Safety Built Right in:

Exploring the occupational health and safety potential of BIMbased platforms throughout the building life cycle

Catherine Trask & Madeleine Hoeft

As Part of a Bigger Project

An Introduction by Principal Investigator Jörgen Eklund

Presentation Authors

Madeleine Hoeft

Led this work in her role as Research Engineer @ KTH Department of Real Estate and Construction Management

https://www.linkedin.com/in/madeleinehoeft/

Catherine Trask

Co-author & project methodology Associate Professor at KTH Division of Ergonomics <u>ctrask@kth.se</u>

Topics

- Background & Study Aims
- Approach and Methods
- Published Research- what is possible?
- Current Practice and how to move towards possibilities
- Principles for moving forward

The path to today...

- Autumn 2020: had a meeting to discuss the study scope and goals
- Autumn and winter: Conducted a review of published literature
- Spring: workshops with industry practitioners from with experience from different life cycle stages
- Summer: analyzed and synthesized data, developed conclusions, wrote report
- August 2021: Submitted a research paper manuscript

Project Objectives



- 1. What are the potentials for lifecycle OHS management with a BIMbased digital platform, as described by the peer-reviewed scientific literature?
- 2. What characterizes current BIM-based OHS practices in a Swedish context?

Approach & Methods

Mixed methods: 2 approaches

Literature Review

We wanted research papers with:

- Reports of application of BIM with safety as a primary or secondary benefit
- Actual testing of methods or development of methods
- Applications were permanent buildings, excluded infrastructure (roads, bridges, dams)
- Any stage of life cycle
- Any methodology

Data Extraction

Category	Description of Extracted Information
Basic study information	- Country of study
	- Type of building
Solution characteristics	- Data sources
	- BIM applications
	- Linked technologies
	 Type of hazard addressed
	- Type of solution
Stakeholder integration	- Responsibilities for solution
	- Beneficiaries of solution
Lifecycle integration	- Life cycle stages
	 Links between stages
Impact and adoption	- Facilitating factors for adoption
	- Barriers/weaknesses of solution

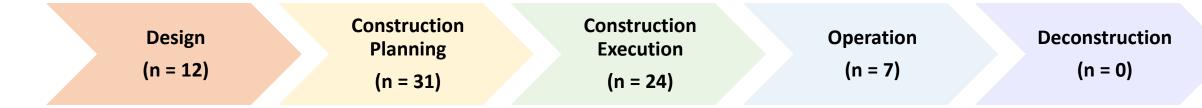
Focus Groups

- A series of 2-hour online workshops with industry practitioners:
 - Architects
 - Contractors and sub-contractors
 - Developers
 - Health and Safety Managers
 - 67% men, 33% women
- Supplementay interviews

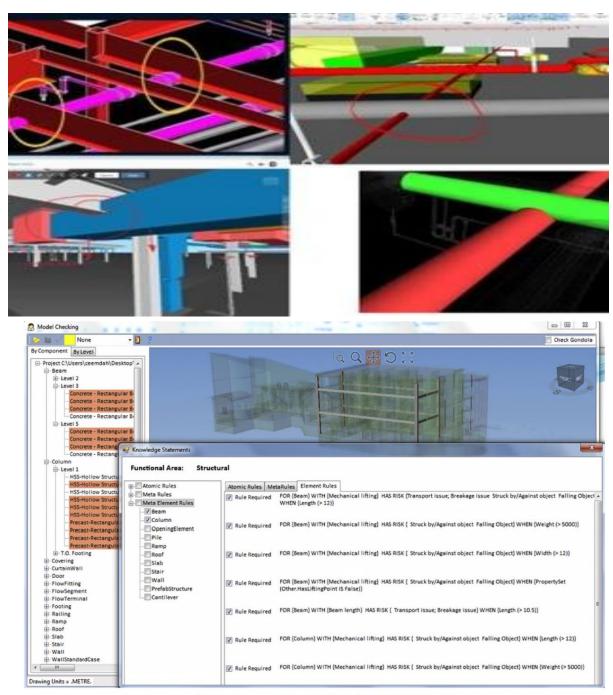
Focus Groups

Question Topics

- 1. Please describe your use cases for BIM to enhance health and safety. What actors were involved and what were the main information sources?
- 2. Which factors supported the implementation of the use cases?
- 3. What are the main challenges to implementing BIM for safety benefits?
- 4. How could these barriers be overcome?
- 5. How (else) could BIM & digital twins be used for safety in future applications?

