Prof. Dr.-Ing. Georg Kampmann Introduction to Balanced Observation

Basic ideas of using Balancing factors within linear regression analysis

Consider the adjustment of indirect observations
Ax=1+v, D() =c?1I (1.1)
where (n denotes the number of observations and u the number of parameters):

A (n,u) = matrix of coefficients with rk A = u

x (u,1) = vector of “unknown” parameters
l (n,1) =vector of (reduced) observations
v (n,1) = vector of corrections

D(1)(n, n) = variance covariance matrix of observations a priori

o2 = reference variance

I (n,n) = unit matrix

Consider matrix C(n,u), that transforms the original observations into the adjusted
observations (method of least squares)

T=Cl=A(ATA) 1471 (1.2)

The matrix C is the well-known “extraordinary unit matrix”,
because foru = n with rkA = u:

C=AATA)1A" =1 (1.3)
No redundancy (n = u) does not cause any corrections. Important facts on C:
rkC =trC=u and 0<C; <1. (1.4)
The diagonal elements of R = I — C are called “observation redundancies”, where
rkR =trR=n—-—u and 0 < R; <1.
Necessary restrictions of the matrix A for the discussion:

a) 0< RL'L' <1
b) No “latent” restrictions

and: u+ 1 =n (just one redundant observation)

Then
rkC =n—1=u (2.1)
and corresponding
rk(I-C) =n-u=1 (2.2)
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Fact: Every symmetric matrix D(n,n) with rk D = 1 can be formulated as the
dyadic product of a vector with itself:

D=I-C=aa’
and from this
C=I-aa’ (2.3)

Consider all the diagonal elements of C should hold the same numerical value, then

u n-—-1 1
Cii:_: =1——
n n n

because the sum of the diagonal elements has to equal the number u of columns of
A from tr C = u.

. . . u L
If all diagonal elements of C contain the same numerical value - the matrix is called

to be balanced (in relationship to mechanical applications) C = Cp.

The elements of the (1, 1) sized vector a (remembertoreferto Cy = I — a a™) have
to become:

a;’? =% and a; = i\/iﬁ
Hence the matrix Cz holds certain properties:
a) Diagonal elements are equally sized:
(Cpli=1 —%
b) all non-diagonal elements are (absolutely) equally sized:

1
|(Cp)ii|l ==
n

c) all non-diagonal elements of Cy are (absolutely) smaller than the diagonal
elements:
(Cp)ij < (Cp)y;

d) for large values of n the balanced matrix Cz approximates the unit matrix I:

CB_)I
L1 g1 41
n n n
1 1 1
+- 1--= + -
Cs = Chalanced = n n n
f1o41 g1
n n n
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From this follows: If n =u + 1 becomes large for n — oo the observation
redundancies become very small, because the total degree of freedom of the

adjustment remains 1.

The matrix of observation redundancies R = I — Cg has to become a zero matrix
0(n,n). So, the corresponding matrix Cg has to become a unit matrix I(n,n).

Particularly the non-diagonal elements of € have to become zero.
This fact is not necessarily true for any choice of the vector a(n, 1):

Example: From € = I —a a’ we choose the elements of @ such that
n

r(—-C)=n—-u=1= ) af

i=1
Hence 0 < |a;| < 1, however not all a; — 0 for n — 0. Choose for example

— 1- — — — — 1
I PR A FTCT=E))

This demonstrates the fact, that even for n — oo the matrix € does not necessarily
approximate the unit matrix I.

Consider a numerical example of a matrix A, that ensures equal diagonal elements in
C=A(A"TA)14";

1 1 L 2 1 -1
A=(2 4], C= 3 1 2 1]
1 3 -1 1 2
These ideal properties of Cp usually have to be achieved introducing a diagonal

matrix of positive weights P . The diagonal elements are named “balancing factors”.

Then
2 - 1 u
(Cp)ii = (P*A(ATP,A)TATP™);; = z.

For the computation of these “balancing factors” the formulation of the “adjustment of
conditioned observations” may be introduced.

The introduction of the “balancing factors” P, has to be interpreted in the following
sense: Starting from the numerical formulation

Ax=1+v, D) =0%1 (1.1)
it is replaced by
Ax=1+v, D)) =c?P;"! (2.4)

in order to ensure the ideal properties of the matrix C.
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So the initial D(I) = a?I is numerically replaced by the matrix of balancing factors
2.4)D(l) = o2 PG_1 to achieve the numerical model (1.1)

What happens to the adjustment of indirect observations if balancing factors
are introduced?

