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Abstract
Pitcher is a prototype which makes it easier for inexperi-
enced guitar players to tune their guitars without any prior
knowledge required. This thesis will explore how the con-
struction varies between the usage of DC and a stepper
motor, how reliable the tuner is and how long it takes to
tune the guitar.

The tuner will capture sound with a microphone and
calculate the current frequency of the string with YIN auto-
correlation. Based on the frequency a control system reg-
ulator is used to determine the speed and direction of a
motor which turns the tuning peg, this is repeated until
the string is in tune. 30 tests were conducted from di�er-
ent starting frequencies, and the time it took for the tuner
to find the right pitch and the string’s corresponding fre-
quency was measured. Some of the measurements were a
couple of Hz o� pitch, and only about half of the frequen-
cies measured belonged to the interval where there is no
noticeable di�erence of the pitch, therefore the tuner could
not be considered reliable. The time it takes to tune the
guitar is dependent on how far o� pitch the string is and
the di�erence in time does not depend linearly with the
starting frequency, it increases faster the further o� pitch
the string is.

The tuner is portable and to apply the tuner to the
guitar it is held and placed on the tuning peg with one
hand as the other hand is plucking the string.

Key Words: Arduino, mechatronics, autocorrelation,
guitar tuner, pitch detection algorithm



Referat
Automatisk gitarrstämmare

Den automatiska gitarrstämmaren, Pitcher, är en proto-
typ som möjliggör för oerfarna gitarranvändare utan förk-
unskaper att stämma en gitarr. Den här avhandlingen kom-
mer att undersöka hur konstruktionen skiljer sig åt vid
användning utav en stegmotor respektive en likströmsmotor,
hur l̊ang tid det tar att stämma gitarren samt hur tillförlitlig
prototypen är.

Stämmaren avläser ljudsignaler med en mikrofon och
beräknar sedan frekvensen av strängen med hjälp av YIN
autokorrelation. Den beräknade frekvensen behandlas i en
regulator som avgör vilken hastighet och i vilken riktning
motorn ska rotera stämskruven. Detta repeteras tills kor-
rekt frekvens erh̊alls. 30 test gjordes d̊a gitarren stämdes
fr̊an olika startfrekvenser där tiden att stämma strängen
respektive dess frekvens mättes. N̊agra mätningar hade en
frekvens som avvek flera Hz fr̊an korrekt frekvens, och cir-
ka hälften av frekvenserna fr̊an alla mätningar tillhörde
frekvensintervallet där ingen skillnad kan höras p̊a tonen,
därför kan gitarrstämmaren ej anses vara tillförlitlig. Tiden
det tar att stämma en sträng är beroende p̊a hur ostämd
den är och skillnaden i tid beror inte linjärt av startfre-
kvens, utan den ökar snabbare desto mer ostämd gitarren
är.

Stämmaren är portabel och för att applicera den p̊a
gitarren placeras munstycket p̊a stämskruven medan den
andra handen sl̊ar an strängen.

Nyckelord: Arduino, mekatronik, autokorrelation, gi-
tarrstämmare, tonavläsning
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Nomenclature

This thesis consists of code segments where variables from the code will be displayed
in another style, as variable_name. Text displayed as, function_name(), ending
with two parenthesis, represents the function function_name. The specific function
main() refers to the code’s function loop().

List of Abbrevations

AC Alternating Current

ACF Autocorrelation Function.

DC Direct Current

IDE Integrated Development Environment

JND Just Noticeable Di�erence

OP-AMP Operational Amplifier

PDA Pitch Detection Algorithm

PID Proportional-Integral-Derivative

PLA Polylactic Acid

PWM Pulse With Modulation

RPM Revolutions Per Minute

USB Universal Serial Bus
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Chapter 1

Introduction

1.1 Background

One of the most important requirements for a musical instrument like a guitar is
being able to perform the right note when needed. Tuning makes this possible but
it is far from easy to tune a guitar for someone who does not have the experience.
A guitar is tuned by screwing on the tuning pegs on the head of the guitar which
tightens or loosens the strings until the desired tone is reached. There are various
kinds of guitar tuners, for example electric which tells whether the tone is too high
or low when a string is being played but there are also tuning forks which only give
the right tone to tune after. The latter of those require a lot of experience from the
player, and the electrical one still requires the player to make manual adjustments
which can lead to unintended deviation from the desired pitch. An automatic guitar
tuner which sets the desired tone when a string is being played would simplify this
process, and it would also make it possible for inexperienced players to tune their
guitars without e�ort.

1.2 Purpose

This project is about making a prototype of a portable automatic guitar tuner that
can tune a guitar according to the user’s preferences with acceptable reliability. The
purpose is to make it possible for everyone to tune a guitar despite experience level.
This report will examine these following questions,

• How reliable is the tuner?

• How long does it take for the tuner to get the right pitch?

• What are the di�erences in using a stepper motor or a DC motor?

1



CHAPTER 1. INTRODUCTION

1.3 Scope

The goal of this report is to create a device that with the help of a microphone,
can read the frequency of a string, and from that data, rotate a connected motor
until the frequency of the string matches the desired frequency. The prototype will
only be able to tune one predetermined string as a proof of concept, and it will be
constructed so that the person using it must hold the device on their own.

1.4 Method

The concept and methods used for the guitar tuner was influenced by a bachelor’s
thesis written by Svensson and Gylling who built a guitar tuner for an electric guitar
[1]. The guitar tuner in this project consist of two systems, and an Arduino Uno
was used as microcontroller to control these two systems. The first system converts
the incoming analog signal to digital and from there calculates the frequency of
the signal. The signal was detected by an electret microphone which passed its
value to the Arduino where the frequency was calculated with a method called YIN
autocorrelation, this is the same method that Svensson and Gylling used in their
bachelor’s thesis to calculate the frequency of an incoming analog signal.

The second system is the motor control, it consists of an electric motor which
rotates the tuning peg based on the calculated frequency, and a H-bridge since the
motor has to be able to rotate in both directions depending on whether the string
is too tight or too loose. The motor controlling system will have an implemented
PID-controller to shorten the time for the tuner to find the correct frequency.

The work will be divided into milestones, where the first one is to get the signal
processor to functionally work as desired, the second one will be to add a motor to
the circuit. The third and last one is to design and create a case which can fit all
the required components.

2



Chapter 2

Theory

2.1 Tone and Guitar Tuning

Sound is perceived in the ear as vibrations, and a repeating vibration is what we
call a pitch. For example, a common pitch is A440 which vibrates 440 times every
second, in other words, it has the frequency of 440 Hz [2].

