
CDIS Spring Conference 2022
KTH Royal Institute of Technology 

Tuesday, May 24, 2022
  

Provable Security
Roberto Guanciale, KTH

Mads Dam, Henrik Karlsson

  



Formal methods
• build our systems in new ways

– more rigorous techniques.
• prove using mathematics and logic the 

impossibility of vulnerabilities in systems

Heavy duty, but remarkable successes for critical 
SW

Key is to analyse the critical part of the system 
and guarantee that the other parts do not 
compromise these properties



Formal methods
• build our systems in new ways

– more rigorous techniques.
• prove using mathematics and logic the 

impossibility of vulnerabilities in systems

Heavy duty, but remarkable successes for critical 
SW

Key is to analyse the critical part of the system 
and guarantee that the other parts do not 
compromise these properties

Process 1 Process 2

Network

Process 1 Process 2

Network



Let’s look at an autonomous grass cutter 

Camera

Mapping

Motor Control

Battery
Proximity sensor

WiFi FTP

Bluetooth
Schedules

Voice command

● varying quality
● varying trust
● different supply chains



Key problem for security

Complexity

Voice
Command

Motor
Controller

Proximity
Sensor

WiFi



Key problem for security

Complexity

Voice
Command

Motor
Controller

Proximity
Sensor

WiFi



Key problem for security

Complexity

Voice
Command

Motor
Controller

Proximity
Sensor

WiFi



Standard OSs (Linux)

Notoriously buggy

- 27.8 million lines of code
- 75 thousands code commits/year
- Linus Torvalds 3.19% of commits
- 4,189 different contributors

Voice
Command

Motor
Controller

Proximity
Sensor

WiFi
Encryption

Mapping



Microkernels

- Functionally correct
- Strong spatial isolation
- NO non-functional guarantees Voice

Command

Motor
Controller

Proximity
Sensor

WiFi
Encryption

Mapping

Mapping Motor
Controller

Proximity
Sensor

Obstacle
Time

To
Break



Microkernels

- Functionally correct
- Strong spatial isolation
- NO non-functional guarantees Voice

Command

Motor
Controller

Proximity
Sensor

WiFi
Encryption

Mapping

Mapping Motor
Controller

Proximity
Sensor

Obstacle
Time

To
Break



Real Time Systems

- Priorities to meet deadlines
- No protection against side channel

Voice
Command

Motor
Controller

Proximity
Sensor

WiFi
Encryption

MappingMapping

Motor
Controller

Proximity
Sensor

Obstacle
Time

To
Break



Real Time Systems

- Priorities to meet deadlines
- No protection against side channel

Voice
Command

Motor
Controller

Proximity
Sensor

WiFi
Encryption

MappingEncryption

Encryption

Voice
Command

Voice
Command



P4

P6

Separation Kernel

- Both strong spatial and 
temporal isolation

- Used in Avionics (ARINC 653)
- Everything is static

Voice
Command

Motor
Controller

Proximity
Sensor

WiFi
Encryption

MappingP1

P2

P3 P4

P5 P6

P1

P2

P3

P5

Mayor Frame

Minor Frame



A new model for separation kernels

Use the capability model for all types of resources:

● Process management
● Process communication
● Memory
● Time



Capability model
Process 1

0 to 16 : WT and RD

Process 2 Process 3



Capability model: derivation
Process 1

0 to 16 : WT and RD

0 to 5 : RD 7 to 10 : WT

Process 2 Process 3



Capability model: delegation
Process 1

0 to 16 : WT and RD

0 to 5 : RD 7 to 10 : WT 7 to 10 : WT

Process 2 Process 3



Capability model: delegation
Process 1

0 to 16 : WT and RD

0 to 5 : RD 7 to 10 : WT 7 to 10 : WT

Process 2

8 to 9 : WT 8 to 9 : WT

Process 3



Capability model: revocation
Process 1

0 to 16 : WT and RD

0 to 5 : RD 7 to 10 : WT 7 to 10 : WT

Process 2

8 to 9 : WT 8 to 9 : WT

Process 3



Capability model: deletion
Process 1

0 to 16 : WT and RD

0 to 5 : RD 7 to 10 : WT 7 to 10 : WT

Process 2

8 to 9 : WT 8 to 9 : WT

Process 3



Capability model: drop
Process 1

0 to 16 : WT and RD

0 to 5 : RD 7 to 10 : WT 7 to 10 : WT

Process 2

8 to 9 : WT 8 to 9 : WT

Process 3



Timing Capability
0 to 100P1

Mayor Frame

P2



Timing Capability
0 to 60P1

Mayor Frame

61 to 100P2

61 to 100



Few APIs but expressive

● Timing Capabilities are per core.
● A process can run only on one core, but it can migrate.
● Kernel is (mostly) preemptive. We use slack time that should cover the 

non-preemptive parts of the kernel
● 2kLoC of C/Assembly for 64-bit RISC-V



Remote Procedure Call
0 to 100P1

P2



Remote Procedure Call: Derive
0 to 100P1

P2

0 to 90 91 to 100



Remote Procedure Call: Delegate
0 to 100P1

P2 0 to 90

91 to 100



Remote Procedure Call: Delete
0 to 100P1

P2

91 to 100



Remote Procedure Call: Revoke
0 to 100P1

P2 0 to 90

91 to 100



Remote Procedure Call: Revoke
0 to 100P1

P2

91 to 100



Ongoing work

● WCET analysis of non-preemptive kernel
● Demonstrating application:

○ Cyber physical system with multiple modes of operations
○ Reconfigurations to handle faults

● Userland (Posix) and drivers
● Formal verification of kernel system calls

○ Model of RISC-V memory model
● Formal verification of non-functional properties

○ WCET
○ Constant time execution