Using the well know transformation of the observations [ and the design matrix A
lB = PGI/2 I und AB = PGI/2 A (25)

the adjusted observations within (2.4) can be obtained by

—~ -1
lp = Ap (ABTAB) ABTlB
or analogous
Iz =P;*A(ATP,A) AP, "P;* 1

If the matrix
P;*A(A"P,A)7 AP "

becomes the unit matrix I forn =u+ 1 and n — oo (see 1.3), itis obtained

and hence
I =1

This is the basic target for large n from A(ATA) 14T — I.

Summary: For u + 1 = n itis demonstrated, that introducing a diagonal matrix of
positive weights P ensures equal influence (in terms of the matrix C) of
all observations to the adjustment result of least squares adjustment.

In general, this fact is not provided when introducing the matrix I as the
matrix of “uncorrelated equal weighted observations”.

Computation of balancing factors for (u+ 1 =n)

To compute “balancing factors” the adjustment of indirect observations has to be
transformed into a conditioned adjustment (adjustment of conditions only).

It will be shown, that balancing factors are a function of the coefficient matrix A of the
adjustment of indirect observations.

417



Prof. Dr.-Ing. Georg Kampmann Introduction to Balanced Observation

Consider a numerical example:
11 1 % V1
A=12;l=2;x=(x);v= vy .
1 8 4 2 V3
This data can be written in matrix notation as
Ax=1l+v & —-Iv+Ax=1

with unit matrix I(n,n). The corresponding table is:

L1 U3 U3 X1 X2 ;
-1 0 0 1 1 1
0 -1 0 1 2 2
0 0 -1 1 8 4
Let:
Ax =1+, D) =021
or:
—Iv+Ax =1, D) =021
The second form may be subdivided (from the “tableau”) into
_IE v+ AEx == lE (31)
_IR v+ ARx == lR (32)

The matrix Ag has to be a regular matrix to be inverted.

With u = number of parameters x and n = number of observations [,
the corresponding matrix will have these sizes:

AE(ul u)) AR(n —Uu, u), lE(u, 1)1 lR(n —u, 1)) IE(u, n)) IR(n —u, n), x(u, 1)

For the example the reduced matrices are:
_(—1 0 0y, , _ _
~I=(y _; o) ~lk=0 0 -1
(1 1y, ; _(1). _ 1=
Ag = (1 2): lg = (2), Ag=(1 8); lr=(4)

From equation (3.1) follows:
AEx = lE + IE D,
hence:
x = Ag! (g + I v) (3.3)
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Equation (3.3) introduced to (3.2) yields:

—IRv+ARx= lR

& —IR‘U‘l'AR(AEl (lE+IEV)):lR

o —Ix v+ ARAzY 1y + ARAg I v = Iy

& (ARAgllE—IR) v=lR—ARAgllE

@ Apeq V= lyed (3.4)
With Apea(n —u,n) = ARAg I — I (3.5)
and lyea(n —u,1) = Iy — ARAg 1l (3.6)

The index peq denotes the transformed matrices of the adjustment of conditioned
observations.

Now consider the adjustment of conditioned observations following the formulation:
Apeq = B; lLyeq=—w; Bv+w=o0
It is well known [ WOLF 1994 ] that:
B(l+v)+c=0 or Bv+w=o0, with w=Bl+c

Introducing a diagonal matrix of weights for the observations the equations for the
determination of the parameters are taken from [ WOLF 1994, pp 46 |:

v=—-P'B"(BP'B")lw;
Qux = (BP'BT)71;
V= —P_lBTQkk (B l+ C)
and the variances of the adjusted observations become:
(@Q=P'—P'B"Q;BP".

This includes the well-known “ANSERMET-CHECK”: the sum of the diagonal
elements of the matrix

D=I-P'BTQ,B

equals the number of observations minus the number of condition equations.
We compute:

B = AgAzI; — Iy and —w = Iy — ARA;l1;

a_(2 -1 _
ait=(_5 T1): Ardills=(-6 +7 0);

B=AgAg' g —Ig=(—6 +7 -1); lg—Agdz'l; = (-4) = —-w
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In order to check the numerical computations, the equation Bl = w can be used,
introducing the observation vector I from the adjustment of indirect observations.

+1
Bl=(-6 +7 -1) <+2>:(+4)=w
+4

From the matrix B the balancing factors are easily obtained by:

(Pg)i = (By;)? (3.7)

This is because: Introducing these values to the adjustment of conditioned
observations the (n,n) size matrix

D=I-P'BTQ,.B

obtains equal sized numerical values on is diagonal.

Summary: The above mathematical derivation for a single redundant observation
demonstrates the properties of “balanced observations” and their
computation.

It is shown, that the projection matrix € of the method of least squares
does not suffer from smearing effects any more.

Because the effect of balanced observations is target for the adjustment
it is stated to introduce “balanced observations” to achieve equal weighted
observations.

This indicates an extended formulation of the adjustment model
within the method of least squares.
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