3
8
.1

d
ia

.±
0

.5
(1

.5
d
ia

.±
0

.0
0

2
)

5(0.2)

1.6±0.2

(0.063±0.008)

0
0

6
.3

5
d
ia

.-
0

.0
2

(0
.2

5
d
ia

.-
0

.0
0

0
8
)

UNI-POLLAR Bi-POLAR SINGLE SHAFT
Antriebstechnik GmbH
Starkenburgstr. 6 * 64546 Mörfelden
Tel.:06105 24044 * Fax:06105 25593

info@color-technik.net
www.color-technik.net

Features
- Stronger torque generated in higher speed zone

- Lowered Vibration by increased stiffness of body construction

- Improved Efficiency

LOAD OF SHAFT:

30N THRUST LOAD

40N RADIAL LOAD 20mm FROM FRONTPLATE

 BI-POLAR

––––– PULL-OUT

––––$ PULL-IN
(TORQUE CHARACTERISTICS vs. PULSE RATE

UNI-POLAR

19

0

200

400

600

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PULSE RATE(pps)

T
O

R
Q

U
E

(m
N

 •
 m

)

DRIVER=Constant-current driver
Vcc=24(V)
CURRENT=3.0(A)/Phase
EXCITING MODE=2Phase

INERTIAL LOAD142gcm2 (0,78oz•in2)

0

(r/min)

1000 2000 3000

120

90

60

30

(oz • in)

KH56KM2-801

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PULSE RATE(pps)

T
O

R
Q

U
E

(m
N

 •
 m

)

DRIVER=Constant-current driver
Vcc=24(V)
CURRENT=1.5(A)/Phase
EXCITING MODE=2Phase

INERTIAL LOAD142gcm2 (0,78oz • in2)

180

150

120

90

60

30

(oz • in)

0

(r/min)

1000 2000 3000

KH56KM2-851

0

200

400

600

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PULSE RATE(pps)

T
O

R
Q

U
E

(m
N

 •
 m

)

DRIVER=Constant-current driver
Vcc=24(V)
CURRENT=2.0(A)/Phase
EXCITING MODE=2Phase

INERTIAL LOAD142gcm2 (0.78oz•in2)

120

90

60

30

(oz • in)

0

(r/min)

1000 2000 3000

0

200

400

600

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PULSE RATE(pps)

T
O

R
Q

U
E

(m
N

 •
 m

)

DRIVER=Constant-current driver
Vcc=24(V)
CURRENT=1.0(A)/Phase
EXCITING MODE=2Phase

INERTIAL LOAD142gcm2 (0.78oz•in2)

120

90

60

30

(oz • in)

0

(r/min)

1000 2000 3000

KH56KM2-802,

KH56KM2-803

(CONNECTION CABLE TO MOTOR unit = mm (inch)

(CONNECTION DIAGRAMS

øA øB

øA
– –

1

3

5

7

9

11

BLACK

RED

BLOWN

YELLOW

BLUE

ORENGE

øB

øA øB

– –

3

5

7

9

RED YELLOW

BLUE WHITE
øA øB

UNI-POLAR

BI-POLAR

EXCITATION SEQUENCE

EXCITATION SEQUENCE

STEP 1 2 3 4

BLACK – –

YELLOW – –

BLOWN – –

ORENGE – –

RED + + + +

BLUE + + + +

STEP 1 2 3 4

RED + + – –

YELLOW – + + –

BLUE – – + +

WHITE + – – +

UNI-POLAR BI-POLAR

LEAD:UL3266 AWG22

(11.8 0)
+1.57

10 (0.39)

300 0
+40

LEAD:UL3266 AWG22

(11.8 0)
+1.57

10 (0.39)

300 0
+40

JST XHP-11

TRITA ITM-EX 2021:39

www.kth.se

	Introduction
	Background
	Purpose
	Scope
	Method

	Theory
	An overview and important mechanisms
	Distance sensor
	Scanning methods

	Microcontroller
	Stepper motor
	Stepper motor driver
	OLED I2C SH1106 1.3'' display
	Visualization

	Demonstrator
	Acumen Simulation
	Hardware
	Base plate
	Spinning platform
	Elevator mechanism and distance sensor
	Circuitry

	Software
	Collecting data points
	Saving data points
	Visualization

	Experiments
	Distance sensor accuracy
	Scan duration

	Results
	Discussion
	Accuracy of recreation
	Sensors and sensor arrangement

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Appendices
	Measurement Accuracy Experiment
	Python code
	Graphs

	Arduino code
	Acumen simulation
	Steps taken in Meshlab to generate an STL file
	Stepper motor datasheet