The fundamental parts of a standard guitar generally consist of six strings, of
di�erent thickness, that are being held over a fretboard between a bridge in one
end, and over a nut and connected to di�erent tuning pegs in the other. When a
string is plucked it vibrates with a certain frequency which mainly depends on three
things: the mass, the length and the tension on the string. Heavier strings move
more slowly which in turn lowers the frequency, hence di�erent strings on the guitar
have di�erent characteristics. The length of the string is manipulated by the player
from pressing down on the fretboard, instead of being the distance between the nut
and the bridge the string now has the length of the distance between the next fret
and the bridge instead, and a shorter string generates a higher frequency. Adjusting
the tension of the string is done by turning the tuning pegs, higher tension gives
a higher frequency, and this is generally how a guitar is tuned [3]. When tuning a
guitar, there must be some interval of frequencies that determine whether the string
is tuned or not since it is hard to find the exact frequency. To determine this, the
JND can be used as tolerance which is the interval of a frequency where there is
no di�erence between the perceived note and the actual note. The JND varies for
di�erent notes and can be expressed in frequencies [1].

On fretted string instruments, such as the guitar, equal tempered scale is used.
It is built on the idea that every octave consists of 12 equally large intervals, which
allows the instrument to play all fixed tones in every key at the cost of making every
interval fall out of perfect tune [4].

The standard tuning for a six string guitar is based on A440, the ISO standard
for the tuning of A4 , this is presented in Table 2.1 [5].

3



CHAPTER 2. THEORY

Table 2.1. Standard tuning of a six-stringed guitar where ”e” represents the higher

e-string.

String Frequency

e 392,63 Hz
B 246,94 Hz
G 196,00 Hz
D 146,84 Hz
A 110,00 Hz
E 82,41 Hz

2.2 Pitch Detection Algorithm

Pitch detection algorithms are used when calculating the pitch from a digital sig-
nal. The pitch of a digital signal is either determined in the time-domain or the
frequency-domain. The autocorrelation function (ACF) is a commonly used algo-
rithm in the time-domain. The ACF of a discrete signal xt is defined as

rt(·) =
t+Wÿ

j=t+1
xjxj+· (2.1)

where rt is the autocorrelation function of lag · at time index t, and the window size
of the integration W . This function for the signal in Figure 2.1.(a) is illustrated in
Figure 2.1(b). The local maximus in Figure 2.1(b) is where the lag · is the period
of the signal.

A method for pitch detection in musical applications is introduced in [6] and is
called YIN autocorrelation, it consists of several steps that improve the ACF. The
first step in the YIN-method is the ACF, the second step is to introduce a di�erence
function

dt(·) =
Wÿ

j=1
(xj ≠ xj+· )2 (2.2)

where the period of the signal xt is determined by searching for which values of · the
function is equal to zero. There are infinite sets of such values due to the periodicity
of the function as can be seen in Figure 2(a). The squared sum in Equation 2.2 can
be expressed in the terms of the ACF as

dt(·) = rt(0) + rt+· (0) ≠ 2rt(·) (2.3)

where the two first terms are energy terms. As those terms are constant, the di�er-
ence function dt(·) varies as the opposite of rt(·) when searching for a maximum
of one or the minimum of the other one the result would be the same. The second
energy term also varies with · leading to that the minima of dt(·) and the maxima
of rt(·) may not always coincide. The third step of [6] is to introduce a cumulative

4



2.2. PITCH DETECTION ALGORITHM

Figure 2.1. (a) Example of a speech waveform. (b) The ACF calculated from the

waveform in (a) [6].

Figure 2.2. (a) Di�erence function calculated for the signal in Figure 2.1.(a). (b)

Cumulative mean normalized di�erence function to the same signal as in (a) [6].

mean normalized di�erence function. The di�erence function of Figure 2.2.(a) is
zero when the lag is zero and often it is nonzero at the function period whereas
the periodicity is imperfect. The algorithm will choose the zero-dip lag instead of
the period lag if the search range does not have a lower boundary, this will fail
the algorithm and therefore the following cumulative mean normalized di�erence

5



CHAPTER 2. THEORY

function is introduced

d
Õ
t(·) =

I
1, if · = 0,

dt(·)/
Ë
(1/·)

q·
j=1 dt(j)

È
otherwise.

(2.4)

The function d
Õ
t(·) is obtained by dividing each value of the old di�erence equation

dt(·) with its average over shorter-lag values. Seen in Figure 2.2.(b) the function
starts in 1 comparing to dt(·) which starts in 0. Other di�erences is that d

Õ
t(·)

tends to remain large at low lags, and drops below 1 only where dt(·) falls below
the average. According to [6] this reduces “too high” errors and to reduce the “too
low” errors, an absolute threshold is introduced in step 4.

When one of the higher-order dips of d
Õ
t(·) is deeper than the period dip a

subharmonic error occurs called “octave error” and the ACF may choose a high-
order peak. If an absolute threshold is set then the smallest value of · is chosen
such that the minimum of d

Õ
t(·) is deeper than that threshold. If no such minimum

is found, then the global minimum is chosen instead.
Previous steps are based on the fact that the period is a multiple of the sampling

period. If that is not the case, the earlier estimations may be inaccurate by up to
half the sampling period. This can be solved in step 5 in [6] by using a parabolic
interpolation on the function d

Õ
t(·) over the minimum and its nearest neighbours.

The ordinate of the interpolated minimum is used in the selection process for the
dip and the abscissa of the minimum is used as a period estimate. To avoid that
the abscissa is biased the corresponding minimum of dt(·) is being used.

2.3 Microphone

In general a microphone is a converter between acoustic energy and electrical energy.
One of the main uses for a microphone is as a measuring instrument where acoustic
signals are converted into electrical currents which can be processed and interpreted.
Inside an electret microphone one of the key components is a diaphragm. When
sound waves a�ect the diaphragm the distance between two plates of a capacitor
inside the microphone gets altered, which in turn a�ects the voltage. One advantage
with an electret microphone is that the microphone itself isn’t dependent on an
external source of power [7].

2.4 Arduino Uno Microcontroller

Arduino Uno, which is shown in Figure 2.3, is an open-source microcontroller pro-
duced by the company Arduino. The microcontroller is equipped with 14 digital
input/output pins and six analog input pins, as well as a USB-connector and a 32
kilobyte flash memory. The operating voltage is 5 V , and the recommended input
to power the Arduino Uno is 7 ≠ 12 V . Programming the microcontroller is done
in a C-based language in the Arduino IDE software from where it is transferred to
the Arudino Uno via the USB.

6



2.5. H-BRIDGE

The Arduino can read analog values between 0≠5 V with the function analogRead()
but it can not output analog values between that voltage range. To output voltages
between 0 ≠ 5 V the Arduino uses the function digitalWrite() which outputs a 5 V

signal that is turned on and o� in di�erent time intervals, this generates a steady
analog output value. The time between the on and o� switch determines the analog
value and by modulating it, the output value can be changed. This kind of signal
is called PWM signal [8].

Figure 2.3. Picture of an Arduino Uno [8].

