
IN DEGREE PROJECT MECHANICAL ENGINEERING,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2021

Gobi
Automatic sand-spreading robot

TIM NASER

STAVROS NTOUVAS

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Gobi

Automated sand-spreading robot

TIM NASER & STAVROS NTOUVAS

Bachelor’s Thesis at ITM
Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA-ITM-EX 2021:10

Abstract

The purpose of this report was to research through the
construction of a prototype the technical challenges associ-
ated with creating a robot that distributes sand on patios
after snowfall. A robot that could complete this task should
be able to know its position in an unknown terrain and tra-
verse it in a predictable manner that allows for the even
spread of the sand. In order to achieve stability and pre-
dictability of movement, stepper motor driven wheels were
chosen as the steering method. The sand-spreading mech-
anism consists of a DC Motor connected to a 3D-printed
disc with rectangular extrusions at its base. The wheels
and chassis of the robot were likewise 3D-printed. Lastly,
an Arduino MEGA board was the controller of choice.

Keywords: Mechatronics, stepper motors, servo, DC,
snow, sand, spread

Referat
Automatiserad sandspridare för snö

Syftet med denna rapport var att genom konstruktionen av
en prototyp undersöka de tekniska utmaningarna för att
skapa en robot som distribuerar sand p̊a uteplatser efter
snöfall. En robot som kan slutföra denna uppgift bör kunna
känna till sin position i en okänd terräng och färdas p̊a den
p̊a ett förutsägbart sätt som möjliggör en jämn spridning
av sanden.För att uppn̊a stabilitet och förutsägbarhet för
rörelse valdes stegmotordrivna hjul som styrmetod. Sand-
spridningsmekanismen best̊ar av en likströmsmotor anslu-
ten till en 3D-utskriven skiva med rektangulära extrude-
ringar vid basen. Robotens hjul och chassi var ocks̊a 3D-
utskrivna. Slutligen var ett Arduino MEGA-kort den valfria
styrenheten.

Nyckelord: Mekatronik, stegmotorer, servomotorer, DC-
motorer, snö, sand, sprida

Acknowledgements

We would like to thank Nihad Subasic for his interesting and informative lectures.
We would also like to thank Staffan Qvarnström for his counsel and commitment
to assist all project groups in procuring their desired components on time. Last but
not least, we would like to thank the other groups for inspiring us and motivating
us to do better through their excellence.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Scope . 2
1.4 Method . 2

2 Theory 3
2.1 Micro-controller . 3
2.2 H-bridge . 3
2.3 DC Motor . 4
2.4 Stepper motor . 6
2.5 Servo motor . 7
2.6 Sand Spreading Techniques . 7

3 System Design 9
3.1 Hardware . 9

3.1.1 Micro Controller . 9
3.1.2 Terrain Traversal . 10
3.1.3 Sand Spreading Mechanism 10

3.2 Software . 12
3.2.1 Route Calculation . 12
3.2.2 Stepper Motor Operation . 16
3.2.3 Main Code . 16

4 Experiments and Results 19
4.1 Experiments For Deviation From Course 19

4.1.1 Experiments For Deviation From Course Results 21
4.2 Testing of Flow for Various Nozzle Sizes 21

4.2.1 Testing of Sand Flow for Various Nozzle Sizes Results 21
4.3 Effect of Spinner’s Rotational Velocity 22

4.3.1 Effect of Spinner’s Rotational Velocity Results 22

5 Discussion 25

6 Conclusion 27

7 Future Work 29

Bibliography 31

Appendices

A Arduino Code 33

B Acumen Code 41

C Data Sheet Stepper Motors 43

D Data Sheet DC Motor 45

E Data Sheet Servo Motor 47

List of Figures

2.1 The figure shows a schematic representation of an H-bridge [4] 4
2.2 The mechanism of a DC Motor is described in four steps [5] 5
2.3 An example of a Stepper motor [10] . 6
2.4 Graphical representation of a Servo motor and its components [12] . . . 7
2.5 Example of a spinner [13] . 8
2.6 A top-down view of the expected function of the spinner.Made in draw.io

[14] . 8

3.1 The Arduino Mega 2560 Rev3 [15] . 9
3.2 The 28BYJ-48 unipolar stepper motor [16] 10
3.3 Side view of Gobi. Image taken by the authors 11
3.4 The sand spreading mechanism. Image taken by the authors 12
3.5 Gobi’s path inside an arbitrary rectangular area. Each circle with an

arrow denotes a turning point. All straight distances are marked with
a number. Those with numbers in bold text denote the places where a
distance reduction occurs, according to equations 3.5 and 3.6. Made in
draw.io [14] . 14

3.6 Flowchart of the code structure for calculating Gobi’s route. The con-
dition for exiting the loop is the Area covered equaling or exceeding in
size the Area to cover. Made in draw.io[14] 15

3.7 Flowchart of the main code structure, Made in draw.io[14] 17

4.1 The deviation from course in a straight line experiment. Gobi starts
at point A and ends its course at point B. The grey line depicts the
programmed course of Gobi whereas the red line depicts course Gobi
took during operation. The black dashed line represents the distance
that was measured in the experiment. Made in draw.io [14] 20

4.2 The deviation from course experiment. Gobi starts at point A and ends
its course at point B. The grey line depicts the programmed course of
Gobi whereas the red line depicts course Gobi took during operation.
The black dashed line represents the distance that was measured in the
experiment. Made in draw.io [14] . 20

4.3 The nozzles that were used (4mm to 8 mm diameter from left to right.
Picture taken by the authors . 22

4.4 Testing of spread of the particles as a function of the rotational velocity
of the DC motors. Picture taken by the authors 23

List of Tables

4.1 The values shown are averages after five tries 21
4.2 Distances covered by the robot while still being able to spread sugar

particles . 21
4.3 Average distance that the majority of the particles traveled for a given

rotational speed . 22

List of Abbreviations

AC - Alternating Current
CPU - Central Processing Unit
DC - Direct Current
IDE - Integrated Development Environment
RAM - Random Access Memory
RCA - Route Calculation Algorithm
ROM - Read-Only Memory
rpm - Rounds Per Minute
TTA - Terrain Traveral Algorithm

Chapter 1

Introduction

This thesis studies the engineering challenges involved in designing and constructing
autonomous solutions for spreading sand on surfaces covered with snow. In this
document, the construction of the robot and the design of the software are described
in detail. This chapter will explain the background and purpose of the thesis as
well as specify the scope and method used for investigating this problem.