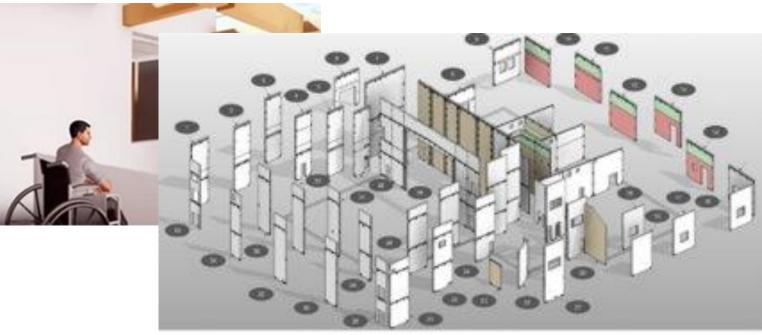

Results

Use Cases: How can BIM Contribute to Safety?



What lifecycle stages were represented in published research?

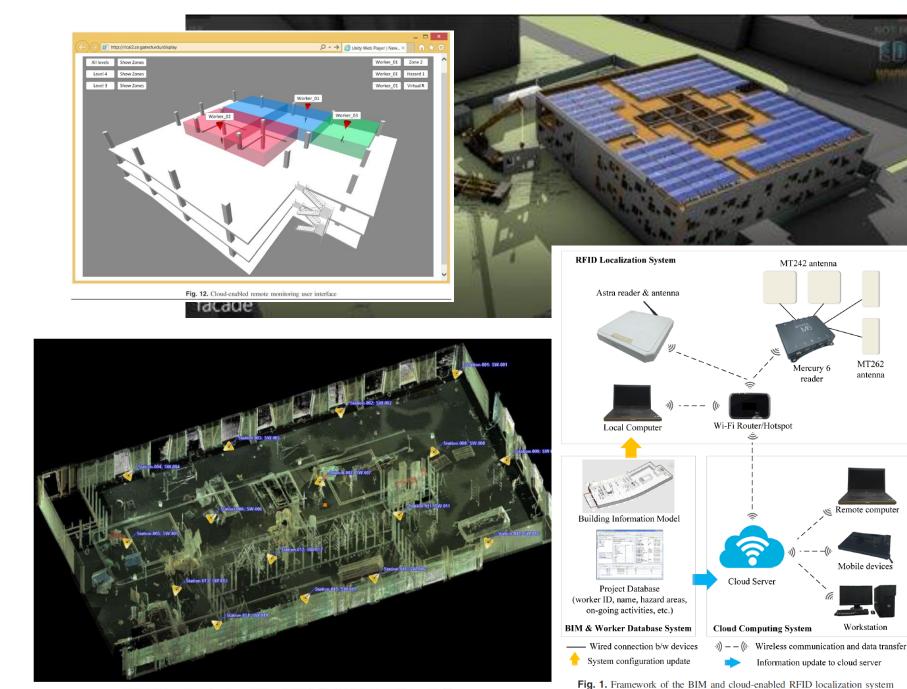
Design


- "Design for Safety"
- "Prevention through Design"
- Design optimizations
- Identification of clashes & spatial conflicts
- Knowledge library for safety review, 'rule checking'

Design

- "Design for Safety"
- "Prevention through Design"
- Design optimizations
- Occupant accessibility
- Design for manufacturing & industrial construction (off-site)

Kit of parts of tilt-up panel by BIM platform.


Planning & Construction

- Workspace visualizations
- Safety training
- Automated scaffolding planning
- Pre-installed temporary support

Planning & Construction

- 4D site layout simulation
- Fire safety equipment planning
- Detection of • unsafe behaviour & intrusions
- Use of on-site robotics

MT242 antenna

Mercury 6

MT262

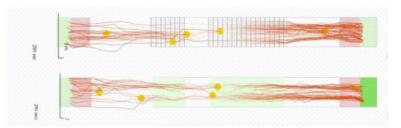
antenna

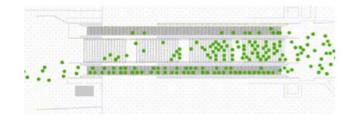
Remote compute

Mobile devices

Workstation

Fig. 4. Three-dimensional scan of Zone 2 robotically drilled, Level 02 House of Archives.


Operation & Maintenance


- Predictive maintenance
- Documentation & manuals
- Augmented Reality
- Remote control/ use of robotics
- Occupant/staff health (e.g., distancing)
- Emergency evacuation simulations

Modeled stairs vs. zigzag running on deceleration planes


Simulation of walking behaviour on fixed staircases and escalators

Demolition & Renovation

No use cases found in published research

Within the published research literature:

- 1. What **hazards** are targetted?
- 2. What kind of **solutions** does BIM contribute to?