2.5 H-bridge

A common way of controlling electric driven motors is by using an H-bridge, these
allow the motors to rotate both forwards and backwards while still using direct
current. This is done by the design of having four switches which can change
between being turned on and o�, for example, if switch 2 and 3 in Figure 2.4 is on
and 1 and 4 are turned o� the current will flow from right to left through the motor
in the figure. Doing the opposite will cause the current to flow from left to right
which makes the motor rotate in the opposite direction. A regular safety feature on
H-bridges is that they don’t allow all four switches to be on at the same time since
this will cause the voltage source to short circuit [9].

Figure 2.4. A simple schematic figure of an H-bridge made in Microsoft PowerPoint.

7



CHAPTER 2. THEORY

2.6 DC Motor

A DC motor is an electrical motor which transforms energy from a direct current
into mechanical energy. In principle, the stator of the motor creates a magnetic field
inside, and by running the current I through a loop inside the rotor according to
Figure 2.5, a force pair occurs which cause a rotation. The loop itself is connected
to a commutator that allows the current through the loop to change direction every
half turn, this allows the force pair to have the same direction for every full turn.
For an actual DC motor, the number of loops is increased. The direction that the
motor turns depend on the direction of the current through the circuit, this means
that the direction can be changed by the use of an H-bridge. The speed of the rotor
can be adjusted by changing the voltage of the power source [9]. Another way of
reducing the speed of the motor is by fitting it with a gearbox which reduces the
speed of the shaft while increasing the torque of the motor.

Figure 2.5. Embryo of a DC motor [9].

2.7 Stepper Motor

A stepper motor is very similar to a DC motor except that it rotates in small distinct
steps. The rotation is caused by several coils that are distributed evenly around
the rotor which can be seen in Figure 2.6, these coils are grouped up in what is
known as phases. The coils in each phase are energized simultaneously, and by
sequentially activating each phase, the motor can rotate in precise steps. They also
have their highest amount of torque at lower speeds. For these reasons, stepping
motors are commonly used where precision in both speed and positioning is needed.
The resolution of each step is determined by the amount of steps per revolution,
which usually ranges between 4-400. In order to drive what is known as a bipolar
stepper motor a driver with two full H-bridges is required to alternate the polarity
of the di�erent phases [10].

8



2.8. PID CONTROLLER

Figure 2.6. Inside view of a stepper motor [10].

2.8 PID Controller

The PID controller is a commonly used loop mechanism used in industrial con-
trol systems. The controller consists of three terms, the proportional, integral and
derivative, which together creates the PID. The PID controller continuously calcu-
lates the error value e(t) as

e(t) = r(t) ≠ y(t) (2.5)

where r(t) is the desired value of the signal and y(t) is the measured value of the
signal. The controller strives to minimize the error e(t) by calculating an input
value u(t) to the system as

u(t) = Kpe(t) + Ki

⁄ t

0
e(tÕ)dt

Õ + Kd
d

dt
e(t) (2.6)

where Kp, Ki and Kd respectively denotes the gain coe�cients for the proportional,
integral and derivative term [11].

9





Chapter 3

Demonstrator

The design of the guitar tuner can be broken down into three subgroups. The
mechanical, the electrical and the programming. This chapter will in detail present
the design of these three parts.

Figure 3.1. The finished construction with all components mounted.

3.1 Mechanical Design

3.1.1 Body Design

The body of the prototype works as a case for the components. Since the concept of
the tuner demands the player to pluck the string as the guitar is being tuned, it was

11



CHAPTER 3. DEMONSTRATOR

important that it can be held with one hand. This resulted in the semi-compact
prototype seen in Figure 3.2 which was big enough to hold the necessary components
without being too bulky. The bottom part of the case holds the majority of the
components such as the Arduino Uno, the circuit, the motor, the batteries and a
power switch. The holes on the side of the case allowed both the motor and the
power switch to be screwed on to their respective location. The motor is held by
two M3 screws and the power switch was threaded which allowed it to be fitted
using a nut. The rest of the components were fitted with adhesive tape to hold
them in place. The microphone was attached to the lid of the case to have it facing
the body of the guitar while the tuner is being used. The case and the lid are held
together by M3 screws, and both parts were designed in Solid edge ST10 and later
3D printed in PLA plastic, technical drawings are presented in Appendix A.2, A.3.

Figure 3.2. Image of the case and lid rendered in Keyshot 10

3.1.2 Nozzle Design

The nozzle consists of two crossed cuts where the tuning pegs can be placed. The
cuts are tapered so that tuning pegs of di�erent sizes will be able to fit. In order
to mount it on the motor shaft, a semicircle shaped hole that matched the cross
section of the shaft was made. The flat surface of the semicircle transfers the torque
from the motor to the nozzle. The design was made in Solid edge ST10 and then
3D-printed in PLA plastic, a technical drawing is presented in Appendix A.1.

Figure 3.3. Image of the nozzle rendered in Keyshot 10

12



3.1. MECHANICAL DESIGN

3.1.3 Electret Microphone

The microphone used was an electret microphone with an integrated amplifier from
the company Adafruit of the model MAX4466. The microphone itself has the ca-
pability to interpret frequencies ranging between 20 ≠ 20000 Hz and the amplifier
has an adjustable gain which can increase the original signal with a factor of 25 to
125. When using the microphone together with an Arduino it was recommended
that the 3, 3 V output was used in order to power the amplification since it had the
lowest impact on the signal [12].

Figure 3.4. Picture of Adafruit MAX4466 [12].

3.1.4 Motor and Driver

The two motors used were a two-phase stepper motor from Tamagawa Seiki and a
DC motor L149.6.392 from Micromotors which were provided by the lab assistant
Amir Avdic. The stepper motor has a resolution of 200 steps per revolution. It was
used due to its high torque at low speed since the pegs will rotate at low speed, and
therefore the motor had to have enough torque. The stepper motor also provide
precise positioning which can be an advantage when adjusting the pegs for minimal
error. The driver for the stepper motor that was used was a DRV8825 stepper motor
controller by Texas Instruments. It can operate between 8, 2 ≠ 45 V and handle
upwards to 2, 5 A of continuous current with proper heat sinking. The DC motor
has a supply voltage of 6 V , a torque of 0, 2 Nm and it has a rotational speed of
5 rpm, more information of the motor can be found in Appendix B. This low rpm
is important when turning the pegs with a DC motor so that the pegs will not turn
too far between the samples. The high torque is also important as mentioned earlier
since the tuning pegs can be tough. To control the direction of the DC motor a
L9997 motor driver is used. To run the DC motor, a PWM signal is sent to the
motor and for di�erent values of the PWM signal, the motor will rotate at di�erent
rpm’s. The direction is determined by sending high or low signals to specified input
ports on the driver. The torque of the DC motor will decrease when lowering the
value of the PWM signal.
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3.2 Electrical Design

The electrical design consists of a signal processor and a motor driver. The circuit
was first developed on a breadboard until the circuit was fully working, later the
finished circuit was soldered on to a solder plate. The signal processor had the same
design for both DC and stepper motor which the driver later was connected to. The
electrical design is powered by one 9 V battery and four AA 1, 5 V batteries.