1.1 Background

In several Nordic countries, snowfall is a common occurrence during the winter.
When the temperature reaches positive degrees and then back to negative again,
snow turns into ice, which can cause residents to slip and possibly injure themselves.
In the public sector, industrial grade equipment is used to spread salt or sand on
the driveways in order to increase traction, which prevents automobile accidents.
The corresponding solutions in the consumer market involve a great deal of personal
effort since home owners need to spread the sand themselves. This project explores
the possibility of creating an automated solution for private use.

1.2 Purpose

The main purpose of this thesis is to construct a robot that can spread sand evenly
over a specific area with simple user commands. The following set of research
questions need to be answered in order for the purpose to be realised:

•The robot does not use sensors of any kind in order to localize itself. Does
that lead to deviations from its planned course?

•What rate of sand flow is achieved through the use of different nozzle sizes?
•How does the rotational velocity of the spinner affect the size of the area that

is sanded?

1

CHAPTER 1. INTRODUCTION

1.3 Scope
The project focuses on constructing a prototype that can move across flat terrain.
Focus is placed upon regulating the flow of the sand being spread and the robot
speed so as to achieve an even distribution across the designated area. As a result
of budget constraints, no analysis has been performed regarding the suitability of
different tracks, resistance to cold weather or uneven terrain performance. Due
to the limited torque that could be generated by the current motors, the sand is
simulated by spreading sugar instead, since using actual sand would not have made
it impossible for the robot to be mobile.

1.4 Method
The execution of this project can be divided into two main areas, hardware and
software. Work on both areas took place concurrently with an initial emphasis on
designing the main software and circuitry. Afterward, the non-moving parts of the
robot where 3D-printed and assembled. This was an iterative process, whose main
goal was to achieve robustness while removing unnecessary weight.

2

Chapter 2

Theory

This chapter describes the necessary theory for this project.

2.1 Micro-controller

The Micro-controller is a type of programmable computer that contains at least
one Central Processing Unit (CPU), memory (ROM/RAM), and methods for users
to generate desired outputs from inputs [1]. The inputs are received by the micro-
controller in the form of electrical signals and the outputs can take many forms,
depending on the peripherals that are connected to the micro-controller. The Ar-
duino is an open-source micro-controller that was created for educational purposes
by the Interaction Design Institute, Ivrea (IDII), in Italy [2].

2.2 H-bridge

An H-bridge consists of 4 transistors that allow change of direction of currents in a
circuit. H-bridges can be used to manipulate the rotation of DC motors and bipolar
stepper motors [3]. As shown in Figure 2.1, the sequence of transistors that are on
respectively off will decide the path of the electrical current through the motor.

3

CHAPTER 2. THEORY

Figure 2.1: The figure shows a schematic representation of an H-bridge [4]

2.3 DC Motor

The Direct Current Motor (DC Motor) consists of an electric conductor shaped in
the form of a loop that is enclosed by magnets. The magnets create a magnetic
field, which in turn makes the loop rotate around its axis when a voltage source
(e.g., a battery) is connected to it [5]. Even though the alternative choice of an
alternating current (AC) motor is cheaper, the reason for using a DC motor is the
superior ability to adjust the rotation speed without losing efficiency [6].

4

2.3. DC MOTOR

Figure 2.2: The mechanism of a DC Motor is described in four steps [5]

5

CHAPTER 2. THEORY

2.4 Stepper motor
Like the DC motor, the stepper motor also uses DC currents. The stepper motor
has coils that act as magnets when infused by the DC current (see Figure 2.3).
This way the rotor can be driven by activating the next pair of magnets [7]. While
less efficient than the DC motor, the stepper motor excels at control and offers a
more exact positioning and greater holding torque. Stepper motors allow tracking
of positioning by counting the steps. Stepper motors come in two types, unipolar
and bipolar [8]. The former offer higher rotational speeds and do not require the
use of an H-bridge whereas the latter compensate with higher torque [9].

Figure 2.3: An example of a Stepper motor [10]

6

2.5. SERVO MOTOR

2.5 Servo motor

The servo motor is a type of motor most often utilised in applications where angle
control, speed and peak torque are deemed important [11]. Servo motors used to
be driven by direct current (DC). Advancements made during the last 30 years
have made servo motors driven by alternating current (AC) the better option for
industrial applications with larger loads. However, a type of servo motor potentially
used in this type of project is a more economical DC servo motor. Servos of the
aforementioned type are driven by DC motors, which in turn are connected to a
potentiometer that keeps track of the amount of rotation. There are two basic
types of servo motors for rotation, positional servo motors that offer great precision
but can only turn 180 degrees and continuous rotation servo motors that can turn
indefinitely in both directions, but are not as precise. Torque is generated through
gears that are connected to the output shaft.

Figure 2.4: Graphical representation of a Servo motor and its components [12]

2.6 Sand Spreading Techniques

A common strategy is to use a funnel with a lid at the bottom drops sand down on
a spinner (see figure 2.5) that is connected to a DC motor. The centripetal forces
that are caused by the rapid rotational velocity of the spinner result in the sand
particles being ejected out onto the ground. The diameter of the circular area that
is covered in sand is called in this report as the ”span” of the mechanism, as it is
demonstrated in Figure 2.6 .

