

EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP *STOCKHOLM, SVERIGE 2021*

Picassos arm

En ritande SCARA-robot

IBRAHIM BAYDONO

JOHAN HULTENHEIM

KTH SKOLAN FÖR INDUSTRIELL TEKNIK OCH MANAGEMENT

Picassos arm

 ${\sf Kandidate xamen supp sats inom \ Mekatronik}$

IBRAHIM BAYDONO JOHAN HULTENHEIM

Kandidatuppsats ITM Handledare: Nihad Subasic Examinator: Nihad Subasic

TRITA-ITM-EX 2021:22

Referat

En SCARA-robot som ritar kräver en hög noggrannhet och precision. Syftet med detta projekt är att skapa en robotarm som kan rita bilder som generas av en användare i ett ritprogram, armens rörelse beräknas med hjälp av invers kinematik. Projektet undersöker hur precisionssäker roboten är samt dennes snabbhet. Under projektets gång har upprepade tester gjorts för att mäta dessa egenskaper. Roboten uppnådde en hög grad av noggrannhet när den gjorde punkter på samma ställe upprepade gånger, men den har svårt att med hög precision återskapa bildens korrekta geometri, detta visas med ett test då den skall rita en cirkel. Detta kan bero på flera olika faktorer. Det mest sannolika är att det finns glapp i armarnas kuggremsdrift, när roboten gör en cirkulär rörelse så uppkommer felet när någon av armarna byter rörelseriktning. I rapporten redogörs hur roboten har konstruerats och programmerats.

Nyckelord: Mekatronik, SCARA-robot, invers kinematik.

Abstract

Picassos arm

A SCARA-robot that draws requires a high level of precision and accuracy. This project aims to build a three degree of freedom robot arm that uses inverse kinematics, to draw a picture that has been assigned to it. The project explores the robot's accuracy as well as its speed. Several measurements were conducted during the project to assess the Robot Arm's reliability. When the robot makes points in the same position several times, it achieves near-perfect precision, but it has trouble recreating the proper geometrics of the picture being drawn. It may be caused by a variety of factors, it is most likely caused by a play in the timing belt. When the robot performs a circular movement, the problem arises when one of the arms switches its direction. In this paper, the robot's construction and programming are described.

Keywords: Mechatronics, SCARA-robot, inverse kinematics

Förord

Vi skulle vilja tacka Nihad Subasic för hans inspirerande föreläsningar samt för all värdefull feedback. Vidare vill vi tacka Amir Avdic för hans idéer och för hans outtröttliga hjälp i laborationssalen. Vi vill också tacka Staffan Qvarnström som har ansvarat för komponentbeställningen, workshop i lödning samt den kompetens han delat med sig av. Vill även tacka våra kurskamrater som via opponeringar hjälpt oss förbättra vårt arbete. Slutligen vill vi rikta ett speciellt tack till vår kurskamrat Ehab Raheem för alla diskussioner vi har haft samt hans värdefulla feedback.

Nomenklatur

SCABA	Selective Compliance Artikulated Robot Arm
SCAR	
CAD	Computer Aided Design
KTH	Kungliga Tekniska Högskolan
USB	Universal Serial Bus
RAM	Random Acces Memory
ROM	Read Only Memory
CPU	Central Processing Unit
A/D-omvandlare	Analog till Digital omvandlare
CNC	Computer Numerical Control
AC/DC omvandlare	Växelström till likström omvandlare
DC/DC omvandlare	Likström till likström omvandlare
PWM	Pulse width modulation
Hz	Hertz
PLA	Polylaktid

Innehåll

1	Inle	dning			1
	1.1	Bakgr	rund	• •	1
	1.2	Proble	em		1
	1.3	Syfte			1
	1.4	Avgrä	nsningar		2
2	Teo	ri			3
	2.1	Mikro	okontroller		3
	2.2	Stegm	notor		4
		2.2.1	Bipolär stegmotor		4
		2.2.2	Unipolär stegmotor		4
		2.2.3	Microstepping		5
	2.3	Stvrni	ing		5
	2.4	Kinen	natik		6
3 Motod				7	
Ŭ	3.1	Konst	ruktion		7
	0.1	3 1 1	CAD	•••	7
		3.1.1	Bas och armar	•••	.7
		313	Z-avel	• •	ģ
	39	Elektr	ronik	• •	g
	0.2	3 9 1	Styrning av avlar	• •	g
		3.2.1	Strömförsörining	•••	11
		322	Komponentlicta	•••	11
	22	J.2.5 Kinor	natik	•••	11
	0.0 3.4	Progre	and a second	•••	19
	0.4	3 / 1	Arduino	•••	12
		3.4.1	Puthon	•••	12
		3.4.2	Matlab	•••	10
	25	J.4.J Tostni	$\operatorname{MatiaD} \dots \dots$	•••	10
	5.5		Progision	• •	14 17
		0.0.1 9 E 0	rabbhat	•••	14
		3.0.2		• •	14

Resultat			
Disk	cussion	och Slutsats	19
5.1	Diskus	sion	19
	5.1.1	Precision	19
	5.1.2	Snabbhet	20
5.2	Slutsa	ts	20
5.3	Framti	ida arbete	20
	5.3.1	Spännanordning	20
	5.3.2	Materialval	21
	5.3.3	G-kod	21
ferei	nser		23
agor			24
Matlabkod 2			
B Pythonkod 31			
Arduinokod 3			33
) Acumen 3			39
E Datablad Stegmotordrivare			41
Datablad Kuggrem			
Datablad DC/DC omvandlare			79
	Rest Disk 5.1 5.2 5.3 feren agor Mat Pyt] Ard Acu Dat Dat	Resultat Diskussion 5.1 Diskus 5.1.1 5.2 Slutsa 5.3 Framti 5.3.2 5.3 Framti 5.3.2 5.3.3 ferenser agor Matlabkoo Pythonkoo Arduinoko Acumen Datablad Datablad	Resultat Diskussion och Slutsats 5.1 Diskussion

Figurer

2.1	Schematisk bild av en mikrokontroller hämtad från [3]	3
2.2	Principiell bipolär stegmotor med 45° stegvinkel hämtad från [4]	5
2.3	Principiell skiss på ett öppet system. Skapad i draw.io [7]	6
2.4	Principiell skiss på ett slutet system. Skapad i draw.io $[7]$	6
3.1	Robotarmen med dess elektroniklåda i sitt färdiga utförande	8
3.2	Vy av bas med lager och kuggremskivor, skapad i Solidedge [9]	9
3.3	Kopplingsschemat för roboten, skapat i Fritzing [11].	10
3.4	Mattematisk modell av SCARA-roboten i X-Y planet. Bilden är skapad	
	i draw.io [7]	12
3.5	Ett flödesschema för koden på mikrokontrollern, bilden är skapad i draw.io	
	[7]	13
3.6	Ett flödesschema för pythonkoden som skickar koordinater till mikro-	
	kontrollern, bilden är skapad i draw.io [7].	13
3.7	Ett flödesschema för matlabkoden som räknar ut vinklarna för robotar-	
	men, bilden är skapad i draw.io [7].	14
4.1	En cirkel med diameter 95 millimeter som har ritats av roboten. \ldots	16
4.2	Texten MF133X ritad på ett helt A4 papper med roboten i svart färg. I	
	röd färg är den bild som genererades i Matlab [14].	16
4.3	En 130 millimeter hög streckgubbe ritad med roboten i svart färg. I röd	
	färg är den bild som genererades i Matlab [14].	17
4.4	Texten G4 ritad tre gånger på samma ställe i svart färg. Bokstaven G är	
	15 mm hög. I röd färg är den bild som genererades i Matlab [14].	17
4.5	Antal punkter plottat mot tiden det tog att rita bilden. Bilden är skapad	
	i Microsoft Excel [17]	18

Tabeller

3.1	En lista över de elektriska komponenter som använts	11
4.1	Experimentell data över tiden det tog att rita figuren samt hur många	
	punkter figuren innefattade.	18

Kapitel 1

Inledning

Rapporten kommer behandla framtagning och konstruktion av en robotarm av SCARA-typ. Detta är en typ av robotarm som består av två länkar som kan rotera i ett plan, se figur 3.4. I detta kapitel presenteras en bakgrund till uppkomsten av industriroboten samt de problem, syfte och forskningsfrågor som skall behandlas i rapporten.

1.1 Bakgrund

Den första industriroboten gjorde sitt intåg år 1937 och var konstruerad av Bill Griffith P. Taylor [1]. Roboten programmerades med ett stansat papper och styrde ventilerna på en kran med hjälp av solenoider. Mycket har hänt sedan dess och industrin idag präglas mer och mer av automatisering. En viktig komponent i automatiseringsprocessen är robotarmar som kan förflytta arbetsstycken mellan olika bearbetningsmaskiner. En viktig aspekt i automatiseringen av industriprocesser är att robotar kan användas där det är hälsofarligt för människor att vistas. Ofta används SCARA-roboten till arbeten som att installera, montera eller sortera på grund av dess goda precision och snabbhet.

1.2 Problem

Problemet som avses studeras är om robotarmen med hjälp av mekanik, elektronik och programmering kan röra sig och rita enligt ett kartetiskt X, Y, Z koordinatsystem?

1.3 Syfte

Syftet med arbetet är att undersöka SCARA-robotens egenskaper. För att undersöka egenskaperna skall roboten programmeras till att rita. De forskningsfrågor som skall undersökas i denna rapport är:

- 1. Hur god precision har en robot av denna typ?
- 2. Hur snabb är en robot av denna typ?

1.4 Avgränsningar

Projektet genomförs inom ramen för kursen *MF133X Examensarbete inom mekatronik*, 15hp. Kursen sträcker sig över en termin och studerande i kursen har tilldelats en budget på 1000 SEK för att genomföra projektet.

Kapitel 2

Teori

Detta kapitel kommer att behandla referensramar för uppsatsen. Den första delen tar upp mikrokontroller som är en central del i all sort intelligent styrning. Den andra delen behandlar stegmotorer och dess olika alternativ. Den tredje och fjärde delen presenterar robotens styrprinciper och dess kinematik.

2.1 Mikrokontroller

En mikrokontroller är en liten dator som används i princip överallt där intelligent styrning krävs. För att styra och programmera en robotarm kan en Arduino Uno [2] användas, se figur 2.1, som illustrerar vilka beståndsdelar en principiell mikrokontroller innehåller. Primärminne RAM är ett volatilt minne som både kan skrivas

Figur 2.1. Schematisk bild av en mikrokontroller hämtad från [3].

till och läsas ifrån. I primärminnet finns också ROM, den lagrar information som inte försvinner vid spänningsbortfall. Processorn, CPU är den enhet som utför de instruktioner som står i primärminnet [3]. Mikrokontrollern har även flera olika in och utgångar. I dessa portar kan mikrokontrollern avläsa om det finns en hög eller låg signal som beslutsunderlag för vad mikrokontrollern skall göra. Finns det en A/D omvandlare på porten kan mikrokontrollern även avläsa värden mellan 0-5V som lagras till ett heltal mellan 0-255 i RAM-minnet. För att skicka utsignaler mellan

0-5V kan mikrokontrollern skicka pulståg med 5V signaler. Pulstågens periodlängd bestämmer effektivspänningen, detta kallas PWM styrning. Det finns även en timer i mikrokontrollern, den räknar antal pulser som kommer in till den från en givare. Timern används som en klocka för att mikrokontrollern skall kunna göra tidsberoende instruktioner som behövs vid exempelvis PWM styrning [3]. Mikrokontrollern kan kommuniceras med och programmeras från en dator via Serieporten [2].

2.2 Stegmotor

Stegmotorer är elektriska motorer som kan rotera en förbestämd vinkel för varje steg. Stegmotorn kan beskrivas som en digital motor då den endast kan gå diskreta steg. Denna typ av elmotor lämpar sig därför bra till applikationer där något ska förflytta sig en specifik sträcka. CNC maskiner och skrivare är några exempel där stegmotorer kan används. Stegmotorn består av två huvudkomponenter, stator och rotor. I stegmotorn är rotorn permanentmagnetiserad och det magnetfält som ger upphov till motorns rotation skapas i statorn [4]. Stegmotorn styrs i sitt grundutförande som ett öppet system. Vid krav på återkoppling finns det mer avancerade stegmotorer med encoderskivor [3] som kan återkoppla om stegmotorn gjort den rörelse som instruerats, mer om detta under rubrik 2.3. I figur 2.2 visas principiellt hur stegmotorn fungerar, denna motor är kopplad som en bipolär motor vilket kommer diskuteras mer under rubrik 2.2.1. Hur stor vinkeln blir för varje steg beror dels på motorns specifikationer och dels hur den styrs. En stegmotor kan bland annat styras som en bipolär eller unipolär stegmotor, önskas högre precision kan microstepping användas [4].

2.2.1 Bipolär stegmotor

I den bipolära stegmotorn kopplas alltid två lindningar ihop, se figur 2.2 där till exempel A och \overline{A} är ihopkopplade. Detta gör att motorn blir dubbelt så stark jämfört med en unipolär stegmotor, där endast en lindning är aktiv åt gången. En nackdel med att koppla en stegmotor på detta sätt är att styrkretsen blir mer avancerad då den måste vända polaritet vartannat steg. En annan nackdel är att motorn inte kan drivas lika snabbt. Detta beror på att induktansen för kretsen blir dubbelt så stor då strömmen måste gå igenom två lindningar istället för bara en, vilket gör att vändningen av polaritet tar längre tid [4].

2.2.2 Unipolär stegmotor

I den unipolära stegmotorn är det ytterligare en koppling mellan spolarna så det blir sex kopplingar totalt in i motorn. Dessa kopplingar är mellan A och \overline{A} samt mellan B och \overline{B} i modellen för den bipolära motorn vilket möjliggör styrning av varje spole individuellt, se figur 2.2. På grund av det får man således en hälften så stark motor men med dubbelt så hög precision. Varje spole kan aktiveras individuellt, det är därför inte nödvändigt att polvända vartannat steg vilket gör att det går

Figur 2.2. Principiell bipolär stegmotor med 45° stegvinkel hämtad från [4].

att köra motorn snabbare och att styrkretsen blir mindre komplex [4]. Unipolära stegmotorer går att koppla och använda som om de vore bipolära stegmotorer.