Figure 3.5. The soldered DC circuit on a copper board mounted on the Arduino.

3.2.1 Signal Processor

The design of the signal processor was based on a project by Amanda Ghassaei

where an input configuration for an analog signal was presented. Ghassaei stated
the following three necessary modifications to the circuit to make the microphone’s
output signal compatible with an Arduino [13].

• Frequency cuto�-filter

• Voltage amplifier

• DC-o�set

The signal processor detects the input sound with an electret Adafruit Max4466
microphone and outputs an analog signal to the Arduino. The filter was used to
cut o� unwanted frequencies since the microphone detects frequencies up to 20 kHz

and the frequencies for the guitar strings, as presented in Table 2.1, spans between
82, 4≠392, 63 Hz. The amplifier was vital since the output signal of the microphone
had an amplitude of order 100 mV , the data in this low voltage signal is harder for
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the Arduino to read and therefore the signal was amplified to an amplitude around
5 V . An active band-pass filter was used consisting of an amplifier, a low-pass
and a high-pass filter stage. The components used for the active band-pass filter
was the OP amplifier LM358P from Texas Instruments, one 560 � and one 10 k�
resistor for the amplifying part. For the filtering part two 10 k� resistors, a 330 nF

capacitor for the high-pass filter stage, and a 39 nF capacitor for the low-pass filter
stage, this is illustrated in Figure 3.6. This leads to the signal being amplified to
an amplitude of 5 V and only consisting of frequencies between 48 ≠ 408 Hz.

The last modification is the DC-o�set of the signal. The output signal from
the microphone oscillates around 0 V and the Arduino’s analog input’s only detect
signals between 0≠5 V which results in signals lower than zero being left out, these
are necessary when calculating the frequency and therefore a 2, 5 V o�set is used.
The DC o�set works by adding 2, 5 V to the output signal which makes the fre-
quency oscillate around 2, 5 V instead of zero. When the signal is filtered, amplified
and o�set the signal processor sends the fully readable signal to the Arduino. The
components used for the o�set where two 10 k� resistors and one 10 µF capacitor.
By wiring the two resistors in series between the 5 V output from the Arduino and
ground, the voltage in the junction between the resistors was divided into 2, 5 V

due to equal resistance on the resistors. The junction is then wired to the op-amp’s
output via the capacitor to only pass the AC component of the signal. After these
steps the output signal of the microphone was ready to be used in the Arduino, the
signal processing circuit is illustrated in Figure 3.6.

Figure 3.6. Circuit of the active band-pass filter and the DC-o�set which creates

the signal processing unit. This circuit was made in Falstad Circuit Simulator.

3.3 Programming

This section goes through the programming part of the two concepts for the guitar
tuner. The implemented code is based on the code from Gylling and Svensson’s

guitar tuner thesis since they used the same PDA as this tuner. Due to di�erences
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in the interface the code was modified to make it applicable for the tuner in this
project.

When bu�ering data in main(), in this case, sampling data into an array, the
time for how long the bu�ering takes depend on how much and what type of code
main() consists of. It can vary from time to time and therefore the time between
the samplings can get inconsistent. In this case when sampling data an interrupt
is used to create a fixed sampling rate to make sure that the time between the
samplings is the same every time. According to Ghassaei the sample rate should
be set to 38, 5 kHz to make the code as e�cient as possible, this sample rate gives
an interval between the samplings of 26 µs.

The interrupt functions interrupts the main function every 26 µs to execute its
own block of code, and when it is done the code will return to where it was in
the main function. The interrupt functions in this code reads and store the current
value of the variable incomingAudio to the bu�er which generates an array rawData
consisting of data that later is used in the main function.

The two di�erent motor concepts uses the same signal processing method which
implies that the two interrupt functions and the majority of the main() stays the
same for both concepts. An overall flowchart of the interrupt functions is presented
in Figure 3.7 and the flowchart for the two di�erent main() functions is presented
in Figure 3.8. Each code starts by setting up the variables, interrupts and timer
used in the code.

3.3.1 Stepper Motor

The code starts by checking if rawData has collected enough data points, if that
is the case, FreqCalc() is called which calculates the frequency. If a new fre-
quency is successfully calculated, rawData is cleared and the frequency is sent to
calc_error() which determines the number of steps and the rotation speed for the
motor. To determine these variables, an if-else statement is used which consists of
three statements. The statements represents an individual frequency interval which
executes if the error belongs to one of the intervals. The di�erent statements sets a
predetermined value to the motor variables, and run_motor executes with the given
variables. If FreqCalc() does not calculate a new frequency, the code will not clear
the rawData and the code will then be executed with the old frequency.

3.3.2 DC Motor

As in the other code, it starts to check if rawData is full and if that is the case,
FreqCalc() is called. If the frequency is unsuccessfully calculated, rawData is
cleared and main() starts over. Otherwise the frequency is passed to PID which
calculates the control signal based on the error in Equation 2.5. The coe�cients of
the PID controller in Equation 2.6 are taken from Gylling and Svensson’s thesis.
The control signal is then passed on to motor_speed() which determines the PWM
value. Then the motor direction is determined and the calculated PWM value is
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passed to clockwise() respectively counter_clockwise() depending on what has
been decided. As the last step, rawData is cleared and can therefore start sampling
new data for new calculations. When a frequency lies within the interval of JND
which for the A-string is 0, 38 Hz, the motor stops for one second and the string is
considered tuned.

Figure 3.7. Flowchart of the two implemented interrupt functions for both concepts.

This flowchart was made with app.diagrams.net.
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Figure 3.8. Flowchart of the implemented main functions for the two concepts.

This flowchart was made with app.diagrams.net.
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Chapter 4

Result

The finished prototype that was described in Chapter 3 can be seen in Figure 4.1,
where it is presented as a portable hand held device. It is used simply by placing
the nozzle on the tuning peg, flipping on the power switch and strumming the string
until the motor stops. The motor used in the prototype was a DC motor.

Figure 4.1. The finished concept of the guitar tuner.

In order to evaluate the tuner, a series of tests were conducted. The A-string
on a guitar was deliberately set out of tune to a certain frequency with the help of
the mobile application n-Track Tuner available on App Store. Then the automatic
tuner was used to tune the guitar to the correct frequency of 110 Hz, and when
the tuner deemed the guitar to be in tune, the frequency was once again measured
with n-Track Tuner. The di�erent starting positions were 95, 100 and 105 Hz, each
starting position was tested ten times, and every test conducted was timed. The
results are presented in Table 4.1.
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Table 4.1. Testing data from di�erent starting frequencies

95 Hz 100 Hz 105 Hz

Time
(s)

Frequency
(Hz)

Time
(s)

Frequency
(Hz)

Time
(s)

Frequency
(Hz)

1 14,51 110,1 10,25 109,7 4,56 110,4
2 23,06 110,2 9,23 110,0 14,5 109,3
3 23,72 108,9 11,46 108,4 5,02 110,4
4 12,75 109,6 11,96 108,7 4,42 109,3
5 11,8 110,0 9,65 110,4 5,48 110,3
6 18,2 110,0 10,15 109,4 7,34 110,0
7 16,9 110,6 10,26 110,7 5,53 110,3
8 26,4 110,8 9,95 106,8 16,33 110,0
9 24,07 109,9 8,23 110,2 5,58 110,4
10 11,03 110,3 10,35 109,4 4,65 109,9
mean 18,24 110,04 10,15 109,37 7,34 110,03

Furthermore, to get an idea of how the tuning time depended on how far o�
pitch the guitar was when the tuning started, the time was plotted as a function
of the starting position in Figure 4.2. It was done by fitting a curve to the mean
values of the tuning time in Table 4.1.

