

Side-Channel Vulnerability and Threat Analysis with Machine Learning in Focus Elena Dubrova, KTH

CDIS Spring Conference 2022 KTH Royal Institute of Technology Tuesday, May 24, 2022

Overview

- Project goals
- Background on side-channel analysis
- Project results:
 - Saber power analysis
 - Saber amplitude-modulated EM emanations-based analysis
 - TRNG power analysis
 - USIM card power analysis
- Summary and future work

Project goals

- Develop new hardware security assessment methods
- Design countermeasures against side-channel attacks on implementations of cryptographic algorithms

How side-channel attacks work

- Crypto algorithms are implemented in CPUs, FPGAs, ASICs, ...
- Different operations may consume different amount of power/time
- The same operation executed on different data may consume different amount of power/time
- It may be possible to recognize which operations and data are processed from power/EM traces/timing

source: hackaday.com

Protected Saber side-channel analysis

photo credit: Kalle Ngo

- Saber is one of the finalists of ongoing NIST post-quantum cryptography standartization competition
 - Key Encapsulation Mechanism (KEM)
 - Security relies on the hardness of the Learning With Rounding (LWR) problem

- 1. A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM, K. Ngo, E. Dubrova, Q. Guo, T. Johansson, Trans. on Cryptographic Hardware and Embedded Systems, 2021, 4, 676-707
- Breaking Masked and Shuffled CCA Secure Saber KEM by Power Analysis, K. Ngo, E. Dubrova, T. Johansson, Workshop on Attacks and Solutions in Hardware Security, Nov. 19, 2021
- *3. Side-Channel Analysis of Saber KEM Using Amplitude-Modulated EM Emanations*, R. Wang, K. Ngo, E. Dubrova, submitted to DSD'2022

Saber KEM algorithm

Saber.KEM.Encaps $((seed_{\mathbf{A}}, \mathbf{b}))$

1:
$$m \leftarrow \mathcal{U}(\{0,1\}^{256})$$

2: $(\hat{K},r) = \mathcal{G}(\mathcal{F}(pk),m)$
3: $c = \text{Saber.PKE.Enc}(pk,m;r)$
4: $K = \mathcal{H}(\hat{K},c)$
5: return (c,K)
session key

public key secret key Saber.KEM.Decaps((z, pkh, pk, s), c) 1: m' =Saber.PKE.Dec(s, c) \leftarrow attack point 2: $(\hat{K}', r') = \mathcal{G}(pkh, m')$ 3: c' =Saber.PKE.Enc(pk, m'; r')4: if c = c' then 5: return $K = \mathcal{H}(\hat{K}', c)$ 6: else 7: return $K = \mathcal{H}(z, c)$

8: end if

Masking and shuffling counteremeasures

How deep learning breaks masking

Empirical probability to recover a message bit from a single power trace

Secret key recovery

- Session key can be derived directly from the message
- Secret key can be recovered from
 - 24 chosen ciphertexts for a masked Saber https://www.youtube.com/watch?v=IZ3DbvDRfOQ&t=12s
 - 61,680 chosen ciphertexts for a masked and shuffled Saber https://youtu.be/LFCTiqvlask
- Ongoing work
 - analysing higher-order masking countermeasure
 - analysing an FPGA implementation of Saber
 - recovering shuffling indexes directly

Amplitude-modulated EM emanations based analysis of Saber

Sources of EM emanations in a mixed-signal circuit

Experimental setup

Center receiving frequency = f_{BT} + $2f_{clock}$ = 2.528 GHz f_{BT} = 2.4 GHz (Bluetooth band frequency) f_{clock} = 64 MHz (ARM Cortex M4 CPU clock)

Empirical probability to recover a message bit from *M* EM traces captured by a coaxial cable from an unprotected Saber

M	1	10	20	30	40	50
14K	0.710	0.853	0.879	0.886	0.899	0.911
23K	0.700	0.840	0.890	0.898	0.915	0.921
32K	0.708	0.865	0.890	0.904	0.908	0.921
average	0.706	0.853	0.883	0.896	0.907	0.918

TRNG power analysis

- We can recover Hamming weight of 32-bit random numbers generated by the TRNG in a STM 32MCU with ≈ 80% probability
- First passive side-channel attack on a hardware TRNG in a commercial IC

"Side-Channel Analysis of the Random Number Generator in STM32 MCUs", K. Ngo, E. Dubrova,GLSVLSI'2022

photo credit: Kalle Ngo

USIM card power analysis

photo credit: Martin Brisfors

USIM's long-term key can be extracted by power analysis

- 1. How Deep Learning Helps Compromising USIM, M. Brisfors, S. Forsmark, E. Dubrova, CARDIS'2020
- Single-Trace Attacks on USIM: Myth or Reality?, M. Brisfors, E. Dubrova, draft

MILENAGE algorithm

Cost of USIM attack

• The attack can be done with a low-cost equipment

ChipWhisperer	250 USD
ChipWhisperer UFO board	240 USD
LEIA	3780 SEK
	< 1000 USD

• See demo at:

https://www.youtube.com/watch?v=7uJq1GIfTUY&feature=youtu.be

• If trained DL models are available, the attack does not require expert-level skills in side-channel analysis

Summary and next steps

- Deep learning side-channel attacks are very powerful
- They can overcome traditional countermeasures such as
 - Masking
 - Shuffling
 - Random delay insertion
 - Noise-based
- Future work
 - Designing stronger, DL-resistant countermeasures
 - Neural network model extraction by side-channel analysis