Hazards	Falling (n = 4) Caught-In/Between (1) Struck-By (2) Intrusion/Near-Miss (0) Health Damages (2) Fires/Explosions (3) Not Specified (4)	Falling (n = 11) Caught-In/Between (5) Struck-By (3) Intrusion/Near-Miss (3) Health Damages (1) Fires/Explosions (1) Not Specified (14)	Falling (n = 5) Caught-In/Between (1) Struck-By (4) Intrusion (8) Health Damages (3) Fires/Explosions (1) Not Specified (6)	Falling (n = 1) Caught-In/Between (2) Struck-By (1) Intrusion/Near-Miss (1) Health Damages (1) Fires/Explosions (2) Not Specified (3)	n = 0
Phase	Design (n = 12)	Construction Planning (n = 31)	Construction Execution (n = 24)	Operation (n = 7)	Deconstruction (n = 0)
Solutions	Rule-Based Checking & Design Validation (n = 8) Site Layout & Task Planning (4) Equipment & Temporary Structures (1) Safety Training (1) Use of Robotics (1) Monitoring (0) Learning & Documentation (1)	Rule-Based Checking & Design Validation (n = 4) Site Layout & Task Planning (21) Equipment & Temporary Structures (7) Safety Training (5) Use of Robotics (1) Monitoring (3) Learning & Documentation (4)	Rule-Based Checking & Design Validation (n = 1) Site Layout & Task Planning (13) Equipment & Temporary Structures (0) Safety Training (3) Use of Robotics (1) Monitoring (12) Learning & Documentation (5)	Rule-Based Checking & Design Validation (n = 2) Site Layout & Task Planning (2) Equipment & Temporary Structures (1) Safety Training (1) Use of Robotics (0) Monitoring (2) Learning & Documentation (3)	n = 0

Phase

Within the published research literature:

1. What do researchers identify as **barriers** and **facilitators** for each type of solution?

Barriers and Facilitators – Literature Review

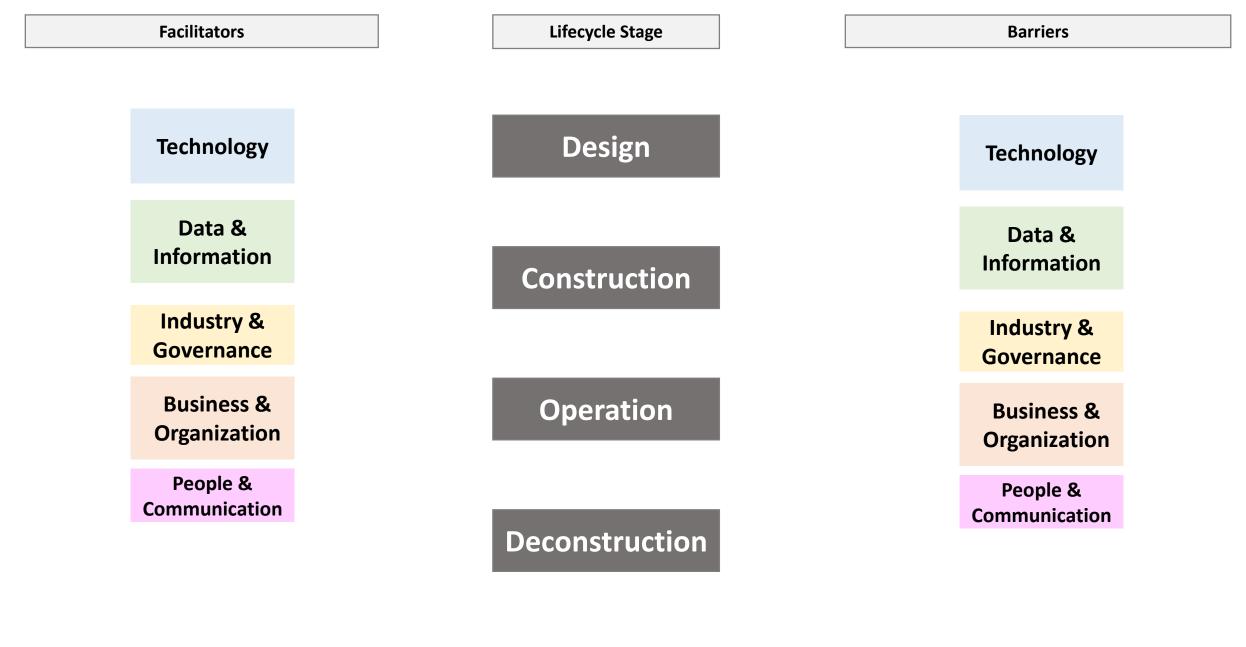
Barriers and Facilitators – Literature Review

