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Formal methods
• build our systems in new ways

– more rigorous techniques.
• prove using mathematics and logic the 

impossibility of vulnerabilities in systems

Heavy duty, but remarkable successes for critical 
SW

Key is to analyse the critical part of the system 
and guarantee that the other parts do not 
compromise these properties
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Let’s look at an autonomous grass cutter 
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● varying quality
● varying trust
● different supply chains



Key problem for security
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Standard OSs (Linux)

Notoriously buggy

- 27.8 million lines of code
- 75 thousands code commits/year
- Linus Torvalds 3.19% of commits
- 4,189 different contributors
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Microkernels
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Real Time Systems

- Priorities to meet deadlines
- No protection against side channel
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P4

P6

Separation Kernel

- Both strong spatial and 
temporal isolation

- Used in Avionics (ARINC 653)
- Everything is static
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A new model for separation kernels

Use the capability model for all types of resources:

● Process management
● Process communication
● Memory
● Time



Capability model
Process 1

0 to 16 : WT and RD

Process 2 Process 3
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Capability model: drop
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Timing Capability
0 to 100P1
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Few APIs but expressive

● Timing Capabilities are per core.
● A process can run only on one core, but it can migrate.
● Kernel is (mostly) preemptive. We use slack time that should cover the 

non-preemptive parts of the kernel
● 2kLoC of C/Assembly for 64-bit RISC-V



Remote Procedure Call
0 to 100P1

P2



Remote Procedure Call: Derive
0 to 100P1

P2

0 to 90 91 to 100



Remote Procedure Call: Delegate
0 to 100P1

P2 0 to 90

91 to 100



Remote Procedure Call: Delete
0 to 100P1

P2

91 to 100



Remote Procedure Call: Revoke
0 to 100P1

P2 0 to 90

91 to 100



Remote Procedure Call: Revoke
0 to 100P1

P2

91 to 100



Ongoing work

● WCET analysis of non-preemptive kernel
● Demonstrating application:

○ Cyber physical system with multiple modes of operations
○ Reconfigurations to handle faults

● Userland (Posix) and drivers
● Formal verification of kernel system calls

○ Model of RISC-V memory model
● Formal verification of non-functional properties

○ WCET
○ Constant time execution