2.2.3 Microstepping

Med avancerade styrkretsar kan motorn ställas i lägen mellan de fasta stegen. Detta kan åstadkommas genom att spänningssätta flera spolar samtidigt och kallas microstepping [5]. Med microstepping får man således en mer precis styrning och en jämnare gång. Detta uppnås på bekostnad av att motorn blir svagare och får ett mindre maximalt varvtal.

2.3 Styrning

Under denna rubrik presenteras två styrprinciper, öppet respektive slutet system. Dessa styrprinciper visualiseras kortfattat i form av en punktlista tillsammans med en principiell skiss. Exemplen kommer ges i en kontext där en stegmotor skall styras.

Öppen styrning Insignal omvandlas till en utsignal, ingen återkoppling för att kontrollera att motorn roterat rätt vinkel [6], se figur 2.3.

- 1. En önskad vinkeländring skickas som insignal till systemet ifrån en mikrokontroller.
- 2. Drivkretsen omvandlar insignalen till en signal som motorn kan hantera.

3. Motorn roterar så många varv som den har blivit instruerad.

Figur 2.3. Principiell skiss på ett öppet system. Skapad i draw.io [7]

Sluten styrning Insignal omvandlas till en utsignal, insignalen återkopplas med utsignalen och signalen korrigeras om motorn inte gått rätt antal steg [6], se figur 2.4.

- 1. En önskad vinkeländring skickas som insignal till systemet.
- 2. Drivkretsen omvandlar insignalen till en signal som motorn kan hantera.
- 3. Motorn roterar så många varv som den har blivit instruerad.
- 4. Insignalen korrigeras med hur många steg motorn roterades.

Figur 2.4. Principiell skiss på ett slutet system. Skapad i draw.io [7]

2.4 Kinematik

Varje rörelse en robotarm gör går att beskriva matematiskt. För att räkna på rörelser används framåt och invers kinematik.

Framåt kinematik Genom att veta hur en robotarms aktuatorer står, beräknas robotarmens X-Y-Z-koordinat [8].

Invers kinematik År motsatsen till framåt kinematik. Givet en X-Y-Z-koordinat beräknas hur armens aktuatorer skall ställas. När antalet axlar på en robot ökar så ökar även antalet olika lösningar till hur en robot skall ställa sina aktuatorer. Vid numerisk lösning av kinematikekvationer används ofta den första lösningen, eftersom det är svårt att kvantifiera vad som är den bästa lösningen [8].

Kapitel 3

Metod

I detta kapitel behandlas tillvägagångssättet för hur roboten har konstruerats och testats. Kapitlet är uppdelat i robotens beståndsdelar, mekanik behandlas under rubrik konstruktion och kinematik medans elektroniken och programmeringen behandlas under egna rubriker. Avslutningsvis presenteras hur testning och verifiering av roboten genomförts.

3.1 Konstruktion

Designen på robotarmen i detta projekt ser annorlunda ut jämfört med en traditionell SCARA-robot som ofta har sin Z-axel längst ut på armen. Genom att flytta Z-axeln längst in på robotarmen hamnar masscentrum närmare robotens rotationscentrum. Med ett masscentrum nära rotationscentrum minskar tröghetsmomentet och roboten kan därför accelerera snabbare, i figur 3.1 visas den färdiga konstruktionen.

3.1.1 CAD

Hela roboten har ritats upp i ett solidmodelleringsprogram, Solid Edge [9]. Det är dels för att detta möjliggör att komponenter kan skrivas ut med en 3D-skrivare [10] men också för att simulera robotens rörelse vilket kan belysa eventuella designproblem. Samtliga plastkomponenter är tillverkade med hjälp av en 3D-skrivare, PLA har använts som material vid tillverkningen.

3.1.2 Bas och armar

I den nedre delen av roboten finns det två kuggremskivor av olika storlekar och en kuggrem, se bilaga F, som fungerar som en växel för den inre armen. Utväxlingen mellan skivorna är 4.8 och ges av förhållandet mellan antalet kuggar på de olika kuggremsskivorna, se ekvation 3.1

$$u = n_1/n_2 \tag{3.1}$$

KAPITEL 3. METOD

Figur 3.1. Robotarmen med dess elektroniklåda i sitt färdiga utförande.

Växeln gör så att armen kan rotera i olika vinklar och gå till de koordinater som den blir tilldelad av programkoden. På basen skruvas bottendelen av Z-axeln fast i den större kuggremskivan. Där emellan är två axiella lager och ett radiellt lager monterat för att möjliggöra rotation, se figur 3.2. Armen styrs av en stegmotor som sitter fastskruvad ovanpå basen. Hålen som stegmotorn är fastskruvad i är ovala så motorn kan förflyttas och spänna kuggremen. På Z-axeln är den inre armen monterad, den är delad i två delar för att möjliggöra 3D-utskriften eftersom längden på den är större än 3D-skrivaren. Kuggremsväxeln i den inre armen är identisk med den i basen. Längst ut på den yttre armen finns det ett fäste som spänner fast en penna, se figur 3.1.

Figur 3.2. Vy av bas med lager och kuggremskivor, skapad i Solidedge [9].

3.1.3 Z-axel

Robotarmens linjära rörelse skapas med hjälp av en gängad stång och en mutter som är fäst i den inre armen, tillsammans omvandlar dessa stegmotorns cirkulära rörelse till en linjär rörelse, se figur 3.1. Den gängade axeln har en gängstigning på åtta millimeter vilket betyder att ett varv på stegmotorn motsvarar åtta millimeter vertikal rörelse för roboten. Armen hålls horisontell med fyra linjärlager tillverkade i mässing som sitter runt de stående rören.

3.2 Elektronik

Elektroniken för projektet har byggts in i en låda som syns i figur 3.1. Samtliga kretsar har lötts på ett mönsterkort för att skapa permanenta och pålitliga kontakter. Ett fullständigt kopplingsschema kan ses i figur 3.3. En fullständig komponentlista återfinns i rubrik 3.2.3.

3.2.1 Styrning av axlar

Robotens elektronik har byggts efter dess behov att kunna röra sig precist samt att programvaran till roboten kontinuerligt skall veta vart robotarmens akuatorer befinner sig. Därför har stegmotorer använts som aktuatorer för roboten, de stegmotorer som har använts har en steglängd på 1.8 grader, ϕ . Motorerna har kopplats som bipolära stegmotorer eftersom detta ger högst vridmoment. För att erhålla en hög precision har stegmotordrivkretsar av typen DRV8825 använts, se bilaga E, dessa har en microsteppingfunktion [5]. På samtliga stegmotorer används 1/32 steg, det vill säga 32 mikrosteg ζ på ett vanligt motorsteg.

$$\phi/\zeta = \phi_{ms} \tag{3.2}$$

Figur 3.3. Kopplingsschemat för roboten, skapat i Fritzing [11].

Med ekvation 3.2 kan den minsta möjliga stegvinkeln beräknas, där ϕ_{ms} är den vinkel som stegmotorn kan gå som minst med mikrosteg.

Eftersom stegmotorerna inte har någon form av återkoppling styrs dessa som ett öppet system, se rubrik 2.3, genom att räkna steg. För att roboten skulle veta vart den befinner sig vid start infördes absoluta nollpunkter, detta gjordes med mikrobrytare på robotens samtliga axlar. Efter varje omstart av mikrokontrollern måste roboten köra till sin hemposition, det vill säga det läge då samtliga mikrobrytare påverkas. Mikrobrytarna har försetts med pulldown-resistorer [3], se figur 3.3.

3.3. KINEMATIK

3.2.2 Strömförsörjning

Roboten strömförsörjs med hjälp av en AC/DC omvandlare som omvandlar 220V 50 Hz växelström till 19V likström, AC/DC omvandlaren kan som mest leverera en effekt på 90 Watt. Stegmotorerna skall drivas med 12V, därför används även en DC/DC omvandlare för att sänka spänningen från 19V till 12V, se bilaga G.

3.2.3 Komponentlista

Benämning	Antal
Mönsterkort 60 x 80 mm	1
Stegmotordrivkrets DRV8825	3
Kondensator 100 μF	3
Stegmotor	3
Mikrobrytare	3
Arduino	1
DC/DC stepdown conventer	1
AC/DC omvandlare	1
Resistor $50 \mathrm{k}\Omega$	3

Tabell 3.1. En lista över de elektriska komponenter som använts.

3.3 Kinematik

För att kunna styra roboten enligt ett X-Y-Z koordinatsystem erfordrades invers kinematik vilket implementeras enligt rubrik 2.4. En ekvation för robotens X-Y koordinat uttryckt i vridningsvinklar på roboten tecknades, se ekvation 3.3, tillsammans med figur 3.4.

$$\begin{cases} X(\theta_1, \theta_2) = L_1 cos(\theta_1) + L_2 cos(\theta_1 + \theta_2) \\ Y(\theta_1, \theta_2) = L_1 sin(\theta_1) + L_2 sin(\theta_1 + \theta_2) \end{cases}$$
(3.3)

För att bestämma vilka vinklar roboten skall vrida sig till löstes ekvation 3.3 med avseende på θ_1 och θ_2 , med hjälp av Matlabs programbibliotek *Symbolic Math Toolbox* [12]. På grund av de trigonometriska funktionernas periodicitet finns det alltid två olika lösningar till ekvationsystemet 3.3, för att bestämma vilken lösning som skall användas programmerades två beslutsunderlag i Matlabprogrammet. Det högst prioriterade är att roboten rör sig inom sitt arbetsområde. En annan viktig aspekt är att roboten ska röra sig så kort sträcka som möjligt. Robotens rörelse i Z-led kan beskrivas med ett enkelt linjärt samband, se ekvation 3.4 där 32 är antalet mikrosteg / steg, 180 är antalet steg per varv och 8 millimeter är gängstigningen på den gängade axeln. ΔZ är den sträcka som Z-axeln skall röra sig i millimeter.

$$steg = \frac{32 \cdot 180}{8} \cdot \Delta Z \tag{3.4}$$

Figur 3.4. Mattematisk modell av SCARA-roboten i X-Y planet. Bilden är skapad i draw.io [7].

3.4 Programmering

För att roboten skall kunna rita programmerades den till att röra sig mellan olika punkter. Om avståndet mellan punkterna är tillräckligt litet uppfattas alla de korta strecken som långa raka linjer. För att åstadkomma detta kombinerades flera olika programspråk med varandra. Hur robotens aktuatorer skall röra sig styrs genom ett program som körs på mikrokontrollern. Mikrokontrollern tar emot information om vilka vinklar den skall ställa aktuatorerna i via seriekommunikation från ett Pythonprogram [13]. Pythonprogrammet läser i sin tur in de olika vridningsvinklarna ifrån ett Matlabprogram [14] som räknar fram vinklarna ifrån en given koordinat. I nedanstående rubriker presenteras de olika programmen i mer detalj.

3.4.1 Arduino

Programmeringen av mikrokontrollern bestämmer hur roboten ska röra sig med hjälp av stegmotorer och mikrobrytare. För styrning av stegmotorerna används ett programbibliotek, Accelstepper [15]. Arduinon vet sin position eftersom den räknar steg ifrån dess nollpunkt vilken defineras av mikrobrytarna. För att röra sig till en ny position tar Arduinon emot en koordinat via USB. Därefter rör roboten sig till den positionen och skickar kvittens via USB att den är färdig med rörelsen. Programmets funktion illustreras i figur 3.5. Arduinokoden återfinns som bilaga C i appendix.

3.4. PROGRAMMERING

Figur 3.5. Ett flödesschema för koden på mikrokontrollern, bilden är skapad i draw.io [7].

3.4.2 Python

I Python [13] har kod för att kunna hantera kommunikation med Arduinon skrivits med hjälp av ett programpaket som heter pySerial [16]. PySerial är ett programbibliotek som möjliggör seriekommunikation med Arduinon. Pythonprogrammet väntar tills den får en kvittens via USB att mikrokontrollern är redo för en ny koordinat. Därefter skickas en ny koordinat och programmet väntar återigen på att Arduinon skall rapportera att den är klar med rörelsen. Detta upprepas tills alla koordinater har skickats. Programmets funktion illustreras i figur 3.6. Pythonprogrammet återfinns som bilaga B i appendix.

Figur 3.6. Ett flödesschema för pythonkoden som skickar koordinater till mikrokontrollern, bilden är skapad i draw.io [7].

3.4.3 Matlab

Matlabprogrammet som skrevs för projektet användes till att lösa kinematikekvationerna, se ekvation 3.3. De löstes analytiskt med Matlabs programbibliotek Symbolic Math Toolbox [12]. När Kinematikekvationerna är lösta uppmanas användaren att rita en figur i ett fönster. Programmet kontrollerar att alla punkter ligger inom robotens arbetsområde och räknar därefter om alla X och Y koordinater till vinklar på robotarmen. Vinklarna räknas ut med lösningarna till kinematikekvationerna 3.3, därefter sparas alla koordinater till en textfil som kan läsas av Pythonprogrammet. Programmets funktion illustreras i figur 3.7. Matlabprogrammet återfinns som bilaga A i appendix.

Figur 3.7. Ett flödesschema för matlabkoden som räknar ut vinklarna för robotarmen, bilden är skapad i draw.io [7].

3.5 Testning av robot

Roboten testades för att besvara de forskningsfrågor som presenterades under rubrik 1.3.

3.5.1 Precision

För att undersöka robotens precision genomfördes tre tester:

- 1. En cirkel med diameter 100 mm genererades i Matlab, roboten ritade sedan samma bild på ett A4 papper. Cirkelns diameter och rundhet kunde därefter jämföras med de mått som den skapades med.
- 2. En figur ritades i Matlab, figuren överfördes sedan till roboten som ritade denna på ett A4 papper. Figurerna kunde sedan jämföras för att se hur väl roboten kunde återskapa den ursprungliga figuren.
- 3. Texten G_4 samt en punkt ritades upprepande gånger på samma position för att undersöka om roboten ritar identiskt varje gång.

3.5.2 Snabbhet

Tiden det tog för roboten att rita varje bild dokumenterades tillsammans med antalet punkter som ingår i bilden. Med denna data kunde en linjär regressionsanalys genomföras för att få robotens rithastighet i enheten *punkter/sekund*.