Figure 4.2. A graphical illustration of the tuning time made in MATLAB.
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Chapter 5

Discussion

5.1 Reliability

To determine reliability, the obtained frequencies will be compared with the JND for
the A-string, meaning frequencies in the interval of 109, 62≠110, 38 Hz is considered
correct. Looking at data from Table 4.1 the starting frequencies of 95 and 105 Hz

have mean frequencies that is inside the JND interval, but for the starting frequency
of 100 Hz it lies just outside. The reason for that could be because it has a few
deviating result and that test number 8 has a frequency of 106, 8 Hz, which is
far away from the desired one. This deviation could depend on disturbance in the
sampling data, resulting in a miscalculated frequency that happened to be inside
the tolerance, this may question the reliability. Out of the 30 measurements made,
14 were inside the JND interval and 11 missed out with less than 0, 32 Hz of the
interval. Even though other measurements came close to the target frequency of
110 Hz, the criteria of the JND was not met for the majority of the testing. The
JND interval however, consists of the frequencies where the pitch is interpreted
as the correct one, which could argue the point that the 11 measurements within
0, 32 Hz of the interval are closer to the correct pitch than what the data in the
table shows. Other aspects on the tuner’s trustworthiness could be the reliability of
the application n-Track Tuner which read the test results. This will not be taken
into consideration since before testing, it was compared with another frequency
detector and had identical result.

5.2 Tuning Time

When examining the testing data presented in the previous chapter a couple of
things come to mind. From Figure 4.2 the fact, that the further away from the
correct frequency you start, the longer it takes to get in tune, can be stated. Sec-
ondly, a conclusion can be drawn that the time it takes to tune a string isn’t linearly
dependent on how far o� tune the guitar is to begin with. For example, if one would
examine the fitted curve in Figure 4.2, a drastic decrease of about two seconds in
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time can be seen when comparing starting positions 95 Hz to 96 Hz. In compari-
son if the same di�erence in frequency is viewed at a starting position closer to the
wanted frequency of 110 Hz, the drop in tuning time is far less significant. This
would make sense given that for most cases some fine tuning was required as the
correct pitch got close.

Looking at the test results in Table 4.1 there is a clear lack of consistency in the
95 Hz segment with times ranging from 11, 03 s to 24, 07 s. This could be explained
by the fact that if the sampled frequency would be calculated wrongly and declare
a frequency higher than 110 Hz, the motor could rotate in the wrong direction.
Given that an electret microphone was used to sample data to the pitch detecting
algorithm, there is always a chance that unwanted frequencies from outside noise
could corrupt the ones that were given by the guitar, despite the use of a filter.
Furthermore, the tests performed from 100 Hz and 105 Hz proved to be far more
consistent in the time aspect with only a couple of significant outliers in the 105 Hz

segment.

5.3 Motor Type

The constructions with the two di�erent motor types are very similar when looking
at the electrical circuit. They use the same signal processor and they both are
connected to the circuit via a motor driver, so switching between the two types can
easily be implemented by only changing the code. The two motors used in this
project has the same order of size and can both fit into the case.

The biggest problem with the stepper motor in this project though was the fact
that the nominal torque of the stepper motor wasn’t enough to rotate the tuning
peg. To improve the torque a new stepper motor must be used, which increases the
size and weight. The stronger stepper motor will therefore not fit into the current
case and the new design would be bulky and not easily managed by the user.

The behaviour of a DC and stepper motor is very di�erent. The stepper motor
will based on the calculated frequency rotate a fixed amount of steps at a certain
speed and then it will wait for a new frequency to be calculated. The stepper motor
is very precise and can rotate few steps at a low speed which should give precise
tuning. The problem with this implementation on a guitar tuner though is that
there is no way of knowing how many steps the peg should turn, and therefore the
stepper motor can get stuck and rotate around the ideal state if the amount of steps
is too high. The risk of this can be minimized by defining very fine step intervals in
the code but that takes a lot of testing. The implementation of the stepper motor
in this project could not be tested since it was too weak and therefore not much
time was spent on improving this.

The DC motor takes a PWM signal as input and rotates at a certain speed until
a new frequency is calculated and another signal can be sent to the motor. This
implementation is good since it will continuously rotate and lower the speed as it
gets closer to the right frequency and when it is in the right tune, the guitar will stop
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rotating the motor, and if the peg exceeds the correct position it will simply change
direction to find the right one. The DC motors torque decrease as the PWM value
lowers, this gives a smaller range of the motor’s speed since to low PWM signals will
not give enough torque to rotate the tuning peg. Therefore the motor has be have
a low initial rpm, otherwise the motor will rotate to fast and the tuning peg will
exceed its desired position, and the DC motor will behave the same as the stepper
motor and oscillate around the ideal state without being able to stay at the right
tune. The DC motor in this project has a low rpm and therefore this problem will
not occur.

5.4 Conclusion

The best choice of motor for the guitar tuner is the DC motor. With its advantage in
torque related to size it is the best fit for a compact and user friendly design. Also,
the fact that the stepper motor rotates a fixed amount of steps is a disadvantage
and the DC motor is once again the more favourable choice. The time it takes for
the guitar tuner to tune the string varies between every try, in some instances a lot,
and it is dependent on how far o� the pitch is. For these reasons, there is no way
to answer exactly how long it takes to tune an arbitrary string. However it can be
stated with some certainty that it is dependent on how far o� pitch it is to begin
with. What can also be said is that a longer tuning time does not a�ect the result
of the final frequency, which is more important than if the tuner was fast and had
an o� pitch result. What can be said about the reliability of the tuner is that 25 out
of the 30 measurements, i.e. 83, 3%, were within 0, 32 Hz from the JND interval.
However the tuner is not deemed reliable because of the significant outliers, and
since only 14 measurements were inside the JND interval.