7

CHAPTER 2. THEORY

Figure 2.5: Example of a spinner [13]

Figure 2.6: A top-down view of the expected function of the spinner.Made in draw.io
[14]

8

Chapter 3

System Design

This chapter describes how the robot was designed in terms of hardware and soft-
ware.

3.1 Hardware

This section describes the exact components that were used in the project and the
way they were assembled.

3.1.1 Micro Controller

The micro controller model is Arduino MEGA 2560 Rev3 and it is mounted on the
3D printed main body of the construction. The Arduino MEGA is responsible for
allocating current to the mechanical components according to the code instructions.

Figure 3.1: The Arduino Mega 2560 Rev3 [15]

9

CHAPTER 3. SYSTEM DESIGN

3.1.2 Terrain Traversal

The robot traverses the terrain through the use of unipolar stepper motors with 3D
printed wheels. The wheels are mounted on the shafts of the stepper motors, which
are in turn mounted on the main body of the robot, two on each side. The stepper
motors were chosen because they allow for creating specific instructions regarding
the terrain traversal by counting the steps. The models in use are 28BYJ-48 ,
a very popular and accessible model that can divide each rotation in 2048 steps.
Specifications of the motor in use are provided in Appendix C.

Figure 3.2: The 28BYJ-48 unipolar stepper motor [16]

3.1.3 Sand Spreading Mechanism

The sand is deposited inside a 3D printed funnel mounted on top of Gobi. At this
point the lid at the lower end of the funnel is closed. Once the program starts, and
Gobi starts its route, the DC motor that is friction fit inside the chassis turns the
3D printed spinner and the lid that blocks the sugar is opened. Sand falls inside the
rotating spinner and is subsequently spread. When the robot takes a turn, the lid
is temporarily closed again so that excess sugar at the turning points is minimized.
The funnel is attached at its end to an attachable 3D printed nozzle in order to
offer greater modularity to the design but also for testing purposes. The funnel’s
height is 160 mm and the diameter at its widest part is 180 mm. The components
can be seen in Figures 3.3 and 3.4.

10

3.1. HARDWARE

Figure 3.3: Side view of Gobi. Image taken by the authors

11

CHAPTER 3. SYSTEM DESIGN

Figure 3.4: The sand spreading mechanism. Image taken by the authors

3.2 Software
The algorithms were developed in the Arduino integrated development environment
(Arduino IDE), an open source software provided by the Interaction Design Insti-
tute, the developers of Arduino.

The user enters the lengths of the sides of the rectangular area that he/she wants to
cover . Gobi is expected to cover that area in a rectangular spiral. A necessary con-
dition is that the algorithm should be applicable for rectangular areas of arbitrary
sizes.

3.2.1 Route Calculation
As shown in Figure 3.5, Gobi starts at the bottom left corner of the rectangular area
and finishes at its centre. Gobi’s motion can be described as a collection of straight
forward motion that is interspersed with 90 degree turns. The first three straight
distances are equal to the size of the respective dimensions that were entered by the
user. From the fourth distance and for every consecutive distance that corresponds
to an even number, the distance is reduced by a set amount. The amount depends

12

3.2. SOFTWARE

on the preferences of the user and the span of the robot (see chapter 2, section 2.6).
A smaller number results in a more dense sand spreading pattern, which increases
the amount of sand per area unit but limits the total area that can be covered.

Mathematically, this process can be described in the following manner: Let A
denote a vector of real numbers whose every element is equal each straight distance
needs to be covered

A =
[
a1 a2 · · · an

]
(3.1)

Let also x and y denote the horizontal and vertical dimensions of the area to be
covered by sand (see Figure 3.5). Lastly, let s denote the span of the sand spreading
mechanism. Then the first three elements of the array should be:

a1 = y (3.2)
a2 = x (3.3)
a3 = y (3.4)

The consecutive elements of the vector will be inserted in the following sequence:

a4 = x − 1 ∗ s
a5 = y − 1 ∗ s
a6 = x − 2 ∗ s
a7 = y − 2 ∗ s

...

ai,even = x − (i2 − 1) ∗ s (3.5)

ai+1 = x − (i2 − 1) ∗ s (3.6)

The series that is displayed in Equations 3.5 and 3.6 starts to come into effect after
the third iteration of the while loop referenced in Figure 3.6.

13

CHAPTER 3. SYSTEM DESIGN

Figure 3.5: Gobi’s path inside an arbitrary rectangular area. Each circle with an
arrow denotes a turning point. All straight distances are marked with a number.
Those with numbers in bold text denote the places where a distance reduction
occurs, according to equations 3.5 and 3.6. Made in draw.io [14]

14

3.2. SOFTWARE

Figure 3.6: Flowchart of the code structure for calculating Gobi’s route. The condi-
tion for exiting the loop is the Area covered equaling or exceeding in size the Area
to cover. Made in draw.io[14]

15

CHAPTER 3. SYSTEM DESIGN

3.2.2 Stepper Motor Operation
The stepper motor instructions were coded using the AccelStepper library [17]. The
methods within this library are constructed in a way that receives number of steps
as input. This means that the stepper motors can be instructed to rotate a prede-
termined amount of steps. The stepper motors used in this project have 2048 steps
for one whole rotation (see Appendix C). Due to this fact, a function for converting
distances to steps was created. Let d denote a distance in meters, r denote the
radius of the wheels used, and Nrot the number of full rotations:

Nrot = d

2πr (3.7)

Steps = Nrot ∗ 2048 (3.8)

Steps(d) = 2048d
2πr (3.9)

Using this conversion, the outputs from the Route Calculation Algorithm could
be converted into inputs that are compatible with the AccelStepper library.