Kapitel 4

Resultat

I detta kapitel presenteras resultat för projektet. Resultatet består av figurer som roboten genererat samt en tabell över tidsåtgången för att rita dessa. En linjär regressionsanalys visar den genomsnittliga tidsåtgången för roboten att rita figuren.

I figur 4.1 visas den cirkel som beskrivs i punkt ett under rubrik 3.5.1. Den ritade bildens diameter uppmättes till 95 mm. Roboten har därav ritat 5% fel i dimension. I Figur 4.1 kan det även observeras att cirkeln inte är helt rund. I figurerna 4.2, 4.3 och 4.4 visas figurer ritade i Matlab med röd färg jämte dess motsvarighet som roboten ritat med svart färg. I de bilder som genererats ifrån Matlab visas även robotens transportsträcka då pennan inte ligger emot papperet, därav de raka strecken som inte återfinns i de bilder med svart färg som roboten ritat. I figur 4.4 har samma text ritats tre gånger på samma position enligt beskrivningen i punkt tre under rubrik 3.5.1. I Tabell 4.1 redovisas hur lång tid det tog att rita bilden samt hur många punkter bilden är ritad med, samma data plottas i figur 4.5. En linjär regressionsanalys visar att rithastigheten är cirka 13 punkter per sekund.

Figur 4.1. En cirkel med diameter 95 millimeter som har ritats av roboten.

Figur 4.2. Texten MF133X ritad på ett helt A4 papper med roboten i svart färg. I röd färg är den bild som genererades i Matlab [14].

Figur 4.3. En 130 millimeter hög streckgubbe ritad med roboten i svart färg. I röd färg är den bild som genererades i Matlab [14].

Figur 4.4. Texten G4 ritad tre gånger på samma ställe i svart färg. Bokstaven G är 15 mm hög. I röd färg är den bild som genererades i Matlab [14].

Figur	Tid [s]	Antal Punkter	Punkter / Sekund
Cirkel	44	1000	22,7
MF133X	145	1779	12,3
Streckgubbe	59	527	8,9
G4	88	1198	13,6

Tabell 4.1. Experimentell data över tiden det tog att rita figuren samt hur mångapunkter figuren innefattade.

Figur 4.5. Antal punkter plottat mot tiden det tog att rita bilden. Bilden är skapad i Microsoft Excel[17]

Kapitel 5

Diskussion och Slutsats

Under denna rubrik presenteras en avslutande diskussion utifrån författarnas perspektiv, kapitlet avslutas med förslag på framtida forskning.

5.1 Diskussion

Under denna rubrik diskuteras resultaten som erhållits under testning av roboten. Resultaten diskuteras med utgångspunkt ifrån precision och snabbhet.

5.1.1 Precision

Roboten uppvisar en god förmåga att rita, vilket kan ses i figurerna 4.1, 4.2, 4.3 och 4.4. Vid en närmare undersökning av figur 4.1 kan det dock observeras att roboten inte är kapabel till att återskapa korrekt geometri. Vid starten av cirkeln längst ner i bilden märks den största defekten men även till höger i bilden gör roboten ett rakt streck där det borde vara en cirkelbåge. I jämförelse med projektet Drawing robotic arm [18] som författarna har hämtat inspiration ifrån presterar Picassos arm bättre. Detta kan ses eftersom deras robot också ritat en cirkel i likhet med Picassos arm. I projektet Drawing robotic arm har det istället för öppen styrning använts en mer avancerad sluten styrning i form av PID reglering som i teorin skall vara mer precis [6]. Detta visar att en enkel lösning kan vara bättre i praktiken.

Ett annat exempel på en defekt är den högra foten i figur 4.3. En av orsakerna till dessa fel tros vara att det förekommer ett visst glapp i robotens kuggremsdrift när armen vänder i rörelseriktningen. För att åtgärda detta skulle en bättre spännanordning för robotens remmar behöva konstrueras. En annan orsak kan vara att robotens armlängder inte helt stämmer överens med de som implementerats i det matematiska modellen för armen. Längderna har tagits ur den CAD-modell som gjorts av roboten men vid 3D-utskrivning kan dessa mått krympt eller vuxit på grund av plastens värmeutvidgning. För att testa hur konsekvent roboten är ritades figur 4.4 tre gånger ovanpå sig själv. Högst upp på bokstaven G syns en defekt där roboten missat startpunkten. Defekten uppkom första omgången bokstaven G ritades. Den största felkällan bedöms därför vara glappet i remdriften som nämns i stycket ovan.

5.1.2 Snabbhet

Tidsåtgången tenderar att vara linjärt proportionell mot antalet punkter bilden innehåller men undantag förekommer. Faktorer som storlek på bilden, antal lyft av pennan samt avståndet mellan punkterna verkar ha inverkan på tidsåtgången. Med de data som finns beräknas robotens rithastighet till 13 punkter i sekunden, mer mätpunkter hade dock krävts för att statistiskt säkerställa detta. Det är svårt att generera pålitlig testdata eftersom tidsåtgången beror på flera olika faktorer.

5.2 Slutsats

Under denna rubrik presenteras slutsatser kring de forkningsfrågor som har behandlats.

- 1. Hur god precision har en robot av denna typ? I figur 4.4 uppvisar roboten en förmåga att rita med tillräcklig upplösning eftersom texten i denna bild är relativt liten. Samma figur uppvisar att roboten är konsekvent i sin precision.
- 2. Hur snabb är en robot av denna typ? Data som testen av roboten gett visar på en rithastighet av cirka 13 punkter per sekund. Hur snabbt detta upplevs beror på hur tätt punkterna ligger i en bild. Tätare punkter ger en långsammare rithastighet med en hög precision. Längre avstånd mellan punkterna gör att roboten ritar snabbare men ger en lägre precision.

5.3 Framtida arbete

Under denna rubrik presenteras förbättringsförslag för robotarmen med utgångspunkt från de forskningsfrågor som undersökts.

5.3.1 Spännanordning

Ett av problemen som nämnts ovan är att det finns ett glapp i kuggremsväxeln. Robotens precision hade förbättrats avsevärt med en spännanordning som håller kuggremen sträckt.

5.3. FRAMTIDA ARBETE

5.3.2 Materialval

Robotens ingående komponenter är i huvudsak tillverkade i en 3D skrivare i plastmaterialet PLA. Med ett material som är styvare hade en högre precision kunnat uppnås. Framför allt hade det varit fördelaktigt med ett styvare material i lagersäten för de roterande axlarna. Ett annat materialval hade även eliminerat värmeutvidgningsproblemet som uppstod vid tillverkning.

5.3.3 G-kod

Robotens hastighet är begränsad av att den behöver accelerera och retardera när den åker till varje individuell punkt. Med en implementation av G-kod skulle denna accelerationssträcka och retardationssträcka reducerats avsevärt. G-kod är ett universellt språk för styrning av CNC maskiner, därför hade en implementering av detta även gjort det enklare att generera kod för de bilder roboten skall rita. För att implementera G-kod med roboten kan open source projektet marlin [19] användas.
Referenser

- Griffith P Taylor. "The Robot Gargantua". I: Gargantua: Constructor Quarterly (1995).
- [2] Arduino. Arduino Uno. 2021. URL: https://www.arduino.cc/ (hämtad 2021-02-15).
- [3] Hans B Johansson. *Elektroteknik*. Institutionen för Maskinkonstruktion Mekatronik KTH, 2013.
- [4] Paul P Acarnley. Stepping motors: a guide to theory and practice. 63. Iet, 2002. ISBN: 978-0852964170.
- [5] Gheorghe Baluta. "Microstepping mode for stepper motor control". I: 2007 International Symposium on Signals, Circuits and Systems. Vol. 2. IEEE. 2007.
- [6] Lennart Ljung Torkel Glad. *Reglerteknik Grundläggande teori*. Studentlitteratur, 2020. ISBN: 978-91-44-02275-8.
- [7] JGraph ltd. draw.io. Version 14.5.1. 2 april 2021. URL: https://www.diagrams. net/.
- [8] Kenneth Waldron och James Schmiedeler. "Kinematics". I: Springer Handbook of Robotics. Utg. av Bruno Siciliano och Oussama Khatib. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, s. 9–33. ISBN: 978-3-540-30301-5. DOI: 10. 1007/978-3-540-30301-5_2. URL: https://doi.org/10.1007/978-3-540-30301-5_2.
- [9] Siemens. Solid Edge. Version 220.00.00.104 x64. 1 april 2021. URL: https: //solidedge.siemens.com/en/.
- [10] Ultimaker. Ultimaker. Version 4.8. 9 april 2021. URL: https://ultimaker. com/.
- [11] Fritzing. Fritzing. Version 0.8.7. 2 april 2021. URL: https://fritzing.org/.
- [12] The MathWorks, Inc. Symbolic Math Toolbox. Version 9.9.0.1495850. 20 april 2021. URL: https://se.mathworks.com/products/symbolic.html.
- [13] Python Software Foundation. *Python*. Version 3.9.0. 9 april 2021. URL: https: //www.python.org/.
- [14] The MathWorks, Inc. *Matlab*. Version 9.9.0.1495850. 9 april 2021. URL: https: //se.mathworks.com/products/matlab.html.

- [15] Mike McCauley. AccelStepper. Version 1.61. 20 april 2020. URL: https:// www.airspayce.com/mikem/arduino/AccelStepper/.
- [16] Chris Liechti. PySerial. Version 3.5.0. 9 april 2021. URL: https://pyserial. readthedocs.io/en/latest/.
- [17] Microsoft Corporation. Microsoft Excel. Version 2019 (16.0). 24 sept. 2018.
 URL: https://office.microsoft.com/excel.
- [18] Maria Markovska Felicia Gihl Vieider. Drawing robotic arm. Degreeproject in technology. Kungliga Tekniska Högskolan, 2017. URL: http://www.divaportal.org/smash/get/diva2:1200466/FULLTEXT01.pdf (hämtad 2021-05-01).
- [19] Open Source. Marlin Firmware. Version 2.0.8. 27 april 2021. URL: https: //github.com/MarlinFirmware/Marlin.

Bilaga A

Matlabkod

```
%%% MF133X Examensarbete inom mekatronik
%%% Johan Hultenheim , Ibrahim Baydono
%%% Datum: 2021-04-30
%%% Programmet löser kinematikekvationer för roboten analytiskt
%%% användaren uppmanas rita i ett fönster. figuren sparas som
%%% en rad punkter i ett X-Y-X koordinatsystem.
%%% Med lösnignar till kinematikekvationer beräknas vridningsvinklar
%%% på roboten som sparas i en textfil korrekt formaterad
%%% för att pythonprogrammet skall kunna läsa detta
clear all ; close all ; clc
syms theta_1 theta_2 X Y
L_1 = 0.2182; % Längd på första armen
L_2 = 0.2043; % Längd på andra armen
% X koordinat med forward kinematics
XE_RHS = L_1 * cos(theta_1) + L_2 * cos(theta_1 + theta_2);
% Y koordinat med forward kinematics
YE_RHS = L_1 * sin(theta_1) + L_2 * sin(theta_1 + theta_2);
% Ställer upp ekvationer som skall lösas med matlabs
\hookrightarrow symbolhanterande bibliotek
XE_EQ = X == XE_RHS;
YE_EQ = Y == YE_RHS;
% Löser ekvationerna symboliskt
S = solve([XE_EQ YE_EQ], [theta_1 theta_2]);
% pretty(S.theta 1) %% Snyggar till output
```

```
% pretty(S.theta_2)
%% Konventerar ifrån symboluttryck till funktioner
THETA_1 = matlabFunction(S.theta_1);
THETA_2 = matlabFunction(S.theta_2);
%%
%Tar fram en ritruta där robotens gränser är inritade.
L 1 = 0.22;
L_2 = 0.21;
L=L_1 + L_2;
L_{min} = sqrt(L_1^2 + L_2^2 - 2*L_1*L_2*cosd(65));
%armar kan röra sig mellan-115 grader – > 115 grader (omvandlat till
\leftrightarrow radianer)
ang = linspace(-2.0071 , 2.0071 , 1000);
Xmax_rityta = L*cos(ang);
                            %Maxlänqd
Ymax_rityta = L*sin(ang);
Xmin_rityta = L_min*cos(ang);
                                 % Minlänqd
Ymin_rityta = L_min*sin(ang);
% Skapar en ruta där Ritpapper ligger (A4)
Xa4 = [-0.1475 , -0.1475 , 0.1475 , 0.1474 , -0.1475];
Ya4 = [-0.37 , -0.16 , -0.16 , -0.37 , -0.37];
% Plottar robotens arbetsyta samt ruta för A4 papper.
plot(Xmax_rityta , Ymax_rityta);
hold on
plot(Xmin_rityta , Ymin_rityta);
hold on
plot(Xa4 , Ya4)
xlim([-0.1575 0.1575]);
ylim([-0.38 -0.15]);
pbaspect([ 297 210 1])
                           % Sätter samma bildförhållande som ett
\rightarrow A4
% Låter användaren rita en figur i den ovan generarade plotten.
xy = drawfreehand('Multiclick',true);
% Användarens bild sparas i form av x koordinater och y koordinater.
\hookrightarrow
x = xy.Position(:,1);
y = xy.Position(:,2);
figure(2);
                        % Bilden användaren ritat presenteras i en
\rightarrow plot
plot(x,y);
```

```
pbaspect([ 297 210 1])
axis equal
%%
% Gränser för vart roboten kan gå
theta1maxmin_steps = [3850 , -5218];
theta2maxmin_steps = [5800, -4927];
% Gör om ifrån radianer till steg för stegmotorerna
theta_1step = 42.75 * rad2deg(THETA_1(x', y'));
                                                       %% 42.75 steg
\rightarrow per grad
theta_2step = 42.75 * rad2deg(THETA_2(x', y'));
% Kontrollerar om lösningen finns inom robotens arbetsområde samt
% bestämmer vilken av de två lösningarna som skall användas.
if (max(theta_2step(1,:)) > theta2maxmin_steps(1) &&
\rightarrow min(theta_2step(1,:)) < theta2maxmin_steps(2))
    if (max(theta_2step(2,:)) > theta2maxmin_steps(1) &&
    \rightarrow min(theta_2step(2,:)) < theta2maxmin_steps(2))
        disp("Får inte plats i ritområdet") %Spårutskrift
    end
else
    j=1;
    disp("går bra :)") %Spårutskrift
end
koord_vek = []; % Initierar koordinatuektorn
koord_vek = string(koord_vek); % Konventerar till ett strängobjekt
% Går igenom alla koordinater som skapats med rit-input
for i=1:length(theta_1step)
    koord_strang = "";
    Zkoord = "02000"; % Z hop om avstånd är stort mellan två punkter
    if (i~=1 && i~=length(theta_1step))
    if ((abs(theta_1step(j,i+1) - theta_1step(j,i)) > 50) ||
    \leftrightarrow (abs(theta_2step(j,i+1) - theta_2step(j,i)) > 50))
                                                                 % Om
       ett långt steg
    \hookrightarrow
        Zkoord = "05000"; % Z hop så inget oönskat streck ritas
    end
    end
    % Nedanstående kod parsar koorinaterna så de sparas på formen:
    % "<ZZZZZ 11111 22222>"
    % där ZZZZZ är Z koordinat, 11111 är vinkel theta_1 och 22222 är
    \leftrightarrow vinkel
    % theta 2
```

```
Theta1_koord = num2str(round(theta_1step(j,i)));
if ((Theta1_koord(1) == "-") && length(Theta1_koord) < 5)</pre>
    zeros = "";
    for k=1:5-length(Theta1_koord);
       zeros = zeros + "0";
    end
    Theta1_koord = Theta1_koord(1) + zeros +
    \rightarrow Theta1_koord(2:end);
    Theta1_koord = convertStringsToChars(Theta1_koord);
end
if ((length(Theta1_koord) < 5) && (Theta1_koord(1) ~= "-"));</pre>
    zeros = "" ;
    for k=1:5-length(Theta1_koord);
       zeros = zeros + "0";
    end
    Theta1_koord = zeros + Theta1_koord;
end
Theta2_koord = string(round(theta_2step(j,i)));
koord vek(i) = "<" + Zkoord + " " + Theta1 koord + " " +
\hookrightarrow Theta2_koord + ">";
% Lägger till höjning i början och slut för att inte rita på
\leftrightarrow golv /
% bord
if (i == 1)
    koord_start = "<" + "10000" + " " + Theta1_koord + " " +
     \hookrightarrow Theta2_koord + ">" ;
end
if (i == length(theta_1step))
    koord slut = "<" + "10000" + " " + Theta1 koord + " " +
     \hookrightarrow Theta2_koord + ">";
end
```

```
end
```

```
% Lägger till höjning i början och slutet för att inte rita på golv

→ / bord

% på väg till ritblock

hem_koord = "<" + "10000" + " " + "00000" + " " + "00000" + ">" ;
```