Facilitators	Solution Type	Barriers
Access to as-built information D1		B1 High degree of manual work
Software interoperability T1	Checking & Validation	B2 Lack of evaluation metrics
		P1 Limited training transferability
Use of established BIM software T2	Learning &	P2 Lack of technical skills
Access for many stakeholders T3	Documentation	D1 Static information in BIM
		D2 Limited input data
Low implementation costs B1	Safety Training	T1 Technological immaturity
Integrated project teams B2		T2 Limited scope of hazard recognition
		T3 Limited depth of hazard recognition
Use of established standards I1	Site Layout & Task	D3 Human intervention needed
Regulatory obligations I2	Planning	I1 Regulatory boundaries
	Equipment & Temp.	B3 Increased upfront resources needed
High user-friendliness T4	Structures	P3 Staff resistance to change
Use of additional technologies T5		P4 Integrity concerns
		T4 Needs complementary infrastructure
Complementary IT infrastructure T6	Real-Time Monitoring	T5 Limited user friendliness
Extension of BIM use cases B3		D4 High quality requirements for BIM
	Task Performance by	B4 Isolated use cases
Innovation mindset P1	Robots	B5 Need for organizational changes

T=Technology

D= Data & Information

I=Industry & Governance


B=Business & Organization

In actual current practice...

1. What do industry workshop participants identify as **barriers** and **facilitators** for their life cycle stage?

Barriers and Facilitators – Workshop Discussions

T=Technology

D= Data & Information

I=Industry & Governance

B=Business & Organization

P=People & Communication

Barriers and Facilitators – Workshop Discussions

Facilitators	Lifecycle Stage		Barriers
Frequent testbeds B1			D1 Limited data transferability
Client support B2			P1 Communication gaps
Lifecycle knowledge P1			B1 Lack of resources
Clear communication P2	Design		B2 Lack of lifecycle perspective
Realistic virtual representations T1			B3 Time pressure
Regulatory predictability I1	Construction		B4 Low prioritization
Integrated project teams B3			P2 Lack of technical skills
Access for many stakeholders T2			P3 Lack of project oversight
Early investments in safety B4			T1 Technological immaturity
Top-level prioritization B5			B5 Lack of implementation road map
Sense of pride and inclusion P3			B6 Lack of evaluation metrics
Public sharing of best practices P4			B7 Scattered responsibilities
Building of inhouse skill pool P5	Operation		B8 Lack of client support
Clear transformation road map B6			I1 Regulatory boundaries
Adjustment of evaluation metrics B7			I2 Risk aversion of actors
Flexible database structures D1			I3 Different levels of adoption
Data crowdsourcing and sharing D2	Deconstruction		I4 Fragmented industry nature
Information consistency D3			T2 Limited scalability of solutions
Lifecycle data perspective D4			D2 Lack of clear requirement definitions
Data transferability D5			D3 Lack of input data

D= Data & Information

tion I=Industry & Governance

B=Business & Organization

Where do we go from here?

Principles for the Way Forward

What is needed to help overcome the challenges of implementation and make workplaces safer?

Technology	 Focus on user-friendliness Modular stake-holder integration Prioritize digital infrastructure Increase industrialization 	
Data & Information	 Establish a single source of truth Plan digitally "all the way through" Build a common data environment Ensure platform flexibility Share safety information 	
Industry & Governance	 Stronger academia & industry links Adjust regulatory requirements" Establish standards Scale solutions on industry level 	M C H
Business & Organization	 Democratize safety Adopt feasible metrics Link safety and business goals Iterate in frequent testbeds Scale in the project 	<u></u>
People & Communication	 Cultivate a safety mind-set Cultivate a digital mind-set Communicate success stories 	Ŷ

Interested in learning more?