3.2.3 Main Code
The main code of the software receives the distances that were calculated by the
Route Calculation Algorithm and creates instructions to the various components of
Gobi. This process is illustrated in Figure 3.7.

16

3.2. SOFTWARE

Figure 3.7: Flowchart of the main code structure, Made in draw.io[14]

17

Chapter 4

Experiments and Results

This chapter describes the experiments that were performed in order to test the
research questions. All tests were performed with sugar as a substitute to sand due
to the high density of sand making it impossible to use the robot with the current
stepper equipment.

4.1 Experiments For Deviation From Course

The purpose of these experiments was to examine the first research question by
determining how accurately the resulting movement of Gobi follows the software
instructions. There were two types experiments that were used to test this question.
First, Gobi was programmed to move in straight lines with the goal of determining
whether or not there was any deviation during the forward motion part of the
operation. The test was performed in the way shown in Figure 4.1. Afterwards, Gobi
was operated according to its intended use, which is to cover rectangular areas as
described in chapter 3. After each time that Gobi was operated, the course deviation
was estimated by measuring the distance between the final stopping position of Gobi
and the intended position, which is always the centre of the rectangular area. The
second experiment is represented visually in Figure 4.2 .

19

CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.1: The deviation from course in a straight line experiment. Gobi starts at
point A and ends its course at point B. The grey line depicts the programmed course
of Gobi whereas the red line depicts course Gobi took during operation. The black
dashed line represents the distance that was measured in the experiment. Made in
draw.io [14]

Figure 4.2: The deviation from course experiment. Gobi starts at point A and
ends its course at point B. The grey line depicts the programmed course of Gobi
whereas the red line depicts course Gobi took during operation. The black dashed
line represents the distance that was measured in the experiment. Made in draw.io
[14]

20

4.2. TESTING OF FLOW FOR VARIOUS NOZZLE SIZES

4.1.1 Experiments For Deviation From Course Results

The first version of the experiment, which intended to measure deviations from
courses in straight lines resulted in no measurable deviations. The second version
resulted in measurable deviations from the course, which are shown in Table 4.3.

Number of Turns Average Deviation [cm]
5 10
8 18
11 35
14 45

Table 4.1: The values shown are averages after five tries

4.2 Testing of Flow for Various Nozzle Sizes

This experiment was conducted with aim of answering the second research question
that was related to the effect that nozzle sizes have on the sand flow. The size of
area that can be covered greatly depends on the amount of sand distributed per
unit of time. Each nozzle size was tested five times. Upon activation, the robot
was set in motion with the same speed of approximately 0,05 m/s. The mass of the
sugar held inside the funnel was 100 g.

4.2.1 Testing of Sand Flow for Various Nozzle Sizes Results

Nozzle size [mm] Time under flow [s] Distance covered by robot [m]
4 no flow 0
5 69 3,79
6 44 2,42
7 26 1,43
8 13 0,71

Table 4.2: Distances covered by the robot while still being able to spread sugar
particles

21

CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.3: The nozzles that were used (4mm to 8 mm diameter from left to right.
Picture taken by the authors

4.3 Effect of Spinner’s Rotational Velocity

This experiment was performed with the purpose of determining how the rotational
speed of the DC Motor affects the size of the area that is being covered in particles.
In order to test the range of the sand based on the rotational velocity of the spinner,
the robot was placed on a black surface and the DC motor was tested five times for
each chosen rpm speed (see Figure 4.4). Afterwards, the average measured value
was calculated.

4.3.1 Effect of Spinner’s Rotational Velocity Results

Rotational Speed [rpm] Average Distance [cm]
1900 10
2500 18
2800 35
3300 45

Table 4.3: Average distance that the majority of the particles traveled for a given
rotational speed

22

4.3. EFFECT OF SPINNER’S ROTATIONAL VELOCITY

Figure 4.4: Testing of spread of the particles as a function of the rotational velocity
of the DC motors. Picture taken by the authors

23

Chapter 5

Discussion

The robot met all expectations and demands of a prototype for testing the research
questions. The stepper motors moved according to our forward moving algorithm
introduced in Section 3.2. The stepper motors also worked in sequence of first mov-
ing forward then rotating as mentioned in Section 3.2, as desired. The movement
sequence resulted in the robot moving as explained in Figure 3.5 with minor devi-
ations occurring every turning sequence.

The most difficult part to measure was the particle spread relative to the rotors
rotational velocity, discussed in section 4.3. The main issue with measuring was the
particles small size and the colour. As seen in Figure 4.4 black plastic bags were a
viable solution for spotting and measuring the particle spread. The different nozzle
sizes tested, as seen in Figure 4.3, were really great to find both the minimum and
maximum limit of plausible nozzle size to flow speed ratio. The 6 mm and 7mm
would also be enough to handle the small testing distance however, the 5mm noz-
zle had a good enough flow to provide enough friction and simultaneously spread
in bigger areas if desired. Using the 8mm nozzle would result in the robot either
running out of particles too soon or be filled with more particles than the stepper
motors can carry in weight.

The main issue with the robot were the stepper motors. The weight of the robot
was too high for them to maintain an adequate speed. As a result, the robot could
not cover areas larger than approximately 1,3 m2. Another issue was that the 3D
printed chassis were optimised for having minimal material in order to minimize the
weight of the robot. As a result, the chassis were susceptible to bending motions
that cumulatively led to deviations in the course. The lack of sensors to provide
feedback about the environment and subsequently correct the path taken by the
robot exacerbated this problem.

25

Chapter 6

Conclusion

The prototype worked well enough to attain answers for all of the research questions
that needed to be answered.

• The robot does not use sensors of any kind in order to localize itself. Does
that lead to deviations from its planned course?

When Gobi was instructed to move in straight lines, there were no measurable
deviations. However, there were some deviations in the path Gobi followed when
it turned several times. The light construction of the robot in combination with
possible imperfections in the terrain as well as the fact that the stepper motors were
not operated simultaneously but instead were used in very brief intervals separately
may have contributed to that fact.