koord_vek = [koord_start koord_vek];

```
koord_vek = [koord_vek koord_slut];
koord_vek = [koord_vek hem_koord];
%%
% Skriver alla koordinater till en textfil som kan öppnas av
% pythonprogrammet
fil = fopen("koord.txt" , "w");
for i=1:length(koord_vek)
    fprintf(fil , '%s\n' , koord_vek(i));
end
fclose(fil);
```

Bilaga B

Pythonkod

- # MF133X Examensarbete inom mekatronik
- $\ensuremath{\texttt{\#}}$ Johan Hultenheim , Ibrahim Baydono
- # Datum: 2021-04-30
- # Programmet läser in koordinatfil genererad av matlab.
- # Koordinater skickas till till Arduino med seriellkommunikation.

```
import serial
import time
import sys
arduino = serial.Serial(port='COM5', baudrate=115200, timeout=.01)

→ # Initierar seriellporten

def get_file_content(file_name):
                                        #Hjälpfunktion som läser in
\hookrightarrow .txt fil med koordinater
    infil = ''
    try:
        infil = open(file_name, 'r')
                                        #Läser in filen med filnamn
        \hookrightarrow namnet file_name är tilldelad
    except:
        sys.exit()
    file_content = infil.readlines()
                                        #läser in rader i en
    \hookrightarrow pythonlista
    print(type(file_content))
```

```
return file_content
def write_read(x):
                         # Hjälpfunktion för att skicka data till
\hookrightarrow arduino
    arduino.write(x.encode())
    return
def main():
    file_content = get_file_content("Streckgubbe.txt") # Läs in
    \leftrightarrow koordinater i en pythonlista
    for row in file_content:
        # row_mod = "<" + row[:-1] + ">"
        # print(row_mod)
        i=1 # Återställ räknare
        while arduino.inWaiting() == 0: # Vänta tills roboten är
        \hookrightarrow klar med föregående koordinat
            i=i+1
        arduino.readline() #Läs kvittens
        write_read(row) # Skicka ny koord
```

main()

Bilaga C

Arduinokod

```
// MF133X Examensarbete inom mekatronik
// Johan Hultenheim , Ibrahim Baydono
// Datum: 2021-04-30
// Hårdvara: Arduino Uno
// Programmet Kör roboten till hemposition och
// läser därefter in koordinater ifrån seriellport
#include <AccelStepper.h> //ett bibliotek för användning av
\hookrightarrow stegmotorer
// Definerar de pins som kommer användas till stegmotorer och
\rightarrow mikrobrytare
#define dirPin1 2
#define stepPin1 3
#define dirPin2 4
#define stepPin2 5
#define dirPin3 6
#define stepPin3 7
#define Zstop 10
#define theta1stop 8
#define theta2stop 9
#define motorInterfaceType 1
AccelStepper Zaxis = AccelStepper(motorInterfaceType, stepPin1,
\hookrightarrow dirPin1); // Z
```

```
AccelStepper Axis2 = AccelStepper(motorInterfaceType, stepPin2,

→ dirPin2); // Theta2

AccelStepper Axis1= AccelStepper(motorInterfaceType, stepPin3,
\leftrightarrow dirPin3); // Theta1
bool Z = false; // Initiering Z microbrytare variabel
bool theta1; // Initiering theta1 microbrytare variabel
bool theta2; // Initiering theta2 microbrytare variabel
bool notDone = true; // Initiering av hjälpvariabler för koden
int i;
bool inteKlar;
int raknare;
void recvWithStartEndMarkers(); // Forward deklarering av funktion
→ som tar emot data via Seriellport
// Hjälpvaribler för Seriellkommunikation
const byte numChars = 32; // Maximal längd på sträng som kan
\hookrightarrow skickas
char receivedChars[numChars]; // charArray för lagring av mottagen
\hookrightarrow data
bool newData = false;
                           //boolean som växlar mellan true /
\leftrightarrow false om ny data finns
const char startMarker = '<'; // ny data startar med "<"</pre>
const char endMarker = '>'; // ny data slutar med ">"
char messageFromPC[numChars] = {0}; // charArray med datan ifrån
\hookrightarrow PC
int Zin;
              // Variabler som aktuell koordinat sparas i
int theta1in;
int theta2in;
void setup()
ſ
    // 400 steg / mm på Z axel
    // 960 steg / motorvarv Använder 1/16 microstep => 15360 steg
    \rightarrow per varv (theta1 och theta2)
    Serial.begin(115200); // Initierar baudrate till 115200;
    pinMode(Zstop, INPUT); // definerar gränslägesbrytare som input
    pinMode(theta1stop, INPUT);
```

```
pinMode(theta2stop, INPUT);
   // Sätter max hastighet samt acceleration på samtliga
    \hookrightarrow stegmotorer
   Zaxis.setMaxSpeed(20000.0);
   Zaxis.setAcceleration(1000000.0);
   Axis2.setMaxSpeed(5000.0);
   Axis2.setAcceleration(1000000.0);
   Axis1.setMaxSpeed(5000.0);
   Axis1.setAcceleration(1000000.0);
   i=1;
Serial.print("Kor_hem"); //skriver till Serieport att den kör mot
\hookrightarrow hemposition
while (notDone) {
                   // Rör sig mot gränslägesbrytare
 Z=digitalRead(Zstop); // Läser av status på gränslägesbrytare
 theta1 = digitalRead(theta1stop);
 theta2 = digitalRead(theta2stop);
 if (Z!=true) {
                   // Om gränslägesbrytare ej påverkad -> gå ett
  \hookrightarrow steg mot hemposition
   Zaxis.move(-1);
 }
 if (theta1!=true) {
   Axis1.move(-1);
 }
 if (theta2!=true){
   Axis2.move(-1);
 }
Zaxis.run();
              // Kommando för att aktivera stegmotorer
Axis2.run();
Axis1.run():
 if (Z==true and theta1 == true and theta2== true) {
                                                     // När
  \leftrightarrow samtliga mikrobrytare är påverkade är vi i hemposition
                    // Aubryt whileloop
   notDone=false;
   Zaxis.setCurrentPosition(0);
                                 //gränslägesbrytare vid Z=0
    ↔ // Sätt positioner för samtliga axlar (hårdkodade siffor är
   \rightarrow uppmätta).
   Axis2.setCurrentPosition(-4927); //-115.25 deg till
```

```
Axis1.setCurrentPosition(-5218); //-122.05 deg till

→ qränslägesbrytare

  }
}
  // Ändra acceleration för mjukare gång
    Zaxis.setMaxSpeed(20000.0);
    Zaxis.setAcceleration(5000.0);
    Axis2.setMaxSpeed(5000.0);
    Axis2.setAcceleration(5000.0);
   Axis1.setMaxSpeed(5000.0);
   Axis1.setAcceleration(5000.0);
  // Kör fram roboten i sitt "redo" läge.
  Zaxis.moveTo(10000);
  Axis2.moveTo(0);
                      //-4120 steg 90 deg vänster 3575 höger
  \leftrightarrow (42.75 steg / grad)
  Axis1.moveTo(0); // -3830 steg 90 deg vänster 3870 höger
  \leftrightarrow (42.75 steg / grad)
  while (Zaxis.distanceToGo() != 0 or Axis2.distanceToGo() != 0 or
  \rightarrow Axis1.distanceToGo() != 0){
      Zaxis.run();
      Axis2.run();
      Axis1.run();
  }
delay(10000);
                // För att hinna ta av eventuellt lock ifrån penna
Serial.print("done"); // Skicka kvittens över Seriellport att
\hookrightarrow roboten är redo.
   Axis1.setMaxSpeed(10000.0); // Sätt hastighet och acceleration
   → på roboten
   Axis2.setMaxSpeed(10000.0);
   Axis2.setAcceleration(10000);
   Axis1.setAcceleration(10000);
}
void loop()
{
  recvWithStartEndMarkers(); // Läs in data ifrån seriellport
  if (newData){ // Om ny data mottagits
  String Mottagen_str = receivedChars; //Konventera charArray till
  → Sträng för enklare hantering
```

```
Zin = Mottagen_str.substring(0,5).toInt(); // Dela upp

→ insträngen efter dess beståndsdelar och gör om beståndsdelarna

→ till Integers

theta1in = (-1)*Mottagen_str.substring(6,11).toInt(); // I

→ modellen för roboten är vinklarna tvärt om mot robotens

→ vinklar, Ändras med *(-1).

theta2in = (-1)*Mottagen_str.substring(12,17).toInt();
```



```
Zaxis.moveTo(Zin);
                         // Kör till position som mottagits
  Axis2.moveTo(theta2in);
  Axis1.moveTo(theta1in);
  while (Zaxis.distanceToGo() != 0 or Axis2.distanceToGo() != 0 or
  ↔ Axis1.distanceToGo() != 0){ // Vänta tills alla axlar är klara
   Zaxis.run();
   Axis2.run();
   Axis1.run();
    }
//}
      newData = false; // Återställ boolean
      Serial.print("done"); // Skicka kvittens att roboten är klar
      → med rörelsen
 }
//}
}
void recvWithStartEndMarkers() { // Hjälpfunktion som tar emot
\rightarrow data ifrån seriellport.
    static boolean recvInProgress = false; // bool om data håller
    \hookrightarrow på att tas emot
    static byte ndx = 0;
    char rc;
    while (Serial.available() > 0 && newData == false) { // Om ny
    \hookrightarrow data finns i buffer
        rc = Serial.read(); // Läs data
```

```
if (recvInProgress == true) {
                                                // Medans mottangning är
         \rightarrow pågående
             if (rc != endMarker) {
                 receivedChars[ndx] = rc;
                                                // Läs in i charArray på
                 \hookrightarrow index ndx
                 ndx++;
                 if (ndx >= numChars) {
                     ndx = numChars - 1;
                                                // felhantering om ndx >
                     \hookrightarrow CharArray
                 }
             }
             else {
                 receivedChars[ndx] = '\0'; // När Strängen är slut.
                  \leftrightarrow Avsluta med "\0" samt återställ bools och
                  \rightarrow räknare
                 recvInProgress = false;
                 ndx = 0;
                 newData = true;
             }
        }
        else if (rc == startMarker) { // Om startmarkeringen
         \leftrightarrow läses, ändra bool så mottagning är pågående.
             recvInProgress = true;
        }
    }
//
```

}

Bilaga D

Acumen

```
%%% MF133X Examensarbete inom mekatronik
%%% Johan Hultenheim , Ibrahim Baydono
%%% Datum: 2021-04-30
%%% Simulering av robot
model Main(simulator) =
initially
_{3D} = (),
 x=0,x'=1
                              //the variables for different cases
always
                              // if set for different parts how to
                               → move
      if x<2.5
                               // when x is less than 2.5, the
      \leftrightarrow cylinder will increase its length, otherwise will it stop
        then x'=1
        else x'=0,
                           // Typ av objekt
// Center point
  _3D = (Cylinder
         center = (0, 0, 0)
                             // Storlek
         size = (1, 2)
                             // Frg
         color = black
         rotation = (0,0,0) // Position
                              // Objekt
        Box
         center = (0, 1.7, 0.5) size = (1.5, 3, 1.5)
         color = blue rotation = (0.7, 0, 0)
                              // Objekt
        Box
         center = (0, 3.6, 1.1) size = (1.5, 3, 1.5)
```

Bilaga E

Datablad Stegmotordrivare

Sample &

Buy

DRV8825

SLVSA73F - APRIL 2010-REVISED JULY 2014

DRV8825 Stepper Motor Controller IC

Technical

Documents

Features

- PWM Microstepping Stepper Motor Driver
 - Built-In Microstepping Indexer
 - Up to 1/32 Microstepping
- Multiple Decay Modes
 - Mixed Decay
 - Slow Decay
 - Fast Decay
- 8.2-V to 45-V Operating Supply Voltage Range
- 2.5-A Maximum Drive Current at 24 V and
- $T_A = 25^{\circ}C$
- Simple STEP/DIR Interface
- Low Current Sleep Mode
- Built-In 3.3-V Reference Output
- Small Package and Footprint
- **Protection Features**
 - Overcurrent Protection (OCP)
 - Thermal Shutdown (TSD)
 - VM Undervoltage Lockout (UVLO)
 - Fault Condition Indication Pin (nFAULT)

8.2 to 45 V

RV8825

Stepper

Motor Driver

1/32 µstep

2.5 A

2.5 A

2 Applications

- Automatic Teller Machines
- Money Handling Machines
- Video Security Cameras
- Printers
- Scanners
- Office Automation Machines
- **Gaming Machines**
- **Factory Automation**
- Robotics

Controller

Simplified Schematic 4

STEP

DIR

Decay Mode

Step, Size

nFAULT

3 Description

Tools &

Software

The DRV8825 provides an integrated motor driver solution for printers, scanners, and other automated equipment applications. The device has two H-bridge drivers and a microstepping indexer, and is intended to drive a bipolar stepper motor. The output driver block consists of N-channel power MOSFET's configured as full H-bridges to drive the motor windings. The DRV8825 is capable of driving up to 2.5 A of current from each output (with proper heat sinking, at 24 V and 25°C).