5.5 Future Developments

Since this project only built a prototype, there are many areas that could be de-
veloped and improved in future work. The fact that this tuner only adjusts the
A-string could be expanded so that it could tune every string with its standard tun-
ing. To be suitable for more experienced users, the guitar could also have manual
input of frequency from the user, for that a display and a menu may need to be
implemented. Since the frequency calculating algorithm is already done, this kind
of improvements does not lead to major changes in the existing construction since
all the electrical circuits and parts will stay the same. What could be developed in
that aspect is the size of the case and make its shape more suitable for a hand, to do
that, the batteries used could be improved since for now, the batteries take a lot of
space in the case. To improve the reliability of the tuner, the PID coe�cients and
the sample rate could be researched and developed since it was taken from previous
work and may not have been the best option for the guitar used in this project.
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Appendix A

Technical Drawings

A.1 This is the technical drawing of the Nozzle
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A.2 This is the technical drawing of the case

A.3 This is the technical drawing of the lid
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A.3. THIS IS THE TECHNICAL DRAWING OF THE LID
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Appendix B

Data Sheet for DC Motor
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Appendix C

Arduino code

C.1 This code is used for the DC motor

/*

School: KTH Royal Institute of Technology

Course: MF133X Degree Project in Mechatronics, First Cycle

Made by: Hannes Andersson and John Sjöberg

finalized: 2021-05-8

TRITA-ITM-EX 2021:26

--------------------

This code is used to read an analog signal, store it in a buffer,

calculate the frequency of the signal, compare the calculated frequency

with the frequency of the A-string (110 Hz), and from that, rotate the

motor at a certain speed until and direction. The code repeats this

until the correct frequency is detained.

*/

#define LENGTH 512

// Sample Frequency in kHz

const float sample_freq = 15625;
//Guitar Tuning table

const float stringFreq =110;
//The largest expected period of a string

int stringMaxPeriod = (int)sample_freq / (stringFreq / 2);
//Variables for the frequency detection part

byte incomingAudio; //Holds the current value from the ADC

byte clipLight = 13; //Pin connected to the clip light

byte clipping = 0; //1 if clipping, else 0

byte rawData[LENGTH]; //Array storing the data from the ADC

int count; //Counter variable for the sampling process

int len = sizeof(rawData); //The length of the audioBuffer

int tau, j; //Variables for the sums and finding the lag
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long r, rold, rt, rtau, dt, dtold, dtold2, dj; //Different function variables

int thresh = 0; //Dynamic threshold of when to output frequency

float freq_per, freq_old, freq_old2, filtered_freq, dpt, dold; //Floats to

//store frequency and sum data

byte pd_state = 0; //Peak-detection state-machine variable

//PID Parameters and Variables

float pid_output = 0;
float old_output;
float error = 1;
float error_sum;
float Kp = 1;
float Ki = 10;
float Kd = 0;
//JND in frequency for the A-string

float tol = 0.38;
float pid_range = 30;
float pwm_output;
//Motor Pins and Variables

int enA = 10;
int in1 = 9;
int in2 = 8;
//Variables for master state-machine

void setup() {
//Initilaize pins and variables

analogRead(A0);
pinMode(enA, OUTPUT);
pinMode(in1, OUTPUT);
pinMode(in2, OUTPUT);
pinMode(clipLight, OUTPUT);
count = 0;

cli();//disable interrupts

//set up continuous sampling of analog pin 0

//clear ADCSRA and ADCSRB registers

ADCSRA = 0;
ADCSRB = 0;
ADMUX |= (1 << REFS0); //set reference voltage

ADMUX |= (1 << ADLAR); //left align the ADC value- so we can read highest

//8 bits from ADCH register only

ADCSRA |= (1 << ADPS2) | (1 << ADPS0); //| (1 << ADPS0); //set ADC clock

//with 32 prescaler- 16mHz/32=500kHz

ADCSRA |= (1 << ADATE); //enabble auto trigger

ADCSRA |= (1 << ADIE); //enable interrupts when measurement complete

ADCSRA |= (1 << ADEN); //enable ADC
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ADCSRA |= (1 << ADSC); //start ADC measurements

//set timer0 interrupt at 2kHz

TCCR0A = 0;// set entire TCCR0A register to 0

TCCR0B = 0;// same for TCCR0B

TCNT0 = 0;//initialize counter value to 0

// set compare match register for 10khz increments

OCR0A = 15;// = (16*10ˆ6) / (10000*64) - 1 (must be <256)

// turn on CTC mode

TCCR0A |= (1 << WGM01);
// Set CS01 and CS00 bits for 64 prescaler

TCCR0B |= (1 << CS01) | (1 << CS00);
// enable timer compare interrupt

TIMSK0 |= (1 << OCIE0A);
sei();//enable interrupts

}
ISR(ADC_vect) {//when new ADC value ready

incomingAudio = ADCH; //Store current ADC value

//If signal is 5V or 0V set clip light else turn of clip light

if (incomingAudio >= 255 || incomingAudio <= 0) {
clipping = 1;

}
else if (incomingAudio > 10 && incomingAudio < 245) {

clipping = 0;
}

}
ISR(TIMER0_COMPA_vect) { //at timer interval

//While rawData is not full, put value of incomingAudio and increase

//the index

if (count < LENGTH) {
rawData[count] = incomingAudio;
count++;

}
}
//Estimates the abscissa using the estimated period value and its

//immediate neighbours

float ParaIntrp(int c, float fa, float fb, float fc) {
int a = c - 2;
int b = c - 1;
float x;
x = (float)(b - ((b - a) * (b - a) * (fb - fc) - (b - c) * (b - c) *
(fb - fa)) / (2 * (b - a) * (b - a) * (fb - fc) - (b - c) * (fb - fa)));
return x;

}
//Calculates the frequency of the input signal with YIN Autocorrelation
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//and peak-detection state-machine

void FreqCalc() {
if (count >= LENGTH) {

dt = 0;
dtold = 0;
dtold2 = 0;
dj = 0;
dpt = 0;
r = 0;
rt = 0;
rtau = 0;
pd_state = 0;
float period = 0;
int period_old = 0;
float current_lowest = 100;
for (tau = 0; tau < len; tau++)
{

// YIN-Autocorrelation

dtold2 = dtold;
dtold = dt;
dold = dpt;
rold = 0;
r = 0;
dt = 0;
dpt = 0;
for (j = 0; j < len / 2; j++) {

if (j + tau >= len) {
r = 0;
rt = (rawData[j] - 128) * (rawData[j] - 128) / 256;
rtau = 0;

}
else {

r = (rawData[j] - 128) * (rawData[j + tau] - 128) / 256;
rt = (rawData[j] - 128) * (rawData[j] - 128) / 256;
rtau = (rawData[j + tau] - 128) * (rawData[j + tau] - 128) / 256;

}
dt += rt + rtau - 2 * r;
rold += r;

}
dj += dt;
if (tau == 0) {

dpt = 1;
}
else {
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dpt = (float)(dt * tau) / dj;
}
// Peak Detect State Machine

if (pd_state == 2 && dold < dpt && dpt < 0.18)
{

period_old = tau - 1;
period = ParaIntrp(tau, dt, dtold, dtold2);
pd_state = 3;
break;

}
else if (pd_state == 2 && dold < dpt && dold < current_lowest -

0.1)
{

current_lowest = dold;
period_old = tau - 1;
period = ParaIntrp(tau, dt, dtold, dtold2);
pd_state = 1;

