SMART - Simulation and Modeling of Automated Road Transport

CTR-day 2021

Ivan Postigo (LiU)
David Leffler (KTH)
Upcoming Mobility
Automated Vehicles

Traffic performance
• Changes in travel behavior
• Interaction between automated and non-automated vehicles
• Smaller vehicles, increased heterogeneity

Public Transport
• MaaS
• Smaller public transport vehicles
• Demand-driven services
• New transport solutions

Urban design / City planning
• Redistribution of space
• Parking spaces

Technology for integration of multimodal mobility
• Service platforms
• Cloud-based infrastructure
The purpose of the SMART project

- Identify the limitations of current traffic models to include automated vehicles
- Further develop current traffic models to enable analysis of traffic systems including automated vehicles
- Evaluate the effects on traffic systems due to vehicle automation for two application cases
- Contribute to long-term knowledge building
SMART consists of two doctoral projects

Public Transport

Traffic simulation of fleets with automated vehicles

- David Leffler
- Wilco Burghout
- Erik Jenelius
- Oded Cats

- New public transport solutions
 - Real-time control strategies
 - Automated vehicles in flexible feed traffic
- Modeling and effects of multimodal public transport systems
 - Effects of competing versus cooperating fixed and flexible public transport systems
 - Modeling of traveler behavior

Microscopic traffic simulation of automated vehicles

- Ivan Postigo
- Johan Olstam
- Clas Rydergren

- Traffic effects of mixed traffic
 - Transition to automated roads
 - Heterogeneity of automated vehicles
- Modeling of automated driving
 - Differences in perception and reaction
 - Compliance to real-time control strategies
 - Effects of digital infrastructure
Microscopic Modeling of Automated Vehicles

Research questions:

• How to model automated driving?

• How will the interaction between conventional and automated vehicles affect traffic systems?
Background

- Traffic simulation is an important tool used for traffic analysis.
- Microscopic traffic simulation models describe the movements and interactions of all individual vehicles or travelers.
- Typical use of microsimulations is to investigate how changes in the infrastructure impact the traffic flow.
- With the introduction of automated vehicles, there is a change on the vehicle population.
- Several studies have used microscopic traffic simulation to investigate the impact caused by automated vehicles.
Aspects to consider for modeling automated driving

Automated Driving Context
- Authorities
- User acceptance / User preferences
- Vehicle System
 - Sensor-based perception
 - Connectivity
 - Physical / Digital Infrastructure

Operational and safety constraints

Automated driving

Fallback to conventional driving
Effects on Traffic Performance due to heterogeneity of Automated Vehicles

A first study was done based on microscopic traffic simulations:

- Over time AVs will become more advanced and improve their driving capabilities and,
- Different generations of AVs will coexist on the roads → AV heterogeneity.
Modeling Perception for Automated Driving

Automated Driving Context

- Sensor-based perception
- Connectivity
- Physical / Digital Infrastructure

- Which vehicles/objects can be perceived?
- What type of information?
 - Position
 - Speed
 - Intentions (route, desired lanes, desired speed)
 - ...
- When is the information obtained?
 - Frequency
 - Latency
- How is the information obtained/what are the sensing capabilities?
- Focus on the developing a generic model of perception including quality, range and latency.
- Capture in a consistent way the key differences between human perception, sensor based perception and connectivity based perception.
Automated vehicles in public transit

- Automated transit services integrated with traditional public transit services
- Limited real-life data and experience of such systems

Our focus:
- Real-time control of fixed transit
- Flexible feeder services

Source: UITP (2017)
BusMezzo

- **Transit simulation** model with extensions

- **Agent-based**, models individual passenger’s route and mode choices
 - within-day (short-term adaptation)
 - day-to-day (learned from experiences)

- Extended with functionalities to model **demand-responsive** services and alternative assignment strategies
On-demand feeder to fixed case study

Case description:
• Simulate replacement of branches with shared on-demand vehicles
• Passenger and operator costs for collection direction (on-demand branch to fixed corridor)

Proposed contribution:
• Demonstrate flexible transit simulation framework to evaluate a ‘real-life’ scenario
• Conceptualize and experiment with evaluation metrics for collaborative on-demand feeder to fixed transit systems

Based off of the paper:

Stockholm bus lines 176 & 177
Branches to/from Solbacka/Skärvik (Ekerö) that merge into a common corridor toward Mörby C through Solna
Scenario variations

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Fixed fleet</th>
<th>DRT fleet</th>
<th>DRT capacity</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>38</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26x20 maxR</td>
<td>28</td>
<td>26</td>
<td>20</td>
<td>#Requests</td>
</tr>
<tr>
<td>50x20 maxR</td>
<td>28</td>
<td>50</td>
<td>20</td>
<td>#Requests</td>
</tr>
<tr>
<td>100x10 maxR</td>
<td>28</td>
<td>100</td>
<td>10</td>
<td>#Requests</td>
</tr>
<tr>
<td>26x20 cumWT</td>
<td>28</td>
<td>26</td>
<td>20</td>
<td>CumulativeWait</td>
</tr>
<tr>
<td>50x20 cumWT</td>
<td>28</td>
<td>50</td>
<td>20</td>
<td>CumulativeWait</td>
</tr>
<tr>
<td>100x10 cumWT</td>
<td>28</td>
<td>100</td>
<td>10</td>
<td>CumulativeWait</td>
</tr>
<tr>
<td>26x20 maxR-rb</td>
<td>28</td>
<td>50</td>
<td>20</td>
<td>#Requests+Rebalancing</td>
</tr>
<tr>
<td>50x20 maxR-rb</td>
<td>28</td>
<td>50</td>
<td>20</td>
<td>#Requests+Rebalancing</td>
</tr>
<tr>
<td>100x10 maxR-rb</td>
<td>28</td>
<td>100</td>
<td>10</td>
<td>#Requests+Rebalancing</td>
</tr>
<tr>
<td>26x20 cumWT-rb</td>
<td>28</td>
<td>26</td>
<td>20</td>
<td>CumulativeWait+Rebalancing</td>
</tr>
<tr>
<td>50x20 cumWT-rb</td>
<td>28</td>
<td>50</td>
<td>20</td>
<td>CumulativeWait+Rebalancing</td>
</tr>
<tr>
<td>100x10 cumWT-rb</td>
<td>28</td>
<td>100</td>
<td>10</td>
<td>CumulativeWait+Rebalancing</td>
</tr>
</tbody>
</table>

Measured effects:
- Passenger level-of-service per OD category
 - Branch-to-branch, Branch-to-corridor, Corridor-to-corridor
- VKT, Fleet utilization
Main takeaways

- **Shortening and simplifying** the **fixed** service while maintaining the same frequency **improves LoS** for travelers on the **corridor**
- The effects of **rebalancing** are **positive for the largest fleet** of smaller vehicles, however can also have **negative effects for smaller fleets** (in this case mainly for transferring travelers)
- **Median waiting times improve** for all DRT scenarios, however it is difficult to compete with the fixed service without transfers in terms of **reliability and equity of waiting times**
Future work

- Work potentially benefits operators, planners, policy-makers: experiment with different conditions, to improve planning these types of services prior to implementation
- Next steps are to further integrate the flexible transit framework with the day-to-day learning framework of BusMezzo

Modeling traveler behavior for multimodal trips:
- Walking
- Fixed transit
- Flexible transit
Ivan Postigo – ivan.postigo@liu.se

David Leffler – david.leffler@abe.kth.se