Support &

Community

29

A simple STEP/DIR interface allows easy interfacing to controller circuits. Mode pins allow for configuration of the motor in full-step up to 1/32-step modes. Decay mode is configurable so that slow decay, fast decay, or mixed decay can be used. A low-power sleep mode is provided which shuts down internal circuitry to achieve very low quiescent current draw. This sleep mode can be set using a dedicated nSLEEP pin.

Internal shutdown functions are provided for overcurrent, short circuit, under voltage lockout and over temperature. Fault conditions are indicated via the nFAULT pin.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DRV8825	HTSSOP (28)	9.70 mm × 6.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Microstepping Current Waveform

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

2 Submit Documentation Feedback

DRV8825 SLVSA73F - APRIL 2010-REVISED JULY 2014

Table of Contents

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Sim	plified Schematic1
5	Rev	ision History 2
6	Pin	Configuration and Functions
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	Handling Ratings 4
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 5
	7.5	Electrical Characteristics
	7.6	Timing Requirements 7
	7.7	Typical Characteristics 8
8	Deta	ailed Description
	8.1	Overview
	8.2	Functional Block Diagram 10

	8.3	Feature Description	11
	8.4	Device Functional Modes	17
9	App	lication and Implementation	18
	9.1	Application Information	18
	9.2	Typical Application	18
10	Pow	er Supply Recommendations	21
	10.1	Bulk Capacitance	21
	10.2	Power Supply and Logic Sequencing	<mark>21</mark>
11	Lay	out	22
	11.1	Layout Guidelines	22
	11.2	Layout Example	22
	11.3	Thermal Protection	22
12	Dev	ice and Documentation Support	24
	12.1	Trademarks	24
	12.2	Electrostatic Discharge Caution	24
	12.3	Glossary	24
13	Mec	hanical, Packaging, and Orderable	
	Info	mation	24

Copyright © 2010–2014, Texas Instruments Incorporated

5 Revision History

C	hanges from Revision E (August 2013) to Revision F	Page
•	Added new sections and reordered data sheet to fit new TI flow	1
•	Updated pin descriptions	3
•	Added power supply ramp rate and updated ISENSEx pin voltage in Absolute Maximum Ratings	4
•	Updated V _{IL} voltage minimum and typical in <i>Electrical Characteristics</i>	6
•	Updated I _{IN} and t _{DEG} in <i>Electrical Characteristics</i>	6

www.ti.com

6 Pin Configuration and Functions

Pin Functions

PIN			DESCRIPTION	EXTERNAL COMPONENTS		
NAME	NO.		DESCRIPTION	OR CONNECTIONS		
POWER AN	ID GROUN	D				
CP1	1	I/O	Charge pump flying capacitor	Connect a 0.01 UE E0 V connector between CD1 and CD2		
CP2	2	I/O	Charge pump flying capacitor	Connect a 0.01-µr 50-V capacitor between CrT and Cr2.		
GND	14, 28		Device ground			
VCP	3	I/O	High-side gate drive voltage	Connect a 0.1- μF 16-V ceramic capacitor and a 1-M Ω resistor to VM.		
VMA	4	_	Bridge A power supply	Connect to motor supply (8.2 to 45 V). Both pins must be		
VMB	11	_	Bridge B power supply	connected to the same supply, bypassed with a 0.1 - μ F capacitor to GND, and connected to appropriate bulk capacitance.		
V3P3OUT	15	0	3.3-V regulator output	Bypass to GND with a 0.47- μ F 6.3-V ceramic capacitor. Can be used to supply VREF.		
CONTROL						
AVREF	12	I	Bridge A current set reference input	Reference voltage for winding current set. Normally AVREF and		
BVREF	13	Ι	Bridge B current set reference input	BVREF are connected to the same voltage. Can be connected to V3P3OUT.		
DECAY	19	Ι	Decay mode	Low = slow decay, open = mixed decay, high = fast decay. Internal pulldown and pullup.		
DIR	20	Ι	Direction input	Level sets the direction of stepping. Internal pulldown.		
MODE0	24	I	Microstep mode 0			
MODE1	25	I	Microstep mode 1	MODE0 through MODE2 set the step mode - full, 1/2, 1/4, 1/8/		
MODE2	26	I	Microstep mode 2			
NC	23		No connect	Leave this pin unconnected.		
nENBL	21	Ι	Enable input	Logic high to disable device outputs and indexer operation, logic low to enable. Internal pulldown.		
nRESET	16	Ι	Reset input	Active-low reset input initializes the indexer logic and disables the H-bridge outputs. Internal pulldown.		
nSLEEP	17	I	Sleep mode input	Logic high to enable device, logic low to enter low-power sleep mode. Internal pulldown.		
STEP	22	I	Step input	Rising edge causes the indexer to move one step. Internal pulldown.		
STATUS			·			
nFAULT	18	OD	Fault	Logic low when in fault condition (overtemp, overcurrent)		

(1) Directions: I = input, O = output, OD = open-drain output, IO = input/output

Copyright © 2010–2014, Texas Instruments Incorporated

DRV8825 SLVSA73F - APRIL 2010 - REVISED JULY 2014

www.ti.com

	Pin Functions (continued)					
PIN		UO ⁽¹⁾	DESCRIPTION	EXTERNAL COMPONENTS		
NAME	NO.	100	DESCRIPTION	OR CONNECTIONS		
nHOME	27	OD	Home position	ne position Logic low when at home state of step table		
OUTPUT						
AOUT1	5	0	Bridge A output 1	Connect to bipolar stepper motor winding A.		
AOUT2	7	0	Bridge A output 2	Positive current is AOUT1 \rightarrow AOUT2		
BOUT1	10	0	Bridge B output 1	Connect to bipolar stepper motor winding B.		
BOUT2	8	0	Bridge B output 2	Positive current is BOUT1 \rightarrow BOUT2		
ISENA	6	I/O	Bridge A ground / Isense	Connect to current sense resistor for bridge A.		
ISENB	9	I/O	Bridge B ground / Isense	Connect to current sense resistor for bridge B.		

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
V	Power supply voltage	-0.3	47	V
V (VMx)	Power supply ramp rate		1	V/µs
	Digital pin voltage	-0.5	7	V
V _(xVREF)	Input voltage	-0.3	4	V
	ISENSEx pin voltage ⁽³⁾	-0.8	0.8	V
	Peak motor drive output current, t < 1 µs		Internally limited	А
	Continuous motor drive output current ⁽⁴⁾	0	2.5	А
	Continuous total power dissipation	See Th	ermal Information	
TJ	Operating junction temperature range	-40	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values are with respect to network ground terminal. (2)

Transients of ±1 V for less than 25 ns are acceptable (3)

(4) Power dissipation and thermal limits must be observed.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage tempe	erature range	-60	150	°C
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-2000	2000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins $^{\left(2\right)}$	-500	500	

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. (1)

(2)

7.3 Recommended Operating Conditions

		MIN	NOM MAX	UNIT
V _(VMx)	Motor power supply voltage range ⁽¹⁾	8.2	45	V
V _(VREF)	VREF input voltage ⁽²⁾	1	3.5	V
I _{V3P3}	V3P3OUT load current	0	1	mA

All V_M pins must be connected to the same supply voltage. (1)

(2) Operational at VREF between 0 to 1 V, but accuracy is degraded.

7.4 Thermal Information

		DRV8825	
	THERMAL METRIC ⁽¹⁾	PWP	UNIT
		28 PINS	
R _{θJA}	Junction-to-ambient thermal resistance ⁽²⁾	31.6	
R _{0JC(top)}	Junction-to-case (top) thermal resistance ⁽³⁾	15.9	
$R_{\theta JB}$	Junction-to-board thermal resistance ⁽⁴⁾	5.6	°C ///
ΨJT	Junction-to-top characterization parameter ⁽⁵⁾	0.2	C/W
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁶⁾	5.5	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	1.4	

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

DRV8825

SLVSA73F - APRIL 2010 - REVISED JULY 2014

7.5 Electrical Characteristics

over operating free-air temperature range of -40°C to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	SUPPLIES					
I _{VM}	VM operating supply current	V _(VMx) = 24 V		5	8	mA
I _{VMQ}	VM sleep mode supply current	$V_{(VMx)} = 24 V$		10	20	μA
V3P3OU	T REGULATOR					
V _{3P3}	V3P3OUT voltage	IOUT = 0 to 1 mA	3.2	3.3	3.4	V
LOGIC-I	EVEL INPUTS	•				
V _{IL}	Input low voltage		0		0.7	V
V _{IH}	Input high voltage		2.2		5.25	V
V _{HYS}	Input hysteresis		0.3	0.45	0.6	V
I _{IL}	Input low current	VIN = 0	-20		20	μA
I _{IH}	Input high current	VIN = 3.3 V			100	μA
R _{PD}	Internal pulldown resistance			100		kΩ
nHOME,	nFAULT OUTPUTS (OPEN-DRAI	N OUTPUTS)				
V _{OL}	Output low voltage	I _O = 5 mA			0.5	V
I _{OH}	Output high leakage current	V _O = 3.3 V			1	μA
DECAY	INPUT					
V _{IL}	Input low threshold voltage	For slow decay mode			0.8	V
V _{IH}	Input high threshold voltage	For fast decay mode	2			V
I _{IN}	Input current		-40		40	μA
R _{PU}	Internal pullup resistance (to 3.3 V)			130		kΩ
R _{PD}	Internal pulldown resistance			80		kΩ
H-BRIDO	GE FETS					
	HS FET on resistance	$V_{(VMx)} = 24 V, I_0 = 1 A, T_J = 25^{\circ}C$		0.2		
D		V _(VMx) = 24 V, I _O = 1 A, T _J = 85°C		0.25	0.32	0
RDS(ON)		$V_{(VMx)} = 24 V, I_O = 1 A, T_J = 25^{\circ}C$		0.2		12
		$V_{(VMx)} = 24 V, I_O = 1 A, T_J = 85^{\circ}C$		0.25	0.32	
I _{OFF}	Off-state leakage current		-20		20	μA
MOTOR	DRIVER				<u>.</u>	
f_{PWM}	Internal current control PWM frequency			30		kHz
t _{BLANK}	Current sense blanking time			4		μs
t _R	Rise time		30		200	ns
t _F	Fall time		30		200	ns
PROTEC	CTION CIRCUITS				<u>.</u>	
V _{UVLO}	VM undervoltage lockout voltage	V _(VMx) rising		7.8	8.2	V
I _{OCP}	Overcurrent protection trip level		3			А
t _{DEG}	Overcurrent deglitch time			3		μs
t _{TSD}	Thermal shutdown temperature	Die temperature	150	160	180	°C
CURRE	NT CONTROL		1			
I _{REF}	xVREF input current	$V_{(xVREF)} = 3.3 V$	-3		3	μA
V _{TRIP}	xISENSE trip voltage	$V_{(xVREF)} = 3.3 V, 100\%$ current setting	635	660	685	mV
		$V_{(xVREF)}$ = 3.3 V, 5% current setting	-25%		25%	
	Current trip accuracy	$V_{(xVREF)}$ = 3.3 V, 10% to 34% current setting	-15%		15%	
IRIP	(relative to programmed value)	$V_{(xVREF)}$ = 3.3 V, 38% to 67% current setting	-10%		10%	
		$V_{(xVREF)}$ = 3.3 V, 71% to 100% current setting	-5%		5%	
AISENSE	Current sense amplifier gain	Reference only		5		V/V

6 Submit Documentation Feedback

Copyright © 2010–2014, Texas Instruments Incorporated

Product Folder Links: DRV8825

www.ti.com

DRV8825 SLVSA73F – APRIL 2010 – REVISED JULY 2014

7.6 Timing Requirements

			MIN	MAX	UNIT
1	f_{STEP}	Step frequency		250	kHz
2	t _{WH(STEP)}	Pulse duration, STEP high	1.9		μs
3	t _{WL(STEP)}	Pulse duration, STEP low	1.9		μs
4	t _{SU(STEP)}	Setup time, command before STEP rising	650		ns
5	t _{H(STEP)}	Hold time, command after STEP rising	650		ns
6	t _{ENBL}	Enable time, nENBL active to STEP	650		ns
7	t _{WAKE}	Wakeup time, nSLEEP inactive high to STEP input accepted		1.7	ms

TEXAS INSTRUMENTS

www.ti.com

7.7 Typical Characteristics

8 Detailed Description

8.1 Overview

The DRV8825 is an integrated motor driver solution for bipolar stepper motors. The device integrates two NMOS H-bridges, current sense, regulation circuitry, and a microstepping indexer. The DRV8825 can be powered with a supply voltage between 8.2 and 45 V and is capable of providing an output current up to 2.5 A full-scale.