}
if (pd_state == 1 && dold > dpt) {

pd_state = 2;
}
if (tau > stringMaxPeriod) {

break;
}
if (!tau) {

thresh = rold * 0.5;
pd_state = 1;

}
}
// Frequency identified in Hz

if (thresh > 2) {
if (period != 0) {

freq_old2 = freq_old;
freq_old = filtered_freq;
freq_per = sample_freq / period;
filtered_freq = 0.8 * freq_per + 0.1 * freq_old + 0.1 * freq_old2;
if (filtered_freq > sample_freq / (stringMaxPeriod / 4)

) {
filtered_freq = freq_old;
freq_per = freq_old;

}
}
// Remakes harmonics to the

// fundamental tone in a interval of +- 30 Hz
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if (freq_per < (stringFreq - 30 ) ) {
PID_Control(stringFreq, freq_per * 2);

}
else if (freq_per > (stringFreq + 30 ) ) {

PID_Control(stringFreq, freq_per / 2);
}
else {

PID_Control(stringFreq, freq_per);
}

}
count = 0;

}
}
void PID_Control(float stringfreq, float inputFreq) {;

old_output = error;
error = stringfreq - inputFreq;
error_sum += error / sample_freq;

pid_output = Kp * error + Ki * error_sum + Kd * (error - old_output)
* sample_freq / 1000;
if (pid_output < -pid_range)
{

pid_output = -pid_range;
}
else if (pid_output > pid_range)
{

pid_output = pid_range;
}
if (abs(error) < tol) {

error = 0;
digitalWrite(in2, LOW);
digitalWrite(in1, LOW);
delay(1000);
return;

}
else {

pwm_output = map(pid_output, -pid_range, pid_range, 0, 100);
motor_speed(pwm_output);

}

}
void motor_speed(float pwm) {

if (pwm <= 50)
{
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counter_clockwise(map(pwm, 0, 50, 100, 220));
}
else if (pwm > 50)
{

clockwise(map(pwm, 50, 100, 245, 255));
}

}
void counter_clockwise(int PWM) {

digitalWrite(in2, LOW);
digitalWrite(in1, HIGH);
analogWrite(enA, (PWM));

}
void clockwise(int PWM) {

digitalWrite(in2, HIGH);
digitalWrite(in1, LOW);
analogWrite(enA, (PWM));

}
void loop() {

if (clipping) {
digitalWrite(clipLight, HIGH);

}
else {

digitalWrite(clipLight, LOW);
}

FreqCalc();

}

C.2 This code is used for the stepper motor

/*

School: KTH Royal Institute of Technology

Course: MF133X Degree Project in Mechatronics, First Cycle

Made by: Hannes Andersson and John Sjöberg

finalized: 2021-05-8

TRITA-ITM-EX 2021:26

--------------------

This code is used to read an analog signal, store it in a buffer,

calculate the frequency of the signal, compare the calculated frequency

with the frequency of the A-string (110 Hz), and from that, rotate the

motor at a certain speed until and direction. The code repeats this
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until the correct frequency is detained.

*/

// Define the stepper motor direction and step pin

#define dirPin 2

#define stepPin 3

#define LENGTH 512

// Sample Frequency in kHz

const float sample_freq = 15625;
//Guitar Tuning table

const float stringFreq = 110;
//The largest expected period of a string

int stringMaxPeriod = (int)sample_freq / (stringFreq / 2);
//index of current string

//Variables for the frequency detection part

byte incomingAudio; //Holds the current value from the ADC

byte clipLight = 13; //Pin connected to the clip light

byte clipping = 0; //1 if clipping, else 0

byte rawData[LENGTH]; //Array storing the data from the ADC

int count; //Counter variable for the sampling process

int len = sizeof(rawData); //The length of the audioBuffer

int tau, j; //Variables for the sums and finding the lag

long r, rold, rt, rtau, dt, dtold, dtold2, dj; //Different function

//variables

int thresh = 0; //Dynamic threshold of when to output frequency

float freq_per, freq_old, freq_old2, filtered_freq, dpt, dold; //Floats

//to store frequency and sum data

byte pd_state = 0; //Peak-detection state-machine variable

float tol = 0.38; //JND in frequency

float error;
int steps, rot_speed;

void setup() {

//Initilaize pins and variables

analogRead(A0);
pinMode(clipLight, OUTPUT);
count = 0;

cli();//disable interrupts

//set up continuous sampling of analog pin 0
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//clear ADCSRA and ADCSRB registers

ADCSRA = 0;
ADCSRB = 0;
ADMUX |= (1 << REFS0); //set reference voltage

ADMUX |= (1 << ADLAR); //left align the ADC value- so we can read

//highest 8 bits from ADCH register only

ADCSRA |= (1 << ADPS2) | (1 << ADPS0); //| (1 << ADPS0); //set ADC

//clock with 32 prescaler- 16mHz/32=500kHz

ADCSRA |= (1 << ADATE); //enabble auto trigger

ADCSRA |= (1 << ADIE); //enable interrupts when measurement complete

ADCSRA |= (1 << ADEN); //enable ADC

ADCSRA |= (1 << ADSC); //start ADC measurements

//set timer0 interrupt at 2kHz

TCCR0A = 0;// set entire TCCR0A register to 0

TCCR0B = 0;// same for TCCR0B

TCNT0 = 0;//initialize counter value to 0

// set compare match register for 10khz increments

OCR0A = 15;// = (16*10ˆ6) / (10000*64) - 1 (must be <256)

// turn on CTC mode

TCCR0A |= (1 << WGM01);
// Set CS01 and CS00 bits for 64 prescaler

TCCR0B |= (1 << CS01) | (1 << CS00);
// enable timer compare interrupt

TIMSK0 |= (1 << OCIE0A);
sei();//enable interrupts

}
ISR(ADC_vect) {//when new ADC value ready

incomingAudio = ADCH; //Store current ADC value

//If signal is 5V or 0V set clip light else turn of clip light

if (incomingAudio >= 255 || incomingAudio <= 0) {
clipping = 1;

}
else if (incomingAudio > 10 && incomingAudio < 245) {

clipping = 0;
}

}
ISR(TIMER0_COMPA_vect) { //at timer interval

//While rawData is not full, put value of incomingAudio and

//increase the index

if (count < LENGTH) {
rawData[count] = incomingAudio;
count++;

}
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}

//Estimates the abscissa using the estimated period value and

//its immediate neighbours

float ParaIntrp(int c, float fa, float fb, float fc) {
int a = c - 2;
int b = c - 1;
float x;
x = (float)(b - ((b - a) * (b - a) * (fb - fc) - (b - c) *