• What rate of sand flow is achieved through the use of different nozzle sizes?

The sand spreading mechanism performed as expected, however due to the medium
not being actual sand, but being sugar instead, the results may not be accurate.
What was unexpected was that even though the sugar particles were very small,
the 4mm nozzle gave no flow at all. To cover a long enough driving distance of at
least 5 meters with minimum amount of weight the 5mm nozzle was used.

• How does the rotational velocity of the spinner affect the size of the area that
is sanded?

Spreading the particles in a distance beyond two times the robot’s length would
be superfluous, therefore driving the rotor at 2800 rpm is considered the optimal
choice for a spreading mechanism of this type.

27

CHAPTER 6. CONCLUSION

Despite the issues that occurred during testing, Gobi managed to complete its
meant task. The task being completing the movement according to the calculated
movement algorithm while also spreading enough particles to cover the designated
area with enough sand to provide friction.

28

Chapter 7

Future Work

The areas for improvement are many, both in terms of hardware and in terms
of software. It became clear during the experiments that the torque output of
the stepper motors in use was the main limiting factor in terms of the amount
of sugar that could be transported. More powerful motors would enable the use
of actual sand, which would make the experiments more accurate. Furthermore,
a construction made of more robust materials would have made outdoor testing
possible. Moreover, the lack of an obstacle avoidance algorithm greatly reduces the
autonomy of the robot. An implementation of LiDAR as a sensor for self localization
would have been a great improvement in that regard [18]. Additionally, a controller
for regulating the sand flow depending on the terrain would also serve to make the
robot more versatile [19]. Finally, the robot in its current form lacks the ability for
simple user input, the intended area is declared inside the script itself. A user input
device such as a small numerical pad in conjunction with a serial monitor would be
a significant improvement.

29

Bibliography

[1] J. H. Davies, “Chapter 1 - embedded electronic systems and microcontrollers,”
in MSP430 Microcontroller Basics, J. H. Davies, Ed. Burlington: Newnes,
2008, pp. 1–20. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B978075068276350002X

[2] (accessed: 15.02.2021) What is arduino? [Online]. Available: https:
//www.arduino.cc/en/Guide/Introduction

[3] B. Bellini, A. Arnaud, S. Rezk, and M. Chiossi, “An integrated h-bridge
circuit in a hv technology,” in 2016 IEEE 7th Latin American Symposium
on Circuits Systems (LASCAS), 2016, pp. 331–334. [Online]. Available:
https://doi.org/10.1109/LASCAS.2016.7451077

[4] F. Bär. (15.02.2021) Building an arduino bluetooth robot car–part 2: Control-
ling dc motors. [Online]. Available: https://filderbaer.wordpress.com/2014/10/
15/building-an-arduino-bluetooth-robot-car-part-2-controlling-dc-motors/

[5] H. Johansson, Elektroteknik. Stockholm, Sweden: KTH, Institutionen för
Maskinkonstruktion Mekatronik, 2013.

[6] J. Bergman and J. Lind, “Robot vacuum cleaner,” KTH, Stockholm,
Sweden, DEGREE PROJECT IN ELECTRONICS AND COMPUTER,
ENGINEERING, FIRST CYCLE, 2019. [Online]. Available: https://www.
diva-portal.org/smash/record.jsf?pid=diva2%3A1373823&dswid=-7420

[7] A. Antonova and H. Lundin, “Photobot: An exploring robot,” KTH,
Stockholm, Sweden, DEGREE PROJECT IN TECHNOLOGY, FIRST
CYCLE, 2019. [Online]. Available: https://www.diva-portal.org/smash/
record.jsf?pid=diva2%3A1373575&dswid=-7420

[8] Z. Benhua, L. Chenghua, S. Shiming, and G. Lu, “Design on a unipolar
and unidirectional stepper motor circuit,” in Proceedings of 2011 International
Conference on Electronic Mechanical Engineering and Information Technology,
vol. 4, 2011, pp. 1795–1797. [Online]. Available: https://doi.org/10.1109/
EMEIT.2011.6023452

[9] C. Cavallo. (accessed: 15.02.2021) Stepper motors vs. dc motors - what’s
the difference? [Online]. Available: https://www.thomasnet.com/articles/
machinery-tools-supplies/stepper-motors-vs-dc-motors/

31

https://www.sciencedirect.com/science/article/pii/B978075068276350002X
https://www.sciencedirect.com/science/article/pii/B978075068276350002X
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://doi.org/10.1109/LASCAS.2016.7451077
https://filderbaer.wordpress.com/2014/10/15/building-an-arduino-bluetooth-robot-car-part-2-controlling-dc-motors/
https://filderbaer.wordpress.com/2014/10/15/building-an-arduino-bluetooth-robot-car-part-2-controlling-dc-motors/
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1373823&dswid=-7420
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1373823&dswid=-7420
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1373575&dswid=-7420
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1373575&dswid=-7420
https://doi.org/10.1109/EMEIT.2011.6023452
https://doi.org/10.1109/EMEIT.2011.6023452
https://www.thomasnet.com/articles/machinery-tools-supplies/stepper-motors-vs-dc-motors/
https://www.thomasnet.com/articles/machinery-tools-supplies/stepper-motors-vs-dc-motors/

BIBLIOGRAPHY

[10] B. Porter. (accessed:15.02.2021) What’s a stepper motor driver
why do i need it? [Online]. Available: https://all3dp.com/2/
what-s-a-stepper-motor-driver-why-do-i-need-it/

[11] R. Krishnan, “Selection criteria for servo motor drives,” IEEE Transactions
on Industry Applications, no. 2, pp. 270–275, 1987. [Online]. Available:
https://doi.org/10.1109/TIA.1987.4504902