A simple STEP/DIR interface allows for easy interfacing to the controller circuit. The internal indexer is able to execute high-accuracy microstepping without requiring the processor to control the current level.

The current regulation is highly configurable, with three decay modes of operation. Depending on the application requirements, the user can select fast, slow, and mixed decay.

A low-power sleep mode is included which allows the system to save power when not driving the motor.

DRV8825 SLVSA73F – APRIL 2010–REVISED JULY 2014

www.ti.com

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 PWM Motor Drivers

The DRV8825 contains two H-bridge motor drivers with current-control PWM circuitry. Figure 6 shows a block diagram of the motor control circuitry.

Note that there are multiple VM motor power supply pins. All VM pins must be connected together to the motor supply voltage.

Copyright © 2010–2014, Texas Instruments Incorporated

8.3.2 Current Regulation

The current through the motor windings is regulated by a fixed-frequency PWM current regulation, or current chopping. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage and inductance of the winding. Once the current hits the current chopping threshold, the bridge disables the current until the beginning of the next PWM cycle.

In stepping motors, current regulation is used to vary the current in the two windings in a semi-sinusoidal fashion to provide smooth motion.

The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor connected to the xISEN pins, multiplied by a factor of 5, with a reference voltage. The reference voltage is input from the xVREF pins.

The full-scale (100%) chopping current is calculated in Equation 1.

$$I_{CHOP} = \frac{V_{(xREF)}}{5 \times R_{ISENSE}}$$

(1)

FEXAS

INSTRUMENTS

www.ti.com

Example:

If a 0.25- Ω sense resistor is used and the VREFx pin is 2.5 V, the full-scale (100%) chopping current will be 2.5 V / (5 x 0.25 Ω) = 2 A.

The reference voltage is scaled by an internal DAC that allows fractional stepping of a bipolar stepper motor, as described in the microstepping indexer section below.

8.3.3 Decay Mode

During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM current chopping threshold is reached. This is shown in Figure 7 as case 1. The current flow direction shown indicates positive current flow.

Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or slow decay.

In fast decay mode, once the PWM chopping current level has been reached, the H-bridge reverses state to allow winding current to flow in a reverse direction. As the winding current approaches 0, the bridge is disabled to prevent any reverse current flow. Fast decay mode is shown in Figure 7 as case 2.

In slow decay mode, winding current is recirculated by enabling both of the low-side FETs in the bridge. This is shown in Figure 7 as case 3.

Feature Description (continued)

Figure 7. Decay Mode

The DRV8825 supports fast decay, slow decay and a mixed decay mode. Slow, fast, or mixed decay mode is selected by the state of the DECAY pin; logic low selects slow decay, open selects mixed decay operation, and logic high sets fast decay mode. The DECAY pin has both an internal pullup resistor of approximately 130 k Ω and an internal pulldown resistor of approximately 80 k Ω . This sets the mixed decay mode if the pin is left open or undriven.

Mixed decay mode begins as fast decay, but at a fixed period of time (75% of the PWM cycle) switches to slow decay mode for the remainder of the fixed PWM period. This occurs only if the current through the winding is decreasing (per the indexer step table); if the current is increasing, then slow decay is used.

8.3.4 Blanking Time

After the current is enabled in an H-bridge, the voltage on the xISEN pin is ignored for a fixed period of time before enabling the current sense circuitry. This blanking time is fixed at 3.75 µs. Note that the blanking time also sets the minimum on time of the PWM.

8.3.5 Microstepping Indexer

Built-in indexer logic in the DRV8825 allows a number of different stepping configurations. The MODE0 through MODE2 pins are used to configure the stepping format as shown in Table 1.

MODE2	MODE1	MODE0	STEP MODE				
0	0	0	Full step (2-phase excitation) with 71% current				
0	0	1	1/2 step (1-2 phase excitation)				
0	1	0	1/4 step (W1-2 phase excitation)				
0	1	1	8 microsteps/step				
1	0	0	16 microsteps/step				
1	0	1	32 microsteps/step				
1	1	0	32 microsteps/step				
1	1	1	32 microsteps/step				

Table 1. Stepping Format

Copyright © 2010–2014, Texas Instruments Incorporated

TEXAS INSTRUMENTS

www.ti.com

SLVSA73F - APRIL 2010-REVISED JULY 2014

Table 2 shows the relative current and step directions for different settings of MODEx. At each rising edge of the STEP input, the indexer travels to the next state in the table. The direction is shown with the DIR pin high; if the DIR pin is low the sequence is reversed. Positive current is defined as xOUT1 = positive with respect to xOUT2.

Note that if the step mode is changed while stepping, the indexer will advance to the next valid state for the new MODEx setting at the rising edge of STEP.

The home state is 45°. This state is entered at power-up or application of nRESET. This is shown in Table 2 by the shaded cells. The logic inputs DIR, STEP, nRESET, and MODEx have internal pulldown resistors of 100 k Ω .

1/32 STEP	1/16 STEP	1/8 STEP	1/4 STEP	1/2 STEP	FULL STEP 70%	WINDING CURRENT A	WINDING CURRENT B	ELECTRICAL ANGLE
1	1	1	1	1		100%	0%	0
2						100%	5%	3
3	2					100%	10%	6
4						99%	15%	8
5	3	2				98%	20%	11
6						97%	24%	14
7	4					96%	29%	17
8						94%	34%	20
9	5	3	2			92%	38%	23
10						90%	43%	25
11	6					88%	47%	28
12						86%	51%	31
13	7	4				83%	56%	34
14						80%	60%	37
15	8					77%	63%	39
16						74%	67%	42
17	9	5	3	2	1	71%	71%	45
18						67%	74%	48
19	10					63%	77%	51
20						60%	80%	53
21	11	6				56%	83%	56
22						51%	86%	59
23	12					47%	88%	62
24						43%	90%	65
25	13	7	4			38%	92%	68
26						34%	94%	70
27	14					29%	96%	73
28						24%	97%	76
29	15	8				20%	98%	79
30						15%	99%	82
31	16					10%	100%	84
32						5%	100%	87
33	17	9	5	3		0%	100%	90
34						-5%	100%	93
35	18					-10%	100%	96
36						-15%	99%	98
37	19	10				-20%	98%	101
38						-24%	97%	104
39	20					-29%	96%	107

Table 2. Relative Current and Step Directions

14 Submit Documentation Feedback

Copyright © 2010–2014, Texas Instruments Incorporated

DRV8825

SLVSA73F - APRIL 2010-REVISED JULY 2014

Table 2. Relative Current and Step Directions (continued)									
1/32 STEP	1/16 STEP	1/8 STEP	1/4 STEP	1/2 STEP	FULL STEP 70%	WINDING CURRENT A	WINDING CURRENT B	ELECTRICAL ANGLE	
40						-34%	94%	110	
41	21	11	6			-38%	92%	113	
42						-43%	90%	115	
43	22					-47%	88%	118	
44						-51%	86%	121	
45	23	12				-56%	83%	124	
46						-60%	80%	127	
47	24					-63%	77%	129	
48						-67%	74%	132	
49	25	13	7	4	2	-71%	71%	135	
50						-74%	67%	138	
51	26					-77%	63%	141	
52						-80%	60%	143	
53	27	14				-83%	56%	146	
54						-86%	51%	149	
55	28					-88%	47%	152	
56						-90%	43%	155	
57	29	15	8			-92%	38%	158	
58						-94%	34%	160	
59	30					-96%	29%	163	
60						-97%	24%	166	
61	31	16				-98%	20%	169	
62						-99%	15%	172	
63	32					-100%	10%	174	
64						-100%	5%	177	
65	33	17	9	5		-100%	0%	180	
66						-100%	-5%	183	
67	34					-100%	-10%	186	
68						-99%	-15%	188	
69	35	18				-98%	-20%	191	
70						-97%	-24%	194	
71	36					-96%	-29%	197	
72						-94%	-34%	200	
73	37	19	10			-92%	-38%	203	
74						-90%	-43%	205	
75	38					-88%	-47%	208	
76						-86%	-51%	211	
77	39	20				-83%	-56%	214	
78						-80%	-60%	217	
79	40					-77%	-63%	219	
80						-74%	-67%	222	
81	41	21	11	6	3	-71%	-71%	225	
82						-67%	-74%	228	
83	42					-63%	-77%	231	
84						-60%	-80%	233	
85	43	22				-56%	-83%	236	
86						-51%	-86%	239	

Table 2 Polative Current and Step Directions (cor **.**+ir

Copyright © 2010–2014, Texas Instruments Incorporated

Submit Documentation Feedback 15

TEXAS INSTRUMENTS

www.ti.com

DRV8825

SLVSA73F - APRIL 2010 - REVISED JULY 2014

Table 2. Relative Current and Step Directions (continued)								
1/32 STEP	1/16 STEP	1/8 STEP	1/4 STEP	1/2 STEP	FULL STEP 70%	WINDING CURRENT A	WINDING CURRENT B	ELECTRICAL ANGLE
87	44					-47%	-88%	242
88						-43%	-90%	245
89	45	23	12			-38%	-92%	248
90						-34%	-94%	250
91	46					-29%	-96%	253
92						-24%	-97%	256
93	47	24				-20%	-98%	259
94						-15%	-99%	262
95	48					-10%	-100%	264
96						-5%	-100%	267
97	49	25	13	7		0%	-100%	270
98						5%	-100%	273
99	50					10%	-100%	276
100						15%	-99%	278
101	51	26				20%	-98%	281
102						24%	-97%	284
103	52					29%	-96%	287
104						34%	-94%	290
105	53	27	14			38%	-92%	293
106						43%	-90%	295
107	54					47%	-88%	298
108						51%	-86%	301
109	55	28				56%	-83%	304
110						60%	-80%	307
111	56					63%	-77%	309
112						67%	-74%	312
113	57	29	15	8	4	71%	-71%	315
114						74%	-67%	318
115	58					77%	-63%	321
116						80%	-60%	323
117	59	30				83%	-56%	326
118						86%	-51%	329
119	60					88%	-47%	332
120						90%	-43%	335
121	61	31	16			92%	-38%	338
122						94%	-34%	340
123	62					96%	-29%	343
124						97%	-24%	346
125	63	32				98%	-20%	349
126						99%	-15%	352
127	64					100%	-10%	354
128						100%	-5%	357

Table 2. Relative Current and Step Directions (continued)

8.3.6 nRESET, nENBL, and nSLEEP Operation

The nRESET pin, when driven active low, resets internal logic, and resets the step table to the home position. It also disables the H-bridge drivers. The STEP input is ignored while nRESET is active.

The nENBL pin is used to control the output drivers and enable/disable operation of the indexer. When nENBL is low, the output H-bridges are enabled, and rising edges on the STEP pin are recognized. When nENBL is high, the H-bridges are disabled, the outputs are in a high-impedance state, and the STEP input is ignored.

Driving nSLEEP low will put the device into a low power sleep state. In this state, the H-bridges are disabled, the gate drive charge pump is stopped, the V3P3OUT regulator is disabled, and all internal clocks are stopped. In this state all inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode, some time (approximately 1 ms) needs to pass before applying a STEP input, to allow the internal circuitry to stabilize. Note that nRESET and nENABL have internal pulldown resistors of approximately 100 k Ω . The nSLEEP pin has an internal pulldown resistor of 1 M Ω . nSLEEP and nRESET signals need to be driven to logic high for device operation.

8.3.7 Protection Circuits

The DRV8825 is fully protected against undervoltage, overcurrent, and overtemperature events.

8.3.7.1 Overcurrent Protection (OCP)

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than the OCP time, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. The device remains disabled until either nRESET pin is applied, or VM is removed and reapplied.

Overcurrent conditions on both high-side and low-side devices; that is, a short to ground, supply, or across the motor winding all result in an overcurrent shutdown. Note that overcurrent protection does not use the current sense circuitry used for PWM current control, and is independent of the I_{SENSE} resistor value or xVREF voltage.

8.3.7.2 Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. After the die temperature has fallen to a safe level, operation automatically resumes.

8.3.7.3 Undervoltage Lockout (UVLO)

If at any time the voltage on the VM pins falls below the UVLO threshold voltage, all circuitry in the device will be disabled and internal logic will be reset. Operation will resume when $V_{(VMx)}$ rises above the UVLO threshold.

8.4 Device Functional Modes

8.4.1 STEP/DIR Interface

The STEP/DIR interface provides a simple method for advancing through the indexer table. For each rising edge on the STEP pin, the indexer travels to the next state in the table. The direction it moves in the table is determined by the input to the DIR pin. The signals applied to the STEP and DIR pins should not violate the timing diagram specified in Figure 1.

8.4.2 Microstepping

The microstepping indexer allows for a variety of stepping configurations. The state of the indexer is determined by the configuration of the three MODE pins (refer to Table 1 for configuration options). The DRV8825 supports full step up to 1/32 microstepping.
9 Application and Implementation

9.1 Application Information

The DRV8825 is used in bipolar stepper control. The microstepping motor driver provides additional precision and a smooth rotation from the stepper motor. The following design is a common application of the DRV8825.

9.2 Typical Application

9.2.1 Design Requirements

Design Parameter	Reference	Example Value
Supply Voltage	VM	24 V
Motor Winding Resistance	RL	3.9 Ω
Motor Winding Inductance	IL	2.9 mH
Motor Full Step Angle	θstep	1.8°/step
Target Microstepping Level	nm	8 µsteps per step
Target Motor Speed	V	120 rpm
Target Full-Scale Current	IFS	1.25 A

9.2.2 Detailed Design Procedure

9.2.2.1 Stepper Motor Speed

The first step in configuring the DRV8825 requires the desired motor speed and microstepping level. If the target application requires a constant speed, then a square wave with frequency f_{step} must be applied to the STEP pin.

If the target motor startup speed is too high, the motor will not spin. Make sure that the motor can support the target speed or implement an acceleration profile to bring the motor up to speed.