Find more details in the Published journal article:

Hoeft, M.; Trask, C. Safety Built Right in: Exploring the Occupational Health and Safety Potential of BIM-Based Platforms throughout the Building Lifecycle. Sustainability 2022, 14.

https://www.mdpi.com/2071-1050/14/10/6104

sustainability

Article

Safety Built Right in: Exploring the Occupational Health and Safety Potential of BIM-Based Platforms throughout the Building Lifecycle

Madeleine Hoeft¹ and Catherine Trask^{2,*}

- ¹ Department of Real Estate and Construction Management, School of Architecture and Built Environment, KTH Royal Institute of Technology, 11428 Stockholm, Sweden; hoeft@kth.se
- ² Ergonomics Division, School of Engineering Sciences in Chemistry, Biotechnology, & Health, KTH Royal Institute of Technology, 14152 Huddinge, Sweden
- * Correspondence: ctrask@kth.se

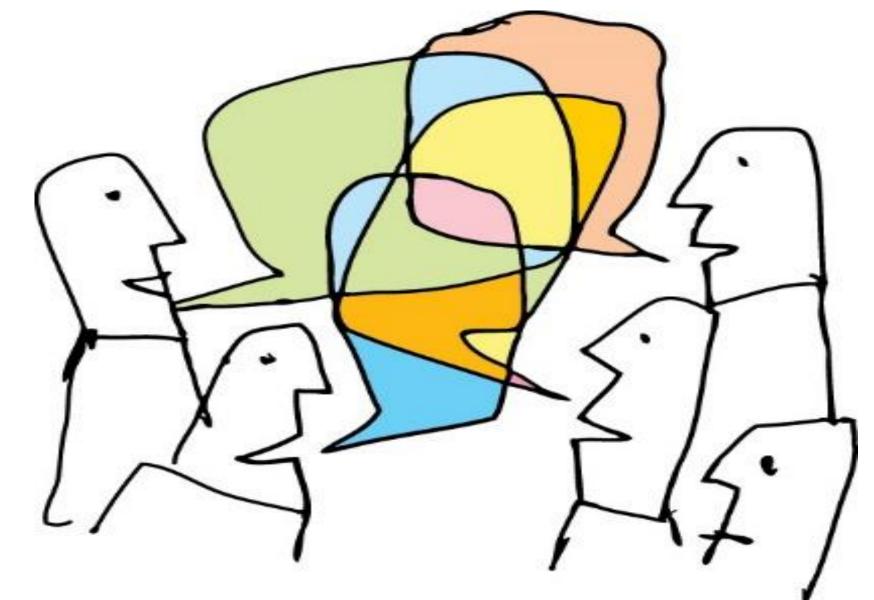
Abstract: This article investigates the opportunities of using digital building platforms based on Building Information Modelling (BIM) to increase occupational health and safety (OHS) in building design, construction, operation and deconstruction. The data collection followed a mixed-method approach with a systematic mapping review and focus group discussions with industry practitioners from the Swedish construction and real estate industry. Use cases were identified from both venues, as were prevailing barriers, potential facilitators, best practices and future applications. The findings highlight OHS potentials of digital building platforms for Rule-Based Checking and Design Validation, Team Building and Communication, Site Layout and Task Planning, Real-Time Monitoring, Equipment and Temporary Structures, Robotic Task Performance and Learning and Documentation. A set of principles is proposed to promote a higher degree of lifecycle and stakeholder integration: (1) technology, (2) data and information, (3) business and organization, (4) people and communication and (5) industry structure and governance aspects.

Citation: Hoeft, M.; Trask, C., Safety, Built Right in: Exploring the Occupational Health and Safety Potential of BIM-Based Platforms throughout the Building Lifecycle. Sustainability 2022, 14, x. https://doi.org/10.3390/xxxx

Academic Editor: Srinath Perera

Received - 21 March 2022

Keywords: occupational health and safety; digital twin; building information modelling; building life cycle; construction safety; design for safety; construction management; facility management


1. Introduction

The building sector has one of the highest rates of accidents and fatal injuries each year both in greenfield construction and maintenance works. In 2020, the construction

Questions & Discussion

Catherine Trask

ctrask@kth.se

Project Summary

This project investigates the opportunities of using digital building platforms based on Building Information Modelling (BIM) to increase occupational health and safety (OHS) in building design, construction, operation and deconstruction. The data collection followed a mixed-method approach with a systematic mapping review and focus group discussions with industry practitioners from the Swedish construction and real estate industry. Use cases are identified from both venues, as are prevailing barriers, potential facilitators, best practices and future applications. The findings highlight OHS potentials of digital building platforms for Rule-Based Checking & Design Validation, Team Building & Communication, Site Layout & Task Planning, Real-Time Monitoring, Equipment & Temporary Structures, Robotic Task Performance, and Learning & Documentation. A set of principles is proposed to promote a higher degree of lifecycle and stakeholder integration: (1) technology, (2) data and information, (3) business and organization, (4) people and communication and (5) industry structure and governance aspects.