[12] D. Nedelkovski. (accessed: 15.02.2021) How servo motor works and how to con-
trol servos using arduino. [Online]. Available: https://howtomechatronics.com/
how-it-works/how-servo-motors-work-how-to-control-servos-using-arduino/

[13] (accessed:15.02.2021) Elite pickup truck insert spreader. Meyer Prod-
ucts. [Online]. Available: https://www.meyerproducts.com/salt-spreaders/
insert-hopper/elite-pickup-truck-insert-spreader

[14] S. GmbH. (accessed:20.05.21). [Online]. Available: https://drawio-app.com/
product/

[15] Arduino. (2021) Arduino mega 2560 rev3. [Online]. (accessed:21.05.21)
Available: https: //store.arduino.cc/arduino-mega-2560-rev3

[16] (accessed:21.05.21) 28byj-48 datasheet. MikroElektronika. [On-
line]. Available: https://www.digikey.se/sv/datasheets/mikroelektronika/
mikroelektronika-step-motor-5v-28byj48-datasheet

[17] Mike McCauley, “Accelstepper (version 1.61, date accessed 2020-05-20).” [On-
line]. Available: https://www.airspayce.com/mikem/arduino/AccelStepper/

[18] NOAA. (accessed: 30.04.21) What is lidar? [Online]. Available:
https://oceanservice.noaa.gov/facts/lidar.html

[19] T. Glad and L. Ljung, Reglerteknik - Grundläggande teori. ISBN: 978-91-44-
02275-8.: Studentlitteratur, 2020.

32

https://all3dp.com/2/what-s-a-stepper-motor-driver-why-do-i-need-it/
https://all3dp.com/2/what-s-a-stepper-motor-driver-why-do-i-need-it/
https://doi.org/10.1109/TIA.1987.4504902
https://howtomechatronics.com/how-it-works/how-servo-motors-work-how-to-control-servos-using-arduino/
https://howtomechatronics.com/how-it-works/how-servo-motors-work-how-to-control-servos-using-arduino/
https://www.meyerproducts.com/salt-spreaders/insert-hopper/elite-pickup-truck-insert-spreader
https://www.meyerproducts.com/salt-spreaders/insert-hopper/elite-pickup-truck-insert-spreader
https://drawio-app.com/product/
https://drawio-app.com/product/
https://store.arduino.cc/arduino-mega-2560-rev3
https://store.arduino.cc/arduino-mega-2560-rev3
https://www.digikey.se/sv/datasheets/mikroelektronika/mikroelektronika-step-motor-5v-28byj48-datasheet
https://www.digikey.se/sv/datasheets/mikroelektronika/mikroelektronika-step-motor-5v-28byj48-datasheet
https://www.airspayce.com/mikem/arduino/AccelStepper/
https://oceanservice.noaa.gov/facts/lidar.html

Appendix A

Arduino Code

/*
* University: Royal Institute of Technology, KTH
* Course : MF133XVT21, Degree Project in Mechatronics.
* TRITA number : ITMEX 2021:10
* Authors : Stavros Ntouvas & Tim Naser
* Program: CMAST
* Project: Gobi
*Finalised: 2021-05-07
*
*This script operates the robot in the wa described in the report
*/

//*************************** Preamble ***************************

// Libraries
#include <AccelStepper.h>
#include <NewPing.h>
#include <Servo.h>

//************************ Components Setup ********************

//----------------------------------- Stepper Motor Pins

// Define Motor Pins (Motor 1)

#define motor1Pin1 22
#define motor1Pin2 23
#define motor1Pin3 24
#define motor1Pin4 25

33

APPENDIX A. ARDUINO CODE

// Define Motor Pins (Motor 2)

#define motor2Pin1 26
#define motor2Pin2 27
#define motor2Pin3 28
#define motor2Pin4 29

// Define Motor Pins (Motor 3)

#define motor3Pin1 46
#define motor3Pin2 47
#define motor3Pin3 48
#define motor3Pin4 49

// Define Motor Pins (Motor 4)

#define motor4Pin1 50
#define motor4Pin2 51
#define motor4Pin3 52
#define motor4Pin4 53

// Define step for stepper motors
#define Step 4
//----------------------------------- Ultrasonic Sensor Pins

#define triggerPin 10
#define echoPin 10

//----------------------------------- DC MotorPins
int motorPin1 = 6;
int motorPin2 = 7;

//----------------------------------- Ultrasonic Sensor Constants
#define maxDistance 450 // 450 cm according to specifications
#define minDistance 2 // cm

//************************************ Initializations **************************************
// The sequence 1-3-2-4 is required for proper sequencing of 28BYJ48
AccelStepper stepper1(Step, motor1Pin1, motor1Pin3, motor1Pin2, motor1Pin4);
// Creates Stepper object
AccelStepper stepper2(Step, motor2Pin1, motor2Pin3, motor2Pin2, motor2Pin4);

34

AccelStepper stepper3(Step, motor3Pin1, motor3Pin3, motor3Pin2, motor3Pin4);
AccelStepper stepper4(Step, motor4Pin1, motor4Pin3, motor4Pin2, motor4Pin4);
Servo servo; // Creates servo object
NewPing sonar(triggerPin,echoPin,maxDistance); // Informs NewPing of which pins it can use

//************************ Constants and Variables **********************
#define pi acos(-1.0) // accurate approximation of pi

//----------------------------------- Robot Dimensions

double r=32.5e-3; // Radius of the wheel
double per=pi*r*2; //circumference of wheel
double b = 0.340; // two times the side of the robot in m

//----------------------------------- Area to be covered
double x = 1; // distance in dim x in meters
double y = 1; // distance in dim y in meters
double AreaToCover = x*y; // Area that will have to be covered in sand
int Array[50]; // Array with prealocated number of elements

double AreaCovered = 0;
double n =1; // number of iterations

//double dy = y -n*b;

double dist=1;
double nRot=dist/per;
int stepsRequired=round(nRot*2048);

//----------------------------------- Iteration Integers
int j = 0; // Used to create the path Array
int k = 0; // Used to create servo motor arary

/*
* Calculates span of angle that the Ultrasonic Sensor is
* supposed to scan for based on what
* distance between the robot and the obstacle is considered near enough
*/

int servoDelay = 25;
float distAcceptable = 0.200; // Distance which we deem to be too close

35

APPENDIX A. ARDUINO CODE

float alpha =180/pi*asin(0.5*b/distAcceptable); // Output in degrees
int gamma = round(90 - alpha); // Convert to output that is compatible with

// the servo library
int angleServoLeft = 180 - gamma; // Left limit of the servo motor
int angleServoRight = gamma; // Right limit of the sevo motor
int lengthof = angleServoLeft - angleServoRight;
int servoArray[360];
//int i = angleServoRight;

void Servo_open(){
servo.write(120); // Continuous servo motor moves at a slow speed
delay(550);
servo.write(93); // contin. servo motor stops, according to theory it should

// be servo.write(90) but it
// is different for different motors

}

void Servo_close(){
servo.write(66); // Continuous servo motor moves at a slow speed
delay(550);
servo.write(93); // contin. servo motor stops, according to theory it should

// be servo.write(90) but it
// is different for different motors

}

/*
* Turn(int angle) function.
* Input: Degrees that the robot should rotate, positive numbers are right,
* negative numbers are left
* Output: Rotation that corresponds to input
*/

void turn(int angle){
if (angle>=0){

double rad = angle * pi/180;
double sector = rad * b/2;
double Rotations = sector/per;
int stepsTurn= round(2048*Rotations);
movement_A(stepsTurn,stepsTurn,-stepsTurn,-stepsTurn);

}

36

else {
double rad = angle * pi/180;

double sector = rad * b/2;
double Rotations = sector/per;
int stepsTurn= round(2048*Rotations);
movement_A(stepsTurn,stepsTurn,-stepsTurn,-stepsTurn);

}
}

/*
* Movement_A(int Steps for motor 1, inte Steps for moto 4)
* Input: Amount of steps that each stepper motor is supposed to take,
* this function is used in conjuction with array
* Output: The stepper motors take the steps that they are instructed to take
*/

void movement_A(int Steps1, int Steps2, int Steps3, int Steps4) {
int obstDistance = 200;

stepper1.moveTo(Steps1);
stepper2.moveTo(Steps2);
stepper3.moveTo(-Steps3);
stepper4.moveTo(-Steps4);

while(stepper1.distanceToGo()!=0){

stepper1.run();
stepper2.run();
stepper3.run();
stepper4.run();

}

}

void setup() {

Serial.begin(9600); // Initialises Serial monitor for debugging purposes

37

APPENDIX A. ARDUINO CODE

//***************** Define how fast the stepper motors ***************
//**************** are expected to rotate and accelerate ***********
stepper1.setMaxSpeed(550.0);
stepper1.setAcceleration(150.0);
stepper1.setSpeed(200);
stepper2.setMaxSpeed(550.0);
stepper2.setAcceleration(150.0);
stepper2.setSpeed(200);
stepper3.setMaxSpeed(550.0);
stepper3.setAcceleration(150.0);
stepper3.setSpeed(200);
stepper4.setMaxSpeed(550.0);
stepper4.setAcceleration(150.0);
stepper4.setSpeed(200);

/*
* Creates an Array with all intended distances that are intended to be driven
* in a straight line
* Each element of the Array is then used as input for movement_A()
* Not a function itself because it is only calculated once
*/

byte ArrayIndex = 4;
Array[0] = round(y*2048/per);
Array[1] = round(x*2048/per);
Array[2] = Array[0];
while(AreaCovered < AreaToCover){
double dx = x - (ArrayIndex/2-1)*b;
int Steps = round(2048*dx/per);
Array[ArrayIndex]= Steps;
AreaCovered = AreaCovered + dx*b;
double dy = y - (ArrayIndex/2-1)*b;
Steps = round(2048*dy/per);
Array[ArrayIndex + 1]= Steps;
AreaCovered = AreaCovered + dy*b;
ArrayIndex = ArrayIndex +2;

}
/*
* Creates the Array with the span of angles that
* the servo motor will cover
*/

38

for(int i = 0; i < lengthof; i++){
servoArray[i] = angleServoRight + i;
Serial.println(servoArray[i]);

}
for(int i =lengthof; i<=(2*lengthof); i++){

servoArray[i] = angleServoLeft - k;
k++;

Serial.println(servoArray[i]);

}

servo.attach(8);// Creates a servo object. Attaches it to pin 8
servo.write(90); delay(1000);

}

void loop() {
Servo_open();
digitalWrite(motorPin1, LOW);
digitalWrite(motorPin2, HIGH);
movement_A(Array[j],Array[j],Array[j],Array[j]);
stepper1.setCurrentPosition(0);
stepper2.setCurrentPosition(0);
stepper3.setCurrentPosition(0);
stepper4.setCurrentPosition(0);
digitalWrite(motorPin1, LOW);
digitalWrite(motorPin2, LOW);
Servo_close();
turn(180);
stepper1.setCurrentPosition(0);
stepper2.setCurrentPosition(0);
stepper3.setCurrentPosition(0);
stepper4.setCurrentPosition(0);
Serial.println("turn");
j++;

39

APPENDIX A. ARDUINO CODE

}

40

Appendix B

Acumen Code

/* Acumen Assignment as part of Bachelor's Thesis in Mechatronics
* Authors: Stavros Ntouvas and Tim Naser 2021.
* This is a model of the construction, which is a robot that
* spreads sand evenly over a specific area with simple user commands.
*/

//****** Script initialization and definition of*****
//*******variables that will be used***
model Main(simulator) =
initially
r = create Robot((0,0,0),blue), // Instance of Robot is created
x=0, x'=0, x''=0, // Variables that will allow the motion equations later on
x2=0, x2'=0, x2''=0,
z = 0

always
//********* Motion equations **************
if x<20
then x'' = -(x'-10)
else if x'>0

then x '' = -10
else x '' = 0,

r.pos = (x,0,0),
x2'' = -100*(x2-x)-10*(x2'-x'),
z = x-x2

//******* Object Definitions***************
model Robot(pos,col) = // Robot object is defined
initially
_3D = (),_Plot=()

41

APPENDIX B. ACUMEN CODE

always
_3D = (Box center = pos+(0,0,0)

color = 0.4*col + 0.6*white
length = 8
width = 6
height = 3

Cone center = pos + (0,0,4)
color = 0.4*col + 0.6*red
radius = 2
length= 5
rotation=(-pi/2,0,0)

Cylinder center = pos + (3,3,-1) // Front left wheel
color = 0.4*col + 0.6*blue
radius = 1.5
length = 1

Cylinder center = pos + (3,-3,-1) // Front right wheel
color = 0.4*col + 0.6*blue
radius = 1.5
length = 1

Cylinder center = pos + (-3,-3,-1) // Rear right wheel
color = 0.4*col + 0.6*blue
radius = 1.5
length = 1

Cylinder center = pos + (-3,3,-1) // Rear left wheel
color = 0.4*col + 0.6*blue
radius = 1.5
length = 1

)

42

Appendix C

Data Sheet Stepper Motors

43

 P.O. Box 8231 Cherrywood Tauranga New Zealand Phone: ++64 7 578 7739 Fax: ++64 7 578 7749 E-mail: enquiry@kiatronics.com
 Website: www.kiatronics.com Copyright Welten Holdings Ltd - Specifications subject to change without further notice.

28BYJ-48 – 5V Stepper Motor

The 28BYJ-48 is a small stepper motor suitable for a large range of applications.

Rated voltage ： 5VDC
Number of Phase 4
Speed Variation Ratio 1/64
Stride Angle 5.625° /64
Frequency 100Hz
DC resistance 50Ω±7%(25℃)
Idle In-traction Frequency > 600Hz
Idle Out-traction Frequency > 1000Hz
In-traction Torque >34.3mN.m(120Hz)
Self-positioning Torque >34.3mN.m
Friction torque 600-1200 gf.cm
Pull in torque 300 gf.cm
Insulated resistance >10MΩ(500V)
Insulated electricity power 600VAC/1mA/1s
Insulation grade A
Rise in Temperature <40K(120Hz)
Noise <35dB(120Hz,No load,10cm)
Model 28BYJ-48 – 5V

Appendix D

Data Sheet DC Motor

45

DIRECTION OF ROTATION

red mark

MOT3N

Appendix E

Data Sheet Servo Motor

47

48.3
54.2

Duty Cycle = 20 ms

On time = 1 ms

40.5

39
.4

29
.5

1020
.2

19
.0

14.2 7.7

2.54
A

B
C

360° Continuous Rotation Servo
Gear motor for Arduino and Raspberry-Pi robotics projects.
Typical use: Model aircraft, cars and robots.
A continous servo rotates forward or backwards instead of moving to a given position.
Bidirectional rotation - pulse duration determines the speed and direction of rotation.

Item no: 90770
Model no: DS04-NFC
Weight: 38g.
Torque: 5,5 kg/cm (54 Ncm) (at 4,8 V).
Speed: 0,22 sec/60° ≈ 45 rpm (at 4,8 V).
Linear response to PWM (0-45 RPM) for easy ramping
Operating voltage: 4,8-6 V.
Operating temperature: -10 to 50 °C.
Current: < 1000 mA.
Cable length: 290 mm.
Connector type: JR / Futaba
Breadboard friendly connector 2,54 mm pitch.
Connector wire gauge: 28 AWG.
Control system: PWM (Pulse Width Modulation)
Counterclockwise rotation: 1-1,5 ms
No rotation (stop): 1,5 ms
Clockwise rotation: 1,5-2 ms
Pulse Frequency / Duty cycle: 50 Hz / 20 ms square wave

Dedication to innovation! Servo Solutions

Specification subject to change
Dimensions are in millimeters

www.luxorparts.com
Box 50435, Malmö, Sweden
Update: Nov 30, 2017

A B C
A - Black (-)
B - Red (+)
C - White (signal)

Full reverse (counterclockwise)

360° servo PWM signal timings

Duty Cycle = 20 ms

On time = 1,5 ms

Stop rotation (stall)

Duty Cycle = 20 ms

On time = 2 ms

Full forward (clockwise)

TRITA-ITM-EX 2021:10

www.kth.se

	Introduction
	Background
	Purpose
	Scope
	Method

	Theory
	Micro-controller
	H-bridge
	DC Motor
	Stepper motor
	Servo motor
	Sand Spreading Techniques

	System Design
	Hardware
	Micro Controller
	Terrain Traversal
	Sand Spreading Mechanism

	Software
	 Route Calculation
	Stepper Motor Operation
	Main Code

	Experiments and Results
	Experiments For Deviation From Course
	Experiments For Deviation From Course Results

	Testing of Flow for Various Nozzle Sizes
	Testing of Sand Flow for Various Nozzle Sizes Results

	Effect of Spinner's Rotational Velocity
	Effect of Spinner's Rotational Velocity Results

	Discussion
	Conclusion
	Future Work
	Bibliography
	Arduino Code
	Acumen Code
	 Data Sheet Stepper Motors
	 Data Sheet DC Motor
	 Data Sheet Servo Motor