For a desired motor speed (v), microstepping level (n_m), and motor full step angle (θ_{step}),

$$f_{\text{step}} (\mu \text{steps / sec ond}) = \frac{v \left(\frac{\text{rotations}}{\text{minute}}\right) \times 360 \left(\frac{\circ}{\text{rotation}}\right) \times n_{\text{m}} \left(\frac{\mu \text{steps}}{\text{step}}\right)}{60 \left(\frac{\text{sec onds}}{\text{minute}}\right) \times \theta_{\text{step}} \left(\frac{\circ}{\text{step}}\right)}$$
(2)

$$f_{\text{step}} (\mu \text{steps / sec ond}) = \frac{120 \left(\frac{\text{rotations}}{\text{minute}}\right) \times 360 \left(\frac{\circ}{\text{rotation}}\right) \times 8 \left(\frac{\mu \text{steps}}{\text{step}}\right)}{60 \left(\frac{\text{sec onds}}{\text{minute}}\right) \times 1.8 \left(\frac{\circ}{\text{step}}\right)}$$
(3)

 θ_{step} can be found in the stepper motor data sheet or written on the motor itself.

For the DRV8825, the microstepping level is set by the MODE pins and can be any of the settings in Table 1. Higher microstepping will mean a smoother motor motion and less audible noise, but will increase switching losses and require a higher f_{step} to achieve the same motor speed.

9.2.2.2 Current Regulation

In a stepper motor, the set full-scale current (I_{FS}) is the maximum current driven through either winding. This quantity depends on the xVREF analog voltage and the sense resistor value (R_{SENSE}). During stepping, I_{FS} defines the current chopping threshold (I_{TRIP}) for the maximum current step. The gain of DRV8825 is set for 5 V/V.

$$I_{FS}(A) = \frac{xVREF(V)}{A_v \times R_{SENSE}(\Omega)} = \frac{xVREF(V)}{5 \times R_{SENSE}(\Omega)}$$

To achieve I_{FS} = 1.25 A with R_{SENSE} of 0.2 Ω , xVREF should be 1.25 V.

9.2.2.3 Decay Modes

The DRV8825 supports three different decay modes: slow decay, fast decay, and mixed decay. The current through the motor windings is regulated using a fixed-frequency PWM scheme. This means that after any drive phase, when a motor winding current has hit the current chopping threshold (I_{TRIP}), the DRV8825 will place the winding in one of the three decay modes until the PWM cycle has expired. Afterward, a new drive phase starts.

The blanking time, t_{BLANK} , defines the minimum drive time for the current chopping. I_{TRIP} is ignored during t_{BLANK} , so the winding current may overshoot the trip level.

(4)

9.2.3 Application Curves

10 Power Supply Recommendations

The DRV8825 is designed to operate from an input voltage supply (VMx) range between 8.2 and 45 V. Two 0.1-µF ceramic capacitors rated for VMx must be placed as close as possible to the VMA and VMB pins respectively (one on each pin). In addition to the local decoupling caps, additional bulk capacitance is required and must be sized accordingly to the application requirements.

10.1 Bulk Capacitance

Bulk capacitance sizing is an important factor in motor drive system design. It is dependent on a variety of factors including:

- Type of power supply
- Acceptable supply voltage ripple
- Parasitic inductance in the power supply wiring
- Type of motor (brushed DC, brushless DC, stepper)
- Motor startup current
- Motor braking method

The inductance between the power supply and motor drive system will limit the rate current can change from the power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or dumps from the motor with a change in voltage. You should size the bulk capacitance to meet acceptable voltage ripple levels.

The data sheet generally provides a recommended value but system level testing is required to determine the appropriate sized bulk capacitor.

Figure 11. Setup of Motor Drive System With External Power Supply

10.2 Power Supply and Logic Sequencing

There is no specific sequence for powering-up the DRV8825. It is okay for digital input signals to be present before VMx is applied. After VMx is applied to the DRV8825, it begins operation based on the status of the control pins.

11 Layout

11.1 Layout Guidelines

The VMA and VMB pins should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of 0.1- μ F rated for VMx. This capacitor should be placed as close to the VMA and VMB pins as possible with a thick trace or ground plane connection to the device GND pin.

The VMA and VMB pins must be bypassed to ground using an appropriate bulk capacitor. This component may be an electrolytic and should be located close to the DRV8825.

A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. TI recommends a value of 0.01- μ F rated for VMx. Place this component as close to the pins as possible.

A low-ESR ceramic capacitor must be placed in between the VMA and VCP pins. TI recommends a value of 0.1- μ F rated for 16 V. Place this component as close to the pins as possible. Also, place a 1-M Ω resistor between VCP and VMA.

Bypass V3P3 to ground with a ceramic capacitor rated 6.3 V. Place this bypass capacitor as close to the pin as possible

11.2 Layout Example

11.3 Thermal Protection

The DRV8825 has thermal shutdown (TSD) as described above. If the die temperature exceeds approximately 150°C, the device will be disabled until the temperature drops to a safe level.

Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient heatsinking, or too high an ambient temperature.

11.3.1 Power Dissipation

Power dissipation in the DRV8825 is dominated by the power dissipated in the output FET resistance, or $R_{DS(ON)}$. Average power dissipation when running a stepper motor can be roughly estimated by Equation 5.

Thermal Protection (continued)

 $P_{TOT} = 4 \times R_{DS(ON)} \times \left(I_{OUT(RMS)}\right)^2$

(5)

where P_{TOT} is the total power dissipation, $R_{DS(ON)}$ is the resistance of each FET, and $I_{OUT(RMS)}$ is the RMS output current being applied to each winding. $I_{OUT(RMS)}$ is equal to the approximately 0.7x the full-scale output current setting. The factor of 4 comes from the fact that there are two motor windings, and at any instant two FETs are conducting winding current for each winding (one high-side and one low-side).

The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and heatsinking.

Note that $R_{DS(ON)}$ increases with temperature, so as the device heats, the power dissipation increases. This must be taken into consideration when sizing the heatsink.

11.3.2 Heatsinking

The PowerPAD[™] package uses an exposed pad to remove heat from the device. For proper operation, this pad must be thermally connected to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane, this can be accomplished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs without internal planes, copper area can be added on either side of the PCB to dissipate heat. If the copper area is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and bottom layers.

For details about how to design the PCB, refer to TI application report SLMA002, "PowerPAD[™] Thermally Enhanced Package" and TI application brief SLMA004, *PowerPAD[™] Made Easy*, available at www.ti.com.

In general, the more copper area that can be provided, the more power can be dissipated. It can be seen that the heatsink effectiveness increases rapidly to about 20 cm², then levels off somewhat for larger areas.

12 Device and Documentation Support

12.1 Trademarks

PowerPAD is a trademark of Texas Instruments.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

12-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DRV8825PWP	ACTIVE	HTSSOP	PWP	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	DRV8825	Samples
DRV8825PWPR	ACTIVE	HTSSOP	PWP	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	DRV8825	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "--" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. These the accuracy of such information. Efforts are underway to better integrate information from third parties. These the accuracy of such information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. The and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Addendum-Page 1

PACKAGE OPTION ADDENDUM

12-Jun-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Addendum-Page 2

12-Jun-2014

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All	dimensions	are	nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DRV8825PWPR	HTSSOP	PWP	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

12-Jun-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DRV8825PWPR	HTSSOP	PWP	28	2000	367.0	367.0	38.0

PWP (R-PDSO-G28)

PowerPAD[™] PLASTIC SMALL OUTLINE

NOTES: Α.

- All linear dimensions are in millimeters. Β. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad D. Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding
- recommended board layout. This document is available at www.ti.com http://www.ti.com. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. Ε.

E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

PowerPAD is a trademark of Texas Instruments

- This drawing is subject to change without notice. B.
- Customers should place a note on the circuit board fabrication drawing not to alter the center C.
- solder mask defined pad. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad D. Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets.
- E. For specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stenci
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconr	nectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated

Bilaga F

Datablad Kuggrem

PFEIFER INDUSTRIES, LLC. 2180 Corporate Lane, Suite 104 ~ Naperville, IL 60563-1639 USA Phone (630) 596-9000 Fax (630) 596-9002 E-mail: info@pfeiferindustries.com Web site: www.pfeiferindustries.com

2mm - PowerGrip GT2

	Inche	es (in)	Metric	: (mm)		Inche	es (in)	Metric	: (mm)
Number of Teeth	Pitch Diameter (PD)	Outside Diameter (O.D.)	Pitch Diameter (PD)	Outside Diameter (O.D.)	Number of Teeth	Pitch Diameter (PD)	Outside Diameter (O.D.)	Pitch Diameter (PD)	Outside Diameter (O.D.)
8 teeth					48 teeth	1.203"	1.183"	30.56mm	30.05mm
9 teeth					49 teeth	1.228"	1.208"	31.19mm	30.69mm
10 teeth					50 teeth	1.253"	1.233"	31.83mm	31.32mm
11 teeth					51 teeth	1.278"	1.258"	32.47mm	31.96mm
12 teeth	0.301"	0.281"	7.64mm	7.13mm	52 teeth	1.303"	1.283"	33.10mm	32.60mm
13 teeth	0.326"	0.306"	8.28mm	7.77mm	53 teeth	1.328"	1.308"	33.74mm	33.23mm
14 teeth	0.351"	0.331"	8.91mm	8.40mm	54 teeth	1.353"	1.333"	34.38mm	33.87mm
15 teeth	0.376"	0.356"	9.55mm	9.04mm	55 teeth	1.379"	1.359"	35.01mm	34.51mm
16 teeth	0.401"	0.381"	10.19mm	9.68mm	56 teeth	1.404"	1.384"	35.65mm	35.14mm
17 teeth	0.426"	0.406"	10.82mm	10.31mm	57 teeth	1.429"	1.409"	36.29mm	35.78mm
18 teeth	0.451"	0.431"	11.46mm	10.95mm	58 teeth	1.454"	1.434"	36.92mm	36.42mm
19 teeth	0.476"	0.456"	12.10mm	11.59mm	59 teeth	1.479"	1.459"	37.56mm	37.05mm
20 teeth	0.501"	0.481"	12.73mm	12.22mm	60 teeth	1.504"	1.484"	38.20mm	37.69mm
21 teeth	0.526"	0.506"	13.37mm	12.86mm	61 teeth	1.529"	1.509"	38.83mm	38.33mm
22 teeth	0.551"	0.531"	14.01mm	13.50mm	62 teeth	1.554"	1.534"	39.47mm	38.96mm
23 teeth	0.576"	0.556"	14.64mm	14.13mm	63 teeth	1.579"	1.559"	40.11mm	39.60mm
24 teeth	0.602"	0.582"	15.28mm	14.77mm	64 teeth	1.604"	1.584"	40.74mm	40.24mm
25 teeth	0.627"	0.607"	15.92mm	15.41mm	65 teeth	1.629"	1.609"	41.38mm	40.87mm
26 teeth	0.652"	0.632"	16.55mm	16.04mm	66 teeth	1.654"	1.634"	42.02mm	41.51mm
27 teeth	0.677"	0.657"	17.19mm	16.68mm	67 teeth	1.679"	1.659"	42.65mm	42.15mm
28 teeth	0.702"	0.682"	17.83mm	17.32mm	68 teeth	1.704"	1.684"	43.29mm	42.78mm
29 teeth	0.727"	0.707"	18.46mm	17.95mm	69 teeth	1.729"	1.709"	43.93mm	43.42mm
30 teeth	0.752"	0.732"	19.10mm	18.59mm	70 teeth	1.754"	1.734"	44.56mm	44.06mm
31 teeth	0.777"	0.757"	19.74mm	19.23mm	71 teeth	1.780"	1.760"	45.20mm	44.69mm
32 teeth	0.802"	0.782"	20.37mm	19.86mm	72 teeth	1.805"	1.785"	45.84mm	45.33mm
33 teeth	0.827"	0.807"	21.01mm	20.50mm	73 teeth	1.830"	1.810"	46.47mm	45.97mm
34 teeth	0.852"	0.832"	21.65mm	21.14mm	74 teeth	1.855"	1.835"	47.11mm	46.60mm
35 teeth	0.877"	0.857"	22.28mm	21.77mm	75 teeth	1.880"	1.860"	47.75mm	47.24mm
36 teeth	0.902"	0.882"	22.92mm	22.41mm	76 teeth	1.905"	1.885"	48.38mm	47.88mm
37 teeth	0.927"	0.907"	23.55mm	23.05mm	77 teeth	1.930"	1.910"	49.02mm	48.51mm
38 teeth	0.952"	0.932"	24.19mm	23.68mm	78 teeth	1.955"	1.935"	49.66mm	49.15mm
39 teeth	0.977"	0.957"	24.83mm	24.32mm	79 teeth	1.980"	1.960"	50.29mm	49.78mm
40 teeth	1.003"	0.983"	25.46mm	24.96mm	80 teeth	2.005"	1.985"	50.93mm	50.42mm
41 teeth	1.028"	1.008"	26.10mm	25.59mm	81 teeth	2.030"	2.010"	51.57mm	51.06mm
42 teeth	1.053"	1.033"	26.74mm	26.23mm	82 teeth	2.055"	2.035"	52.20mm	51.69mm
43 teeth	1.078"	1.058"	27.37mm	26.87mm	83 teeth	2.080"	2.060"	52.84mm	52.33mm
44 teeth	1.103"	1.083"	28.01mm	27.50mm	84 teeth	2.105"	2.085"	53.48mm	52.97mm
45 teeth	1.128"	1.108"	28.65mm	28.14mm	85 teeth	2.130"	2.110"	54.11mm	53.60mm
46 teeth	1.153"	1.133"	29.28mm	28.78mm	86 teeth	2.155"	2.135"	54.75mm	54.24mm
47 teeth	1.178"	1.158"	29.92mm	29.41mm	87 teeth	2.181"	2.161"	55.39mm	54.88mm

PFEIFER INDUSTRIES, LLC. 2180 Corporate Lane, Suite 104 ~ Naperville, IL 60563-1639 USA Phone (630) 596-9000 Fax (630) 596-9002 E-mail: info@pfeiferindustries.com Web site: www.pfeiferindustries.com