(b - c) * (fb - fa)) / (2 * (b - a) * (b - a)
* (fb - fc) - (b - c) * (fb - fa)));

return x;
}

//Calculates the frequency of the input signal with

//YIN Autocorrelation and peak-detection state-machine

float FreqCalc() {
if (count >= LENGTH) {

dt = 0;
dtold = 0;
dtold2 = 0;
dj = 0;
dpt = 0;
r = 0;
rt = 0;
rtau = 0;
pd_state = 0;
float period = 0;
int period_old = 0;
float current_lowest = 100;
for (tau = 0; tau < len; tau++)
{

// YIN-Autocorrelation

dtold2 = dtold;
dtold = dt;
dold = dpt;
rold = 0;
r = 0;
dt = 0;
dpt = 0;
for (j = 0; j < len / 2; j++) {

if (j + tau >= len) {
r = 0;
rt = (rawData[j] - 128) * (rawData[j] - 128) / 256;
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rtau = 0;
}
else {

r = (rawData[j] - 128) * (rawData[j + tau] - 128) / 256;
rt = (rawData[j] - 128) * (rawData[j] - 128) / 256;
rtau = (rawData[j + tau] - 128) * (rawData[j + tau] - 128)
/ 256;

}
dt += rt + rtau - 2 * r;
rold += r;

}
dj += dt;
if (tau == 0) {

dpt = 1;
}
else {

dpt = (float)(dt * tau) / dj;
}
// Peak Detect State Machine

if (pd_state == 2 && dold < dpt && dpt < 0.18)
{

period_old = tau - 1;
period = ParaIntrp(tau, dt, dtold, dtold2);
pd_state = 3;
break;

}
else if (pd_state == 2 && dold < dpt && dold < current_lowest -

0.1)
{

current_lowest = dold;
period_old = tau - 1;
period = ParaIntrp(tau, dt, dtold, dtold2);
pd_state = 1;

}
if (pd_state == 1 && dold > dpt) {

pd_state = 2;
}
if (tau > stringMaxPeriod) {

break;
}
if (!tau) {

thresh = rold * 0.5;
pd_state = 1;

}
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}
// Frequency identified in Hz

if (thresh > 2) {
if (period != 0) {

freq_old2 = freq_old;
freq_old = filtered_freq;
freq_per = sample_freq / period;
filtered_freq = 0.8 * freq_per + 0.1 * freq_old + 0.1
* freq_old2;
if (filtered_freq > sample_freq / (stringMaxPeriod / 4)

) {
filtered_freq = freq_old;
freq_per = freq_old;

}
}

}
count = 0;

}
// Remakes harmonics to the

// fundamental tone in a interval of +- 30 Hz

if (freq_per < (stringFreq - 30 ) ) {
freq_per = (freq_per * 2);

}
else if (freq_per > (stringFreq + 30 ) ) {

freq_per = (freq_per / 2);
}
else {

freq_per = freq_per;
}
return freq_per;

}

// Calculates error and determines amount of steps and speed

void error_calc(float string_freq, float input_freq) {
error = string_freq - input_freq;
if (error < tol && error > -tol) {

error = 0;
delay(1000);
return;

}

else if (error < 0) {
digitalWrite(dirPin, HIGH);
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}

else if (error > 0) {
digitalWrite(dirPin, LOW);

}

if ( abs(error) < 3) {
rot_speed = 15000;
steps = 5;

}

else if ( abs(error) >= 3 && abs(error) < 6) {
rot_speed = 10000;
steps = 10;

}
else if ( abs(error) >= 6 && abs(error) < 20) {

rot_speed = 10000;
steps = 20;

}
else {

rot_speed = 10000;
steps = 1;

}
run_motor(rot_speed, steps);

}

// Rotates the motor with a specific amount of steps and speed

void run_motor(int _speed, int steps) {
for (int i = 0; i < steps; i++) {

digitalWrite(stepPin, HIGH);
delayMicroseconds(_speed);
digitalWrite(stepPin, LOW);
delayMicroseconds(_speed);

}
}

void loop() {
if (clipping) {

digitalWrite(clipLight, HIGH);
}
else {

digitalWrite(clipLight, LOW);
}
freq_per = FreqCalc();
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error_calc(stringFreq, freq_per);
}
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Appendix D

Acumen Code

//Andra program - simulering

//A simple simulation of an automatic guitar tuner adjusting a
//tuning peg on a guitar.

//Created by Group 8 - Degree Project in Mechatronics 2021
//Hannes Andersson
//John Sjöberg
//Date: 2021-03-28

//In Main the objects "tuner" and "guitar" are created.
//Then the variables y and r are declared in order to simulate the movement.
//Atlast the variables derivatives are used to increase their value,
//these are constantly added to their respective object.

model Main(simulator) =
initially
_3DView = (),
tuner = create Tuner((0,0,0),(0,0,0)),
guitar = create Guitar((0,0,0)),
y = 0, y� = 0,
r = 0, r� = 0

always
_3DView = ((-20,4,5.6),(0,10,0)),
if y<5.7
then y� = 1
else y� = 0,
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tuner.pos = (0,y,0),
if y > 5.69
then r� = 0.4
else r� = 0,

tuner.rot = (0,r,0),
guitar.rot =(0,r,0)

//An object "Tuner" is created which represents the guitar tuner.
//The argument "pos" enables the tuner to move as "y" increases.
//The argument "rot" enables the cylinder part to rotate as "r" increases.

model Tuner(rot,pos) =
initially

_3D = ()
always

_3D = (Box
center = pos+(0,0,0)
size = (2,3,2)
color = red
rotation = (0,0,0),
Cylinder
center = pos+(0,2,0)
size = (1,0.5)
color = green
rotation = rot+(0,0,0))

//An object "Guitar" is created.
//The argument "rot" enables on of the tuning pegs to rotate together with
//the cylinder on the tuner as "r" increases.

model Guitar(rot) =
initially

_3D = ()
always

_3D = (Box //Headstock
center = (0,10,0)
size = (5.5,3,1)
color = blue
rotation = (0,0,0),
Box //Tuning peg
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center = (0,8.15,0)
size = (0.5,0.7,0.2)
color = yellow
rotation = rot+(0,0,0),
Box //Tuning peg
center = (1.5,8.15,0)
size = (0.5,0.7,0.2)
color = yellow
rotation = (0,0,0),
Box //Tuning peg
center = (-1.5,8.15,0)
size = (0.5,0.7,0.2)
color = yellow
rotation = (0,0,0),
Box //Tuning peg
center = (0,11.85,0)
size = (0.5,0.7,0.2)
color = yellow
rotation = (0,0,0),
Box //Tuning peg
center = (1.5,11.85,0)
size = (0.5,0.7,0.2)
color = yellow
rotation = (0,0,0),
Box //Tuning peg
center = (-1.5,11.85,0)
size = (0.5,0.7,0.2)
color = yellow
rotation = (0,0,0),
Box //Neck
center = (10.25,10,0)
size = (15,1.5,1)
color = 0.4*yellow + 0.6*white
rotation = (0,0,0),
Box //Body
center = (22.75,10,-1)
size = (10,7,3)
color = blue
rotation = (0,0,0))
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