2mm - PowerGrip GT2

	Inche	es (in)	Metric	: (mm)		Inche	es (in)	Metric	(mm)
Number of Teeth	Pitch Diameter (PD)	Outside Diameter (O.D.)	Pitch Diameter (PD)	Outside Diameter (O.D.)	Number of Teeth	Pitch Diameter (PD)	Outside Diameter (O.D.)	Pitch Diameter (PD)	Outside Diameter (O.D.)
88 teeth	2.206"	2.186"	56.02mm	55.51mm	128 teeth	3.208"	3.188"	81.49mm	80.98mm
89 teeth	2.231"	2.211"	56.66mm	56.15mm	129 teeth	3.233"	3.213"	82.12mm	81.62mm
90 teeth	2.256"	2.236"	57.30mm	56.79mm	130 teeth	3.258"	3.238"	82.76mm	82.25mm
91 teeth	2.281"	2.261"	57.93mm	57.42mm	131 teeth	3.283"	3.263"	83.40mm	82.89mm
92 teeth	2.306"	2.286"	58.57mm	58.06mm	132 teeth	3.308"	3.288"	84.03mm	83.53mm
93 teeth	2.331"	2.311"	59.21mm	58.70mm	133 teeth	3.333"	3.313"	84.67mm	84.16mm
94 teeth	2.356"	2.336"	59.84mm	59.33mm	134 teeth	3.359"	3.339"	85.31mm	84.80mm
95 teeth	2.381"	2.361"	60.48mm	59.97mm	135 teeth	3.384"	3.364"	85.94mm	85.44mm
96 teeth	2.406"	2.386"	61.12mm	60.61mm	136 teeth	3.409"	3.389"	86.58mm	86.07mm
97 teeth	2.431"	2.411"	61.75mm	61.24mm	137 teeth	3.434"	3.414"	87.22mm	86.71mm
98 teeth	2.456"	2.436"	62.39mm	61.88mm	138 teeth	3.459"	3.439"	87.85mm	87.35mm
99 teeth	2.481"	2.461"	63.03mm	62.52mm	139 teeth	3.484"	3.464"	88.49mm	87.98mm
100 teeth	2.506"	2.486"	63.66mm	63.15mm	140 teeth	3.509"	3.489"	89.13mm	88.62mm
101 teeth	2.531"	2.511"	64.30mm	63.79mm	141 teeth	3.534"	3.514"	89.76mm	89.26mm
102 teeth	2.557"	2.537"	64.94mm	64.43mm	142 teeth	3.559"	3.539"	90.40mm	89.89mm
103 teeth	2.582"	2.562"	65.57mm	65.06mm	143 teeth	3.584"	3.564"	91.04mm	90.53mm
104 teeth	2.607"	2.587"	66.21mm	65.70mm	144 teeth	3.609"	3.589"	91.67mm	91.17mm
105 teeth	2.632"	2.612"	66.85mm	66.34mm	145 teeth	3.634"	3.614"	92.31mm	91.80mm
106 teeth	2.657"	2.637"	67.48mm	66.97mm	146 teeth	3.659"	3.639"	92.95mm	92.44mm
107 teeth	2.682"	2.662"	68.12mm	67.61mm	147 teeth	3.684"	3.664"	93.58mm	93.08mm
108 teeth	2.707"	2.687"	68.75mm	68.25mm	148 teeth	3.709"	3.689"	94.22mm	93.71mm
109 teeth	2.732"	2.712"	69.39mm	68.88mm	149 teeth	3.735"	3.715"	94.86mm	94.35mm
110 teeth	2.757"	2.737"	70.03mm	69.52mm	150 teeth	3.760"	3.740"	95.49mm	94.98mm
111 teeth	2.782"	2.762"	70.66mm	70.16mm	151 teeth	3.785"	3.765"	96.13mm	95.62mm
112 teeth	2.807"	2.787"	71.30mm	70.79mm	152 teeth	3.810"	3.790"	96.77mm	96.26mm
113 teeth	2.832"	2.812"	71.94mm	71.43mm	153 teeth	3.835"	3.815"	97.40mm	96.89mm
114 teeth	2.857"	2.837"	72.57mm	72.07mm	154 teeth	3.860"	3.840"	98.04mm	97.53mm
115 teeth	2.882"	2.862"	73.21mm	72.70mm	155 teeth	3.885"	3.865"	98.68mm	98.17mm
116 teeth	2.907"	2.887"	73.85mm	73.34mm	156 teeth	3.910"	3.890"	99.31mm	98.80mm
117 teeth	2.932"	2.912"	74.48mm	73.98mm	157 teeth	3.935"	3.915"	99.95mm	99.44mm
118 teeth	2.958"	2.938"	75.12mm	74.61mm	158 teeth	3.960"	3.940"	100.59mm	100.08mm
119 teeth	2.983"	2.963"	75.76mm	75.25mm	159 teeth	3.985"	3.965"	101.22mm	100.71mm
120 teeth	3.008"	2.988"	76.39mm	75.89mm	160 teeth	4.010"	3.990"	101.86mm	101.35mm
121 teeth	3.033"	3.013"	77.03mm	76.52mm	161 teeth				
122 teeth	3.058"	3.038"	77.67mm	77.16mm	162 teeth				
123 teeth	3.083"	3.063"	78.30mm	77.80mm	163 teeth				
124 teeth	3.108"	3.088"	78.94mm	78.43mm	164 teeth				
125 teeth	3.133"	3.113"	79.58mm	79.07mm	165 teeth				
126 teeth	3.158"	3.138"	80.21mm	79.71mm	166 teeth				
127 teeth	3.183"	3.163"	80.85mm	80.34mm	167 teeth				

PFEIFER INDUSTRIES, LLC. 2180 Corporate Lane, Suite 104 ~ Naperville, IL 60563-1639 USA Phone (630) 596-9000 Fax (630) 596-9002 E-mail: info@pfeiferindustries.com Web site: www.pfeiferindustries.com

2mm - PowerGrip GT2

	Inche	Inches (in) Met		: (mm)		Inche	es (in)	Metric (mm)	
Number of Teeth	Pitch Diameter (PD)	Outside Diameter (O.D.)	Pitch Diameter (PD)	Outside Diameter (O.D.)	Number of Teeth	Pitch Diameter (PD)	Outside Diameter (O.D.)	Pitch Diameter (PD)	Outside Diameter (O.D.)
168 teeth					208 teeth				
169 teeth					209 teeth				
170 teeth					210 teeth				
171 teeth					211 teeth				
172 teeth					212 teeth				
173 teeth					213 teeth				
174 teeth					214 teeth				
175 teeth					215 teeth				
176 teeth					216 teeth				
177 teeth					217 teeth				
178 teeth					218 teeth				
179 teeth					219 teeth				
180 teeth					220 teeth				
181 teeth					221 teeth				
182 teeth					222 teeth				
183 teeth					223 teeth				
184 teeth					224 teeth				
185 teeth					225 teeth				
186 teeth					226 teeth				
187 teeth					227 teeth				
188 teeth					228 teeth				
189 teeth					229 teeth				
190 teeth					230 teeth				
191 teeth					231 teeth				
192 teeth					232 teeth				
193 teeth					233 teeth				
194 teeth					234 teeth				
195 teeth					235 teeth				
196 teeth					236 teeth				
197 teeth					237 teeth				
198 teeth					238 teeth				
199 teeth					239 teeth				
200 teeth					240 teeth				
201 teeth					241 teeth				
202 teeth					242 teeth				
203 teeth					243 teeth				
204 teeth					244 teeth				
205 teeth					245 teeth				
206 teeth					246 teeth				
207 teeth					247 teeth				

Bilaga G

Datablad DC/DC omvandlare

5A 180KHz 36V Buck DC to DC Converter

Datasheet

XL4015

Features

- Wide 8V to 36V Input Voltage Range
- Output Adjustable from 1.25V to 32V
- Maximum Duty Cycle 100%
- Minimum Drop Out 0.3V
- Fixed 180KHz Switching Frequency
- 5A Constant Output Current Capability
- Internal Optimize Power MOSFET
- High efficiency up to 96%
- Excellent line and load regulation
- Built in thermal shutdown function
- Built in current limit function
- Built in output short protection function
- Available in TO263-5L package

Applications

- LCD Monitor and LCD TV
- Portable instrument power supply
- Telecom / Networking Equipment

General Description

The XL4015 is a 180 KHz fixed frequency PWM buck (step-down) DC/DC converter, capable of driving a 5A load with high efficiency, low ripple and excellent line and load regulation. Requiring a minimum number of external components, the regulator is simple to use and include internal frequency compensation and a fixed-frequency oscillator.

The PWM control circuit is able to adjust the duty ratio linearly from 0 to 100%. An over current protection function is built inside. When short protection function happens, the operation frequency will be reduced from 180KHz to 48KHz. An internal compensation block is built in to minimize external component count.

TO263-5L Figure1. Package Type of XL4015 **XLSEMI**

Datasheet

5A 18OKHz 36V Buck DC to DC Converter

XL4015

Pin Configurations

Figure2. Pin Configuration of XL4015 (Top View)

Table 1 Pin Description

Pin Number	Pin Name	Description
1	GND	Ground Pin. Care must be taken in layout. This pin should be placed outside of the Schottky Diode to output capacitor ground path to prevent switching current spikes from inducing voltage noise into XL4015.
2	FB	Feedback Pin (FB). Through an external resistor divider network, FB senses the output voltage and regulates it. The feedback threshold voltage is 1.25V.
3	SW	Power Switch Output Pin (SW). SW is the switch node that supplies power to the output.
4	VC	Internal Voltage Regulator Bypass Capacity. In typical system application, The VC pin connect a 1uf capacity to VIN.
5	VIN	Supply Voltage Input Pin. XL4015 operates from a 8V to 36V DC voltage. Bypass Vin to GND with a suitably large capacitor to eliminate noise on the input.

XLSEMI

Datasheet

XL4015

5A 180KHz 36V Buck DC to DC Converter

Function Block

Figure3. Function Block Diagram of XL4015

Typical Application Circuit

Figure4. XL4015 Typical Application Circuit (VIN=8V~36V, VOUT=5V/5A)

5A 180KHz 36V Buck DC to DC Converter

Ordering Information

Order Information	Marking ID	Package Type	Packing Type Supplied As
XL4015E1	XL4015E1	TO263-5L	800 Units on Tape & Reel

XLSEMI Pb-free products, as designated with "E1" suffix in the par number, are RoHS compliant.

Absolute Maximum Ratings (Note1)

Parameter	Symbol	Value	Unit
Input Voltage	Vin	-0.3 to 40	V
Feedback Pin Voltage	V_{FB}	-0.3 to Vin	V
Output Switch Pin Voltage	V _{Output}	-0.3 to Vin	V
Power Dissipation	P _D	Internally limited	mW
Thermal Resistance (TO263-5L)	D	30	°C/W
(Junction to Ambient, No Heatsink, Free Air)	K _{JA}	50	C/ W
Operating Junction Temperature	T_J	-40 to 125	°C
Storage Temperature	T _{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	T _{LEAD}	260	°C
ESD (HBM)		>2000	V

Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

XL4015

5A 180KHz 36V Buck DC to DC Converter

XL4015 Electrical Characteristics

 $T_a = 25$ °C; unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
System parameters test circuit figure4							
VFB	Feedback Voltage	Vin = 8V to 40V, Vout=5V Iload=0.5A to 5A	1.225	1.25	1.275	V	
Efficiency	ŋ	Vin=12V ,Vout=5V Iout=5A	-	87	-	%	
Efficiency	ŋ	Vin=24V ,Vout=12V Iout=4A	-	93	-	%	

Electrical Characteristics (DC Parameters)

Vin = 12V, GND=0V, Vin & GND parallel connect a 220uf/50V capacitor; Iout=500mA, $T_a = 25^{\circ}$ C; the others floating unless otherwise specified.

Parameters	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input operation voltage	Vin		8		36	V
Quiescent Supply Current	Iq	$V_{FB} = Vin$		2.1	5	mA
Oscillator Frequency	Fosc		144	180	216	KHz
Output Short Frequency	Fosp			48		KHz
Switch Current Limit	IL	$V_{FB} = 0$		7		А
Max. Duty Cycle	D _{MAX}	V _{FB} =0V		100		%
Output Power PMOS	Rdson	V _{FB} =0V, Vin=12V, I _{SW} =5A		60	80	moh m

XL4015

5A 180KHz 36V Buck DC to DC Converter

Typical System Application (VOUT=5V/5A)

Figure 5. XL4015 System Parameters Test Circuit (VIN=8V~36V, VOUT=5V/5A)

Efficiency VS Output current

Figure6. XL4015 System Efficiency Curve

5A 180KHz 36V Buck DC to DC Converter

XL4015

Typical System Application (VOUT=12V/4A)

Figure 7. XL4015 System Parameters Test Circuit (VIN=15V~36V, VOUT=12V/4A)

Efficiency VS Output current

Figure8. XL4015 System Efficiency Curve

5A 180KHz 36V Buck DC to DC Converter

XL4015

Typical System Application (TTL shutdown function)

Logic level signals shutdown function can be used in typical system application with external components. When the TTL high voltage above 3.3V(referenced to ground, lower than VIN), the converter will shutdown, input current less than 5mA; when the TTL Low voltage below 0.8V(referenced to ground), the converter will turn on.

Figure 9. XL4015 Typical Application Circuit

5A 18OKHz 36V Buck DC to DC Converter

Package Information TO263-5L

10263-5L

XLSEMI

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
А	4.06	4.83	0.160	0.190	
В	0.71	1.02	0.030	0.040	
С	0.36	0.64	0.014	0.025	
C2	1.14	1.40	0.045	0.055	
D	8.39	9.65	0.330	0.380	
Е	9.78	10.54	0.385	0.415	
e	1.55	1.85	0.061	0.073	
F	6.36	7.36	0.250	0.290	
L	13.95	15.37	0.549	0.605	
L2	1.12	1.42	0.044	0.056	

5A 180KHz 36V Buck DC to DC Converter

Important Notice

XLSEMI reserve the right to make modifications, enhancements, improvements, corrections or other changes without notice at any time. XLSEMI does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. XLSEMI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using XLSEMI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. XLSEMI warrants performance of its products to the specifications applicable at the time of sale, in accordance with the warranty in XLSEMI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent XLSEMI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

For the latest product information, go to www.xlsemi.com.

XL4015

BILAGA G. DATABLAD DC/DC OMVANDLARE

TRITA TRITA-ITM-EX 2021:22

www.